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You will find StatKey and many additional resources

(including short, helpful videos for all examples and all

learning goals; electronic copies of all datasets; and

technology help for a wide variety of platforms)

as part of the online companion to this textbook.

You can also find StatKey at

www.lock5stat.com/statkey



Data are everywhere—in vast 
quantities, spanning almost every
topic. Being able to make sense 
of all this information is becom-
ing both a coveted and necessary

skill. This book will help you learn how to effectively collect and analyze data, enabling you to investi-
gate any questions you wish to ask. The goal of this book is to help you unlock the power of data!

An essential component of statistics is randomness. Rather than viewing randomness as a confused 
jumble of numbers (as the random number table on the front cover might appear), you will learn how
to use randomness to your advantage, and come to view it as one of the most powerful tools avail-
able for making new discoveries and bringing clarity to the world.

A message 
from 
the Locks
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P R E F A C E

“Statistical thinking will one day be as necessary a qualification for
efficient citizenship as the ability to read and write.”

H.G. Wells

Why We Wrote this Book
Helping students make sense of data will serve them well in life and in any field they
might choose. Our goal in writing this book is to help students understand, appre-
ciate, and use the power of statistics and to help instructors teach an outstanding
course in statistics.

The text is designed for use in an introductory statistics course. The focus
throughout is on data analysis and the primary goal is to enable students to
effectively collect data, analyze data, and interpret conclusions drawn from data.
The text is driven by real data and real applications. Although the only prerequisite
is a minimal working knowledge of algebra, students completing the course should
be able to accurately interpret statistical results and to analyze straightforward
datasets. The text is designed to give students a sense of the power of data analysis;
our hope is that many students learning from this book will want to continue
developing their statistical knowledge.

Students who learn from this text should finish with

• A solid conceptual understanding of the key concepts of statistical inference: esti-
mation with intervals and testing for significance.

• The ability to do straightforward data analysis, including summarizing data, visu-
alizing data, and inference using either traditional methods or modern resampling
methods.

• Experience using technology to perform a variety of different statistical
procedures.

• An understanding of the importance of data collection, the ability to recognize
limitations in data collection methods, and an awareness of the role that data col-
lection plays in determining the scope of inference.

• The knowledge of which statistical methods to use in which situations and the
ability to interpret the results effectively and in context.

• An awareness of the power of data.

Building Conceptual Understanding
with Simulation Methods
This book uses computer simulation methods to introduce students to the key ideas
of statistical inference. Methods such as bootstrap intervals and randomization tests
are very intuitive to novice students and capitalize on visual learning skills students
bring to the classroom. With proper use of computer support, they are accessible
at very early stages of a course with little formal background. Our text introduces
statistical inference through these resampling and randomization methods, not only
because these methods are becoming increasingly important for statisticians in their
own right but also because they are outstanding in building students’ conceptual
understanding of the key ideas.

Our text includes the more traditional methods such as t-tests, chi-square tests,
etc., but only after students have developed a strong intuitive understanding of

xi
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inference through randomization methods. At this point students have a concep-
tual understanding and appreciation for the results they can then compute using
the more traditional methods. We believe that this approach helps students realize
that although the formulas may take different forms for different types of data, the
conceptual framework underlying most statistical methods remains the same. Our
experience has been that after using the intuitive simulation-based methods to intro-
duce the core ideas, students understand and can move quickly through most of the
traditional techniques.

Sir R.A. Fisher, widely considered the father of modern statistics, said of simu-
lation and permutation methods in 1936:

“Actually, the statistician does not carry out this very simple and very tedious process,
but his conclusions have no justification beyond the fact that they agree with those
which could have been arrived at by this elementary method.”

Modern technology has made these methods, too ‘tedious’ to apply in 1936, now
readily accessible. As George Cobb wrote in 2007:

“... despite broad acceptance and rapid growth in enrollments, the consensus cur-
riculum is still an unwitting prisoner of history. What we teach is largely the tech-
nical machinery of numerical approximations based on the normal distribution and
its many subsidiary cogs. This machinery was once necessary, because the concep-
tually simpler alternative based on permutations was computationally beyond our
reach. Before computers statisticians had no choice. These days we have no excuse.
Randomization-based inference makes a direct connection between data production
and the logic of inference that deserves to be at the core of every introductory course.”

Building Understanding and Proficiency
with Technology
Technology is an integral part of modern statistics, but this text does not require
any specific software. We have developed a user-friendly set of online interactive
dynamic tools, StatKey, to illustrate key ideas and analyze data with modern
simulation-based methods. StatKey is freely available with data from the text
integrated. We also provide Companion Manuals, tied directly to the text, for
other popular technology options. The text uses many real datasets which are
electronically available in multiple formats.

Building a Framework for the Big Picture:
Essential Synthesis
One of the drawbacks of many current texts is the fragmentation of ideas into dis-
joint pieces.While the segmentation helps students understand the individual pieces,
we believe that integration of the parts into a coherent whole is also essential. To
address this we have sections called Essential Synthesis at the end of each unit, in
which students are asked to take a step back and look at the big picture. We hope
that these sections, which include case studies, will help to prepare students for the
kind of statistical thinking they will encounter after finishing the course.

Building Student Interest with Engaging Examples
and Exercises
This text contains over 300 fully worked-out examples and over 2000 exercises,
which are the heart of this text and the key to learning statistics. One of the great
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things about statistics is that it is relevant in so many fields. We have tried to find
studies and datasets that will capture the interest of students—and instructors! We
hope all users of this text find many fun and useful tidbits of information from
the datasets, examples, and exercises, above and beyond the statistical knowledge
gained.

The exercise sets at the end of every section assess computation, interpretation,
and understanding using a variety of problem types. Some features of the exercise
sets include:

• Skill Builders. After every section, the exercise set starts with skill-building
exercises, designed to be straightforward and to ensure that students have the
basic skills and confidence to tackle the more involved problems with real data.

• Lots of real data.After the opening skill builders, the vast majority of the exercises
in a section involve real data from a wide variety of disciplines. These allow stu-
dents to practice the ideas of the section and to see how statistics is used in actual
practice in addition to illustrating the power and wide applicability of statistics.
Most of these exercises call for interpretations of the statistical findings in the
context of a real situation.

• Exercises using technology. While many exercises provide summary statistics,
some problems in each exercise set invite students to use technology to analyze
raw data. All datasets, and software-specific companion manuals, are available
electronically.

• Essential synthesis and review.Exercises at the end of each unit let students choose
from among a wider assortment of possible approaches, without the guiding cues
associated with section-specific exercise sets. These exercises help students see the
big picture and prepare them for determining appropriate analysis methods.

Building Confidence with Robust Student
and Instructor Resources
This text has many additional resources designed to facilitate and enhance its use
in teaching and learning statistics. The following are all readily accessible and orga-
nized to make them easy to find and easy to use. Almost all were written exclusively
by the authors.

Resources for students and instructors:
• StatKey; online interactive dynamic tools (www.lock5stat.com/statkey)

• Software-specific companion manuals (www.wiley.com/college/lock)

• All datasets in multiple formats (www.wiley.com/college/lock)

• Short video solutions for all examples and video tutorials for all learning goals

• WileyPLUS—an innovative, research-based online environment for effective
teaching and learning

• Student solution manual with fully worked solutions to odd-numbered exercises

• Interactive video lectures for every section

Resources for instructors
• Complete instructors manual with sample syllabi, teaching tips and recommended
class examples, class activities, homework assignments, and student project
assignments

• Short videos with teaching tips for instructors, for every section
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• Detailed interactive class activities with handouts, for every section

• PowerPoint slides, for every section, with or without integrated clicker questions

• In-class worksheets ready to go, for every section

• Clicker questions, for every section

• A variety of different types of student projects, for every unit

• Fully worked out solutions to all exercises

• TestGen computerized test bank with a wide variety of provided questions as well
as the ability to write custom questions

• The full WileyPLUS learning management system at your disposal

Content and Organization

UNIT A: Data
The first unit deals with data—how to obtain data (Chapter 1) and how to summa-
rize and visualize the information in data (Chapter 2). We explore how the method
of data collection influences the types of conclusions that can be drawn and how
the type of data (categorical or quantitative) helps determine the most appropriate
numerical and/or graphical technique for describing a single variable or investigating
a relationship between two variables. We end the unit discussing multiple variables
and exploring a variety of additional ways to display data.

UNIT B: Understanding Inference
In Unit B we develop the key ideas of statistical inference—estimation and testing—
using simulation methods to build understanding and to carry out the analysis.
Chapter 3 introduces the idea of using information from a sample to provide an
estimate for a population, and uses a bootstrap distribution to determine the
uncertainty in the estimate. In Chapter 4 we illustrate the important ideas for
testing statistical hypotheses, again using simple simulations that mimic the random
processes of data production. A key feature of these simulation methods is that the
general ideas can be applied to a wide variety of parameters and situations.

UNIT C: Inference with Normal and t-Distributions
In Unit C we see how theoretical distributions, such as the classic, bell-shaped nor-
mal curve, can be used to approximate the distributions of sample statistics that we
encounter in Unit B. Chapter 5 shows, in general, how the normal curve can be used
to facilitate constructing confidence intervals and conducting hypothesis tests. In
Chapter 6 we see how to estimate standard errors with formulas and use the normal
or t-distributions in situations involving means, proportions, differences in means,
and differences in proportions. Since the main ideas of inference have already been
covered in Unit B, Chapter 6 has many very short sections that can be combined and
covered in almost any order.

UNIT D: Inference for Multiple Parameters
In Unit D we consider statistical inference for situations with multiple parameters:
testing categorical variables with more than two categories (chi-square tests
in Chapter 7), comparing means between more than two groups (ANOVA in
Chapter 8), making inferences using the slope and intercept of a regression model
(simple linear regression in Chapter 9), and building regression models with more
than one explanatory variable (multiple regression in Chapter 10).
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The Big Picture: Essential Synthesis
This section gives a quick overview of all of the units and asks students to put the
pieces together with questions related to a case study on speed dating that draws on
ideas from throughout the text.

Chapter P: Probability Basics
This is an optional chapter covering basic ideas of formal probability theory. The
material in this chapter is independent of the other chapters and can be covered at
any point in a course or omitted entirely.

Changes in the Third Edition
• New Exercises. The Third Edition includes over 200 completely new exercises,
almost all of which use real data. As always, our goal has been to continue to try
to find datasets and studies of interest to students and instructors.

• Updated Exercises. In addition to the many new exercises, this edition also
includes over 100 exercises that have been updated with new data.

• New Datasets. We have added many new datasets and updated many others.
There are now over 130 full datasets included in the materials (provided in many
different software formats), as well as many additional smaller datasets discussed
within the text.

• Additional emphasis in Chapter 1. We have added material in Chapter 1 to
increase the emphasis on understanding the concepts of association, confounding,
and causality.

• Chapter 4 Reorganized. Chapter 4 on hypothesis tests has been reorganized to
focus more explicitly on the important step of locating the sample statistic in the
randomization distribution. This allows us to place more emphasis on the connec-
tion between statistics that are extreme in the randomization distribution and low
p-values, and then the connection to greater evidence against the null hypothesis.

• Data Science. Recognizing modern trends in data science, we have worked to
include more large datasets with many cases and many variables. For example,
the CollegeScores dataset has data on 37 variables for all 6141 post-secondary
schools in the Department of Education’s College Scorecard.

• StatKey Enhanced.We continue to add data sets and improve the functionality of
the online interactive dynamic software StatKey.

• And Much More! We have also made additional edits to the text to improve the
flow and clarity, keep it current, and respond to student and user feedback.

Tips for Students
• Do the Exercises! The key to learning statistics is to try lots of the exercises. We
hope you find them interesting!

• Videos we have created video solutions for all examples and short video tutorials
for all learning goals. These are available through WileyPLUS. If you need some
help, check them out!

• Partial Answers Partial answers to the odd-numbered problems are included in
the back of the book. These are partial answers, not full solutions or even com-
plete answers. In particular, many exercises expect you to interpret or explain or
show details, and you should do so! (Full solutions to the odd-numbered problems
are included with WileyPLUS or the Student Solutions Manual.)
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• Exercises Referencing Exercises Many of the datasets and studies included in
this book are introduced and then referenced again later. When this happens,
we include the earlier reference for your information, but you should not need
to refer back to the earlier reference. All necessary information will be included in
the later problem. The reference is there in case you get curious and want more
information or the source citation.

• Accuracy Statistics is not an exact science. Just about everything is an approxima-
tion, with very few exactly correct values. Don’t worry if your answer is slightly
different from your friend’s answer, or slightly different from the answer in the
back of the book. Especially with the simulation methods of Chapters 3 and 4,
a certain amount of variability in answers is a natural and inevitable part of the
process.
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U N I T A

Data
“For Today’s Graduate, Just One Word: Statistics”

New York Times headline, August 5, 2009

U N I T O U T L I N E

1 Collecting Data

2 Describing Data
Essential Synthesis

In this unit, we learn how to collect and describe

data. We explore how data collection influences

the types of conclusions that can be drawn, and

discover ways to summarize and visualize data.
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C H A P T E R 1

Collecting
Data

“You can’t fix by analysis what you bungled by design.”

Richard Light, Judith Singer, and John Willett in By Design

2



Questions and Issues

C H A P T E R O U T L I N E

1 Collecting Data 2
1.1 The Structure of Data 4

1.2 Sampling from a Population 17

1.3 Experiments and Observational
Studies 31

Here are some of the questions and issues we will discuss in this chapter:

• Is there a “sprinting gene”?

• Does tagging penguins for identification purposes harm them?

• Do humans subconsciously give off chemical signals (pheromones)?

• What proportion of people using a public restroom wash their hands?

• If parents could turn back time, would they still choose to have children?

• Why do adolescent spiders engage in foreplay?

• How broadly do experiences of parents affect their future children?

• What percent of college professors consider themselves “above-average” teachers?

• Does giving lots of high fives to teammates help sports teams win?

• Which is better for peak performance: a short mild warm-up or a long intense warm-up?

• Are city dwellers more likely than country dwellers to have mood and anxiety disorders?

• Is there truth to the saying “beauty sleep”?

• What percent of young adults in the US move back in with their parents?

• Does turning up the music in a bar cause people to drink more beer?

• Is your nose getting bigger?

• Does watching cat videos improve mood?

• Does sleep deprivation hurt one’s ability to interpret facial expressions?

• Do artificial sweeteners cause weight gain?

• Does late night eating impair concentration?

• Does eating organic food improve your health?

3
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1.1THE STRUCTURE OF DATA

We are being inundated with data. It is estimated that the amount of new technical
information is doubling every two years, and that over 7. 2 zettabytes (that’s 7.2 ×
1021 bytes) of unique new information is being generated every year.1 That is more
than was generated during the entire 5000-year period before you were born. An
incredible amount of data is readily available to us on the Internet and elsewhere.
The people who are able to analyze this information are going to have great jobs
and are going to be valuable in virtually every field. One of the wonderful things
about statistics is that it is relevant in so many areas. Whatever your focus and your
future career plans, it is likely that you will need statistical knowledge to make smart
decisions in your field and in everyday life. As we will see in this text, effective
collection and analysis of data can lead to very powerful results.

Statistics is the science of collecting, describing, and analyzing data. In this
chapter, we discuss effective ways to collect data. In Chapter 2, we discuss methods
to describe data. The rest of the chapters are devoted to ways of analyzing data to
make effective conclusions and to uncover hidden phenomena.

D A T A 1 . 1 A Student Survey
For several years, a first-day survey has been administered to students in an
introductory statistics class at one university. Some of the data for a few of the
students are displayed in Table 1.1. A more complete table with data for 362
students and 17 variables can be found in the file StudentSurvey.2 ◼

Cases and Variables
The subjects/objects that we obtain information about are called the cases or units
in a dataset. In the StudentSurvey dataset, the cases are the students who completed
the survey. Each row of the dataset corresponds to a different case.

A variable is any characteristic that is recorded for each case. Each column of
our dataset corresponds to a different variable. The data in Table 1.1 show eight
variables (in addition to the ID column), each describing a different characteristic
of the students taking the survey.

Table 1.1 Partial results from a student survey

ID Sex Smoke Award Exercise TV GPA Pulse Birth

1 M No Olympic 10 1 3.13 54 4
2 F Yes Academy 4 7 2.5 66 2
3 M No Nobel 14 5 2.55 130 1
4 M No Nobel 3 1 3.1 78 1
5 F No Nobel 3 3 2.7 40 1
6 F No Nobel 5 4 3.2 80 2
7 F No Olympic 10 10 2.77 94 1
8 M No Olympic 13 8 3.3 77 1
9 F No Nobel 3 6 2.8 60 2
10 F No Nobel 12 1 3.7 94 8

1“The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East,”
https://www.emc.com/leadership/digital-universe/2012iview/index.htm. Accessed June 2020.
2Most datasets used in this text, and descriptions, are available electronically. They can be found at
www.wiley.com/college/lock and at www.lock5stat.com. See the Preface for more information. Descrip-
tions of many datasets can also be found in Appendix B.
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Cases and Variables

We obtain information about cases or units in a dataset, and generally
record the information for each case in a row of a data table.

A variable is any characteristic that is recorded for each case. The vari-
ables generally correspond to the columns in a data table.

In any dataset, it is important to understand exactly what each variable is mea-
suring and how the values are coded. For the data in Table 1.1, the first column
is ID, to provide an identifier for each of the individuals in the study. In addition,
we have:

Sex M for male and F for female3

Smoke Does the student smoke: yes or no
Award Award the student prefers to win: Academy Award, Olympic gold

medal, or Nobel Prize
Exercise Number of hours spent exercising per week
TV Number of hours spent watching television per week
GPA Current grade point average on a 4-point scale
Pulse Pulse rate in number of beats per minute at the time of the survey
Birth Birth order: 1 for first/oldest, 2 for second born, etc.

Example 1.1
Explain what each variable tells us about the student with ID 1 in the first row of
Table 1.1.

Solution Student 1 is a male who does not smoke and who would prefer to win an Olympic
gold medal over an Academy Award or a Nobel Prize. He says that he exercises
10 hours a week, watches television one hour a week, and that his grade point aver-
age is 3.13. His pulse rate was 54 beats per minute at the time of the survey, and he
is the fourth oldest child in his family.

Categorical and Quantitative Variables
In determining the most appropriate ways to summarize or analyze data, it is useful
to classify variables as either categorical or quantitative.

Categorical and Quantitative Variables

A categorical variable divides the cases into groups, placing each case
into exactly one of two or more categories.

A quantitative variable measures or records a numerical quantity for
each case. Numerical operations like adding and averagingmake sense
for quantitative variables.

3We acknowledge that this binary dichotomization is not a complete or inclusive representation of reality.
However, the binary option is frequently used in data collection for ease of analysis and for confidentiality
purposes. We apologize for the lack of inclusivity in situations involving sex and gender in this text.
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We may use numbers to code the categories of a categorical variable, but this
does not make the variable quantitative unless the numbers have a quantitative
meaning. For example, “sex” is categorical even if we choose to record the results as
1 for male and 2 for female, since we are more likely to be interested in how many
are in each category rather than an average numerical value. In other situations, we
might choose to convert a quantitative variable into categorical groups. For example,
“household income” is quantitative if we record the specific values but is categorical
if we instead record only an income category (“low,” “medium,” “high”) for each
household.

Example 1.2
Classify each of the variables in the student survey data in Table 1.1 as either cate-
gorical or quantitative.

Solution Note that the ID column is neither a quantitative nor a categorical variable. A
dataset often has a column with names or ID numbers that are for reference only.

• Sex is categorical since it classifies students into categories of male and female.

• Smoke is categorical since it classifies students as smokers or nonsmokers.

• Award is categorical since students are classified depending on which award is
preferred.

• Exercise, TV,GPA, and Pulse are all quantitative since each measures a numerical
characteristic of each student. It makes sense to compute an average for each
variable, such as an average number of hours of exercise a week.

• Birth is a somewhat ambiguous variable, as it could be considered either quantita-
tive or categorical depending on how we use it. If we want to find an average birth
order, we consider the variable quantitative. However, if we are more interested
in knowing how many first-borns, how many second-borns, and so on, are in the
data, we consider the variable categorical. Either answer is acceptable.

Investigating Variables and Relationships
between Variables
In this book, we discuss ways to describe and analyze a single variable and to
describe and analyze relationships between two or more variables. For example,
in the student survey data, we might be interested in the following questions, each
about a single variable:

• What percentage of students smoke?

• What is the average number of hours a week spent exercising?

• Are there students with unusually high or low pulse rates?

• Which award is the most desired?

• How does the average GPA of students in the survey compare to the average GPA
of all students at this university?

Often the most interesting questions arise as we look at relationships between vari-
ables. In the student survey data, for example, we might ask the following questions
about relationships between variables:

• Who smokes more, males or females?

• Do students who exercise more tend to prefer an Olympic gold medal?
Do students who watch lots of television tend to prefer an Academy Award?
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• Do males or females watch more television?

• Do students who exercise more tend to have lower pulse rates?

• Do first-borns generally have higher grade point averages?

These examples show that relationships might be between two categorical vari-
ables, two quantitative variables, or a quantitative and a categorical variable. In
the following chapters, we examine statistical techniques for exploring the nature
of relationships in each of these situations.

D A T A 1 . 2 Data on Countries

As of this writing, there are 217 countries listed by the World Bank.4 A great deal
of information about these countries (such as energy use, birth rate, life
expectancy) is in the full dataset under the name AllCountries. ◼

redmal/Getty Images

Countries of the world

Example 1.3
The dataset AllCountries includes information on the percent of people in each
country with access to the Internet.

(a) Data from the Principality of Andorra were used to determine that 98.9% of
Andorrans have access to the Internet, the highest rate of any country. What are
the cases in the data from Andorra? What variable is used? Is it categorical or
quantitative?

(b) In the AllCountries dataset, we record the percent of people with access to the
Internet for each country. What are the cases in that dataset? What is the rele-
vant variable? Is it categorical or quantitative?

Solution (a) For determining the rate of Internet usage in Andorra, the cases are people in
Andorra, and the relevant variable is whether or not each person has access to
the Internet. This is a categorical variable.

(b) In the AllCountries dataset, the cases are the countries of the world. The vari-
able is the proportion with access to the Internet. For each country, we record a
numerical value. These values range from a low of 1.3% in Eritrea to the high of
98.9% in Andorra, and the average is 54.47%. This is a quantitative variable.

4http://data.worldbank.org/. Data include information on both countries and economies, accessed June
2019.
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As we see in the previous example, we need to think carefully about what the
cases are and what is being recorded in each case in order to determine whether a
variable is categorical or quantitative.

Example 1.4
In later chapters, we examine some of the following issues using the data in
AllCountries. Indicate whether each question is about a single variable or a
relationship between variables. Also indicate whether the variables are quantitative
or categorical.

(a) How much energy does the average country use in a year?

(b) Do countries larger in area tend to have a more rural population?

(c) What is the relationship, if any, between a country’s government spending on
the military and on health care?

(d) Is the birth rate higher in developed or undeveloped countries?

(e) Which country has the highest percent of elderly people?

Solution (a) The amount of energy used is a single quantitative variable.

(b) Both size and percent rural are quantitative variables, so this is a question about
a relationship between two quantitative variables.

(c) Spending on the military and spending on health care are both quantitative,
so this is another question about the relationship between two quantitative
variables.

(d) Birth rate is a quantitative variable and whether or not a country is developed is
a categorical variable, so this is asking about a relationship between a quantita-
tive variable and a categorical variable.

(e) Because the cases are countries, percent elderly is a single quantitative variable.

Using Data to Answer a Question
The StudentSurvey and AllCountries datasets contain lots of information and we
can use that information to learn more about students and countries. Increasingly,
in this data-driven world, we have large amounts of data and we want to “mine” it
for valuable information. Often, however, the order is reversed: We have a question
of interest and we need to collect data that will help us answer that question.

iStock.com/petesaloutos

Is there a “sprinting gene”?
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Example 1.5
Is There a “Sprinting Gene”?

A gene called ACTN3 encodes a protein which functions in fast-twitch muscles.
Some people have a variant of this gene that cannot yield this protein. (So we
might call the gene variant a possible non-sprinting gene.) To address the question of
whether this gene is associated with sprinting ability, geneticists tested people from
three different groups: world-class sprinters, world-class marathon runners, and a
control group of non-athletes. In the samples tested, 6% of the sprinters had the
gene variant, compared with 18% of the non-athletes and 24% of the marathon run-
ners. This study5 suggests that sprinters are less likely than non-sprinters to have the
gene variant.

(a) What are the cases and variables in this study? Indicate whether each variable is
categorical or quantitative.

(b) What might a table of data look like for this study? Give a table with a possible
first two cases filled in.

Solution (a) The cases are the people included in the study. One variable is whether the indi-
vidual has the gene variant or not. Since we record simply “yes” or “no,” this
is a categorical variable. The second variable keeps track of the group to which
the individual belongs. This is also a categorical variable, with three possible
categories (sprinter, marathon runner, or non-athlete). We are interested in the
relationship between these two categorical variables.

(b) The table of data must record answers for each of these variables and may or
may not have an identifier column. Table 1.2 shows a possible first two rows for
this dataset.

Table 1.2 Possible table to investigate
whether there is a sprinter’s gene

Name Gene Variant Group

Allan Yes Marathon runner
Beth No Sprinter
· · · · · · · · ·

Example 1.6
What’s a Habanero?

A habanero chili is an extremely spicy pepper (roughly 500 times hotter than a
jalape~no) that is used to create fiery food. The vice president of product devel-
opment and marketing for the Carl’s Jr. restaurant chain6 is considering adding a
habanero burger to the menu. In developing an advertising campaign, one of the
issues he must deal with is whether people even know what the term “habanero”
means. He identifies three specific questions of interest and plans to survey cus-
tomers who visit the chain’s restaurants in various parts of the country.

• What proportion of customers know and understand what “habanero” means?

• What proportion of customers are interested in trying a habanero burger?

• How do these proportions change for different regions of the country?

5Yang, N., et al., “ACTN3 genotype is associated with human elite athletic performance,” American
Journal of Human Genetics, September 2003; 73: 627–631.
6With thanks to Bruce Frazer.
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(a) Identify the cases for the data he collects.

(b) Describe three variables that should be included in the dataset.

Solution (a) The cases in the habanero marketing study are the individual customers that
respond to the survey request.

(b) Here are three variables that should be included in the data:

• Know = yes or no, depending on whether the customer knows the term
“habanero”

• Try = yes or no, to indicate the customer’s willingness to try a habanero burger

• Region = area in the country where the customer lives

All three variables are categorical.
Notice that for each case (customer), we record a value for each of the vari-

ables. Each customer would be represented in the dataset by a different row in
the data table.

iStock.com/KeithSzafranski

Does tagging penguins harm them?

D A T A 1 . 3 Tagging Penguins
Do metal tags on penguins harm them? Scientists trying to tell penguins apart
have several ways to tag the birds. One method involves wrapping metal strips
with ID numbers around the penguin’s flipper, while another involves electronic
tags. Neither tag seems to physically harm the penguins. However, since tagged
penguins are used to study all penguins, scientists wanted to determine
whether the metal tags have any significant effect on the penguins. Data were
collected over a 10-year time span from a sample of 100 penguins that were
randomly given either metal or electronic tags. This included information on
number of chicks, survival over the decade, and length of time on foraging
trips.7 ◼

Example 1.7
In the study on penguin tags:

(a) What are the cases?What are the variables? Identify each variable as categorical
or quantitative.

7Saraux, C., et al., “Reliability of flipper-banded penguins as indicators of climate change,” Nature, Jan-
uary 2011; 469: 203–206.
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(b) What information do the scientists hope to gain from the data? Describe at least
one question in which they might be interested.

Solution (a) The cases are the tagged penguins. The variables are the type of tag (categorical),
number of chicks (quantitative), survival or not (categorical), and length of time
on foraging trips (quantitative).

(b) The scientists want to determine whether there is a relationship between the
type of tag and any of the other variables. For example, they might be interested
in knowing whether survival rates differ between the penguins with the metal
tags and penguins with the electronic tags.

In Example 1.7, we are investigating whether one of the variables (the type of
tag) helps us explain or predict values of the other variables. In this situation, we call
the type of tag the explanatory variable and the other variables the response vari-
ables. One way to remember these names is the explanatory variable helps explain
the response variable, and the response variable responds to the explanatory vari-
able.

Explanatory and Response Variables

If we are using one variable to help us understand or predict values of
another variable, we call the former the explanatory variable and the
latter the response variable.

Example 1.8
In Example 1.4, we considered the following three questions about relationships
between variables in theAllCountries dataset. Identify the explanatory variable and
the response variable if it makes sense to do so.

(a) Do countries larger in area tend to have a more rural population?

(b) Is the birth rate higher in developed or undeveloped countries?

(c) What is the relationship, if any, between a country’s government spending on
the military and on health care?

Solution (a) The question indicates that we think area might influence the percent of a coun-
try that is rural, so we call area the explanatory variable and percent rural the
response variable.

(b) The question indicates that we think whether or not a country is developed
might influence the birth rate, so the explanatory variable is whether the country
is developed or undeveloped and the response variable is birth rate.

(c) There is no indication in this situation of why we might identify either of the two
variables (spending on military and spending on health care) as explanatory or
as response. In a relationship between two variables, we don’t always identify
one as the explanatory variable and one as the response variable.

Different Ways to Answer a Broad Question
A pheromone is a chemical signal given off by one member of a species

that influences other members of the species. Many studies (involving data, of
course!) provide evidence that different types of animals give off pheromones. It is
currently under debate whether humans also communicate subconsciously through
pheromones. How might we collect data to answer the question of whether there
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are human pheromones? We might start by narrowing the question to one that is
not so general. For example, are there pheromones in female tears that affect the
behavior of males?

Several studies8 suggest that the scent of tears from a crying woman may reduce
sexual interest in men. However, to determine whether this effect is caused subcon-
sciously by pheromones (rather than by obvious social influences), we need to think
carefully about how to collect data. How might you collect data to answer this ques-
tion? Three different methods were used in the studies. See what you think of the
three methods.

• In one study, 25 men in their twenties had a pad attached to their upper lip that
contained either tears collected from women who watched sad films or a salt solu-
tion that had been trickled down the same women’s faces. Neither substance had
a perceptible odor. The men who had tears on the upper lip rated female faces as
less sexually alluring than the men who had salt solution on the upper lip.

• In a second study, 50 men who sniffed women’s tears showed reduced levels of
testosterone relative to levels after sniffing a salt solution.

• In a third study involving 16 men, those who sniffed female tears displayed signif-
icantly reduced brain-cell activity in areas that had reacted strongly to an erotic
movie, whereas those who sniffed a salt solution did not show the same reduced
activity.

Example 1.9
For each of the three studies on women’s tears, state the explanatory and response
variables.

Solution In all three studies, the explanatory variable is whether tears or a salt solution is
used. In the first study, the response variable is how sexually alluring males rated
female faces, in the second study it is testosterone levels, and in the third study it is
brain cell activity.

All three of these studies describe data collected in a careful way to answer a
question. How to collect data in a way that helps us understand real phenomena is
the subject of the rest of this chapter.

We have described several datasets, studies, and questions in this section, involv-
ing students, countries, sprinter genes, habanero burgers, penguins, and pheromones.
If you are intrigued by any of these questions, keep reading! We examine all of them
in more detail in the pages ahead.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize that a dataset consists of cases and variables

• Identify variables as either categorical or quantitative

• Determine explanatory and response variables where appropriate

• Describe how data might be used to address a specific question

• Recognize that understanding statistics allows us to investigate a wide
variety of interesting phenomena

8Gelstein, S., et al., “Human Tears Contain a Chemosignal,” Science, January 2011; 331(6014): 226–230.
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Exercises for Section 1.1

SKILL BUILDER 1
For the situations described in Exercises 1.1 to 1.6:

(a) What are the cases?

(b) What is the variable and is it quantitative or
categorical?

1.1 People in a city are asked if they support a new
recycling law.

1.2 Record the percentage change in the price
of a stock for 100 stocks publicly traded on Wall
Street.

1.3 Collect data from a sample of teenagers with a
question that asks “Do you eat at least five servings
a day of fruits and vegetables?”

1.4 Measure the shelf life of bunches of bananas
(the number of days until the bananas go bad) for a
large sample.

1.5 Estimate the bending strength of beams by
bending 10 beams until they break and recording
the force at which the beams broke.

1.6 Record whether or not the literacy rate is over
75% for each country in the world.

SKILL BUILDER 2
In Exercises 1.7 to 1.10, a relationship between two
variables is described. In each case, we can think
of one variable as helping to explain the other.
Identify the explanatory variable and the response
variable.

1.7 Lung capacity and number of years smoking
cigarettes

1.8 Amount of fertilizer used and the yield of a
crop

1.9 Blood alcohol content (BAC) and number of
alcoholic drinks consumed

1.10 Year and the world record time in a marathon

1.11 Student Survey Variables Data 1.1 introduced
the dataset StudentSurvey, and Example 1.2 identi-
fied seven of the variables in that dataset as categor-
ical or quantitative. The remaining variables are:

Year FirstYear, Sophomore, Junior, Senior
Height In inches
Weight In pounds
Siblings Number of siblings the person has
VerbalSAT Score on the Verbal section of the

SAT exam

MathSAT Score on the Math section of the
SAT exam

SAT Sum of the scores on the Verbal and
Math sections of the SAT exam

HigherSAT Which is higher, Math SAT score or
Verbal SAT score?

(a) Indicate whether each variable is quantitative
or categorical.

(b) List at least two questions we might ask about
any one of these individual variables.

(c) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

1.12 Countries of the World Information about the
world’s countries is given in AllCountries, intro-
duced in Data 1.2 on page 7. You can find a descrip-
tion of the variables in Appendix B. For the full
dataset:

(a) Indicate which of the variables are quantitative
and which are categorical.

(b) List at least two questions we might ask about
any one of these individual variables.

(c) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

1.13 Goldilocks Effect: Read to Your Kids! The
American Academy of Pediatrics recommends that
parents begin reading to their children soon after
birth, and that parents set limits on screen time.
A new study9 reinforces these recommendations.
In the study, 27 four-year-olds were presented with
stories in three different formats: audio (sound
only), illustrated (sound and pictures), and ani-
mated (sound and animation). During the pre-
sentations, a magnetic resonance imaging (MRI)
machine measured each child’s brain connectivity.
The researchers found a “Goldilocks effect,” in
which audio was too cold (with low brain connectiv-
ity as the children strained to understand) and ani-
mation was too hot (with low brain connectivity as
the animation did all the work for the children). The
highest connectivity (just right!) was found with the
illustrated format, which simulates reading a book
to a child.

9Hutton J et al., “Differences in functional brain network con-
nectivity during stories presented in audio, illustrated, and ani-
mated format in preschool-age children,” Brain Imaging and
Behavior, October 30, 2018.
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(a) What is the explanatory variable? Is it categori-
cal or quantitative?

(b) What is the response variable? Is it categorical
or quantitative?

(c) How many cases are there?

1.14 Female Gamers Face Sexual Harassment A
research firm10 questioned 1151 female gamers in
Great Britain and found that 40% had received
obscene messages while playing online. In addition
to asking whether they had received obscene mes-
sages, the gamers were also asked howmany hours a
week they played, and whether they felt there were
enough strong female characters in games.

(a) What are the cases in this study?

(b) What are the variables? Indicate whether each
is categorical or quantitative.

(c) Howmany rows and howmany columns will the
dataset have if cases are rows and variables are
columns?

1.15 Active Learning vs Passive Learning: Which is
Best? Active learning in a classroom implies that
students are actively involved and working during
class time (either individually, in pairs, or in groups)
while passive learning indicates that students are
primarily taking notes while the instructor lectures.
A recent study11 measured students actual learning
under these two formats as well as their feelings of
learning. The study was very well designed: students
in a college physics course were randomly assigned
to a class period with either active learning or pas-
sive learning, the same content and handouts were
used in both, and both instructors were highly rated.
After the class, students were asked to rate how
much they thought they had learned (on a 5-point
Likert scale) and they also took a 20-question multi-
ple choice exam to test how much they had actually
learned. The results were very interesting: students
thought that they learned more in the passive learn-
ing class but they actually learned more in the active
learning class.

(a) What are the cases?

(b) What are the variables? Indicate whether each
variable is quantitative or categorical.

(c) Indicate explanatory and response variables.

10“Research: One in 3 Female Gamers Face Gender Discrimina-
tion, 32% Deal with Sexual Harassment,” Bryter-research.co.uk,
October 2019.
11Deslauriers L, et al., “Measuring actual learning versus feeling
of learning in response to being actively engaged in the class-
room,” PNAS, 116(39), September 24, 2019.

(d) There were 154 students in the passive learning
lecture and 142 students in the active learning
class. Indicate how many rows and how many
columns the dataset will have if cases are rows
and variables are columns.

1.16 Spider Sex Play Spiders regularly engage in
spider foreplay that does not culminate in mating.
Male spiders mature faster than female spiders and
often practice the mating routine on not-yet-mature
females. Since male spiders run the risk of getting
eaten by female spiders, biologists wondered why
spiders engage in this behavior. In one study,12 some
spiders were allowed to participate in these near-
matings, while other maturing spiders were isolated.
When the spiders were fully mature, the scientists
observed real matings. They discovered that if
either partner had participated at least once in
mock sex, the pair reached the point of real mating
significantly faster than inexperienced spiders did.
(Mating faster is, apparently, a real advantage in
the spider world.) Describe the variables, indicate
whether each variable is quantitative or categor-
ical, and indicate the explanatory and response
variables.

1.17 Hormones and Fish Fertility When women
take birth control pills, some of the hormones found
in the pills eventually make their way into lakes and
waterways. In one study, a water sample was taken
from various lakes. The data indicate that as the
concentration of estrogen in the lake water goes up,
the fertility level of fish in the lake goes down. The
estrogen level is measured in parts per trillion (ppt)
and the fertility level is recorded as the percent of
eggs fertilized. What are the cases in this study?
What are the variables? Classify each variable as
either categorical or quantitative.

1.18 Fast-Twitch Muscles and Race Example 1.5
studied a variant of the gene ACTN3 which inhibits
fast-twitch muscles and seems to be less prevalent
in sprinters. A separate study13 indicated ethnic dif-
ferences: Approximately 20% of a sample of Cau-
casians, approximately 25% of a sample of Asians,
and approximately 1% of a sample of Africans had
the gene variant. What are the variables in this
study? Classify each as categorical or quantitative.

12Pruitt, J., paper presented at the Society for Integrative
and Comparative Biology Annual Meeting, January 2011, and
reported in “For spiders, sex play has its pluses,” Science News,
January 29, 2011.
13North, K., et al., “A common nonsense mutation results in
𝛼-actinin-3 deficiency in the general population,” Nature Genet-
ics, April 1999; 21(4): 353–354.
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1.19 Largest Cities in the World Seven of the ten
largest cities in the world are in the Eastern Hemi-
sphere (including the largest: Tokyo, Japan) and
three are in the Western Hemisphere.14 Table 1.3
shows the populations, in millions of people, for
these cities.

(a) How many cases are there in this dataset? How
many variables are there and what are they? Is
each categorical or quantitative?

(b) Display the information in Table 1.3 as a dataset
with cases as rows and variables as columns.

Table 1.3 Population, in millions, of
the world’s largest cities

Eastern hemisphere: 37, 26, 23, 22, 21, 21, 21
Western hemisphere: 21, 20, 19

1.20 How Fast Do Homing Pigeons Go? Hom-
ing pigeons have an amazing ability to find their
way home over extremely long distances. How
fast do they go on these trips? In the 2019 Mid-
west Classic, held in Topeka, Kansas, the fastest
bird went 1676 YPM (yards per minute), which is
about 56 miles per hour.15 The top seven finish-
ers included three female pigeons (Hens) and four
male pigeons (Cocks). Their speeds, in YPM, are
given in Table 1.4.

(a) How many cases are there in this dataset? How
many variables are there and what are they? Is
each variable categorical or quantitative?

(b) Display the information as a dataset with cases
as rows and variables as columns.

Table 1.4 Speed of homing
pigeons, in yards per minute

Hens: 1676, 1452, 1449
Cocks: 1458, 1435, 1418, 1413

1.21 Pigeon RacingExercise 1.20 gives the speed of
the top seven finishers in the 2019 Midwest Clas-
sic homing pigeon race. In fact, 1412 pigeons fin-
ished the race, and their home loft, sex, distance,
and speed were all recorded. A loft may have sev-
eral different pigeons finish the race.

14http://www.worldatlas.com/citypops.htm. Accessed June 2015.
15Data downloaded from the Midwest Homing Pigeon Associ-
ation final race report at http://www.midwesthpa.com/MIDFinal
Reports.htm.

(a) How many cases are in this dataset?

(b) How many variables are there? How many of
these variables are categorical? How many are
quantitative?

(c) Howmany rows and howmany columns will the
dataset have?

1.22 Trans-Generational Effects of Diet Can expe-
riences of parents affect future children? New
studies16 suggest that they can: Early life expe-
riences of parents appear to cause permanent
changes in sperm and eggs. In one study, some male
rats were fed a high-fat diet with 43% of calories
from fat (a typical American diet), while others
were fed a normal healthy rat diet. Not surprisingly,
the rats fed the high-fat diet were far more likely
than the normal-diet rats to develop metabolic
syndrome (characterized by such things as excess
weight, excess fat, insulin resistance, and glucose
intolerance.) What surprised the scientists was that
the daughters of these rats were also far more likely
to develop metabolic syndrome than the daughters
of rats fed healthy diets. None of the daughters and
none of the mothers ate a high-fat diet and the
fathers did not have any contact with the daughters.
The high-fat diet of the fathers appeared to cause
negative effects for their daughters. What are the
two main variables in this study? Is each categor-
ical or quantitative? Identify the explanatory and
response variables.

1.23 Trans-Generational Effects of Environment
In Exercise 1.22, we ask whether experiences of
parents can affect future children, and describe a
study that suggests the answer is yes. A second
study, described in the same reference, shows sim-
ilar effects. Young female mice were assigned to
either live for two weeks in an enriched environ-
ment or not. Matching what has been seen in other
similar experiments, the adult mice who had been
exposed to an enriched environment were smarter
(in the sense that they learned how to navigate
mazes faster) than the mice that did not have that
experience. The other interesting result, however,
was that the offspring of the mice exposed to the
enriched environment were also smarter than the
offspring of the other mice, even though none of
the offspring were exposed to an enriched environ-
ment themselves. What are the two main variables
in this study? Is each categorical or quantitative?
Identify explanatory and response variables.

16Begley, S., “Sins of the Grandfathers,”Newsweek, November 8,
2010; 48–50.
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1.24 Pennsylvania High School Seniors The data in
PASeniors shows results for a sample of 457 high
school seniors in the state of Pennsylvania, selected
at random from all students who participated in the
Census at Schools project17 between 2010 and 2019.
Each of the questions below relate to information in
this dataset. Determine whether the answer to each
question gives a value for a quantitative variable, a
categorical variable, or is not a value for a variable
for this dataset.

(a) What mode of transportation do you use to get
to school?

(b) Do you have any allergies?

(c) What proportion of students in this sample are
vegetarians?

(d) Howmany hours did you spend last week work-
ing at a paid job?

(e) What is the difference between typical hours of
sleep you get on school nights and non-school
nights?

(f) What is the maximum time (in minutes) that a
student in this sample needs to get to school?

(g) If you could have a super power would you
choose invisibility, telepathy, super strength,
ability to fly, or ability to freeze time?

1.25 US College Scorecard The data in Col-
legeScores contains information from the US
Department of Education’s College Scorecard18 on
all postsecondary educational institutions in the US.
Each of the questions below relate to information in
this dataset. Determine whether the answer to each
question gives a value for a quantitative variable, a
categorical variable, or is not a value for a variable
for this dataset.

(a) What is the total tuition and fees for in-state stu-
dents at the school?

(b) How many of these schools are located in the
Northeast?

(c) Is the school public, private, or for profit?

(d) How many undergraduates are enrolled at the
school?

(e) What percentage of undergraduates at the
school are part-time students?

(f) Which school has the highest average faculty
salary?

17Sample data obtained from the Census at Schools random
sampler sponsored by the American Statistical Association at
https://ww2.amstat.org/censusatschool.
18Data downloaded from the US Department of Educa-
tion’s College Scorecard at https://collegescorecard.ed.gov/data/
(November 2019.)

1.26 Hookahs and Health Hookahs are waterpipes
used for smoking flavored tobacco. One study19 of
3770 university students in North Carolina found
that 40% had smoked a hookah at least once, with
many claiming that the hookah smoke is safer than
cigarette smoke. However, a second study observed
people at a hookah bar and recorded the length of
the session, the frequency of puffing, and the depth
of inhalation. An average session lasted one hour
and the smoke inhaled from an average session was
equal to the smoke in more than 100 cigarettes.
Finally, a third study measured the amount of tar,
nicotine, and heavy metals in samples of hookah
smoke, finding that the water in a hookah filters
out only a very small percentage of these chemi-
cals. Based on these studies and others, many states
are introducing laws to ban or limit hookah bars.
In each of the three studies, identify the individ-
ual cases, the variables, and whether each variable
is quantitative or categorical.

1.27 Is Your Nose Getting Bigger? Next time you
see an elderly man, check out his nose and ears!
While most parts of the human body stop growing
as we reach adulthood, studies show that noses and
ears continue to grow larger throughout our life-
time. In one study20 examining noses, researchers
report “Age significantly influenced all analyzed
measurements:” including volume, surface area,
height, and width of noses. The sex of the 859 partic-
ipants in the study was also recorded, and the study
reports that “male increments in nasal dimensions
were larger than female ones.”

(a) How many variables are mentioned in this
description?

(b) How many of the variables are categorical?
How many are quantitative?

(c) If we create a dataset of the information with
cases as rows and variables as columns, how
many rows and how many columns would the
dataset have?

1.28 Don’t Text While Studying! For the 2015 Intel
Science Fair, two brothers in high school recruited
47 of their classmates to take part in a two-stage
study. Participants had to read two different pas-
sages and then answer questions on them, and each
person’s score was recorded for each of the two

19Quenqua, D., “Putting a Crimp in the Hookah,” New York
Times, May 31, 2011, p A1.
20Sforza, C., Grandi, G., De Menezes, M., Tartaglia, G.M.,
and Ferrario, V.F., “Age- and sex-related changes in the normal
human external nose,” Forensic Science International, January
30, 2011; 204(1–3): 205.e1–9.
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tests. There were no distractions for one of the pas-
sages, but participants received text messages while
they read the other passage. Participants scored sig-
nificantly worse when distracted by incoming texts.
Participants were also asked if they thought they
were good at multitasking (yes or no) but “even stu-
dents who were confident of their abilities did just
as poorly on the test while texting.”21

(a) What are the cases?

(b) What are the variables? Is each variable cate-
gorical or quantitative?

(c) If we create a dataset of the information with
cases as rows and variables as columns, how
many rows and how many columns would the
dataset have?

1.29 Help for Insomniacs A recent study shows
that just one session of cognitive behavioral ther-
apy can help people with insomnia.22 In the study,
forty people who had been diagnosed with insom-
nia were randomly divided into two groups of 20
each. People in one group received a one-hour cog-
nitive behavioral therapy session while those in the
other group received no treatment. Three months
later, 14 of those in the therapy group reported
sleep improvements while only 3 people in the other
group reported improvements.

21Perkins, S., “Studying? Don’t answer that text!” Science News,
July 23, 2015.
22Ellis, J.G., Cushing, T., and Germain, A., “Treating acute
insomnia: a randomized controlled trial of a ‘single-shot’ of cog-
nitive behavioral therapy for insomnia,” SLEEP, 2015; 38(6):
971–978.

(a) What are the cases in this study?

(b) What are the relevant variables? Identify each
as categorical or quantitative.

(c) If we create a dataset of the information with
cases as rows and variables as columns, how
many rows and how many columns would the
dataset have?

1.30 How Are Age and Income Related? An
economist collects data from many people to deter-
mine how age and income are related. How the data
is collected determines whether the variables are
quantitative or categorical. Describe how the infor-
mation might be recorded if we regard both vari-
ables as quantitative. Then describe a different way
to record information about these two variables that
would make the variables categorical.

1.31 Political Party and Voter Turnout Suppose
that we want to investigate the question “Does
voter turnout differ by political party?” How might
we collect data to answer this question? What
would the cases be?What would the variable(s) be?

1.32 Wealth and Happiness Are richer people
happier? How might we collect data to answer this
question? What would the cases be? What would
the variable(s) be?

1.33 Choose Your Own Question Come up with
your own question you would like to be able to
answer. What is the question? How might you
collect data to answer this question? What would
the cases be? What would the variable(s) be?

1.2SAMPLING FROM A POPULATION

While most of this textbook is devoted to analyzing data, the way in which data are
collected is critical. Data collected well can yield powerful insights and discoveries.
Data collected poorly can yield very misleading results. Being able to think critically
about the method of data collection is crucial for making or interpreting data-based
claims. In the rest of this chapter, we address some of the most important issues that
need to be considered when collecting data.

Samples from Populations
The US Census is conducted every 10 years and attempts to gather data about all
people living in the US. For example, the census shows that, for people living in the
US who are at least 25 years old, 84.6% have at least a high school degree and 27.5%
have at least a college bachelor’s degree.23 The cases in the census dataset are all
residents of the US, and there are many variables measured on these cases. The US
census attempts to gather information from an entire population. In AllCountries,

23http://factfinder.census.gov.
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introduced as Data 1.2 on page 7, the cases are countries. This is another example of
a dataset on an entire population because we have data on every country.

Usually, it is not feasible to gather data for an entire population. If we want to
estimate the percent of people who wash their hands after using a public restroom, it
is certainly not possible to observe all people all the time. If we want to try out a new
drug (with possible side effects) to treat cancer, it is not safe to immediately give it
to all patients and sit back to observe what happens. If we want to estimate what
percentage of people will react positively to a new advertising campaign, it is not
feasible to show the ads to everyone and then track their responses. In most circum-
stances, we can only work with a sample from what might be a very large population.

Samples from Populations

A population includes all individuals or objects of interest.

Data are collected from a sample, which is a subset of the population.

Example 1.10
To estimate what percent of people in the US wash their hands after using a public
restroom, researchers pretended to comb their hair while observing 6000 people in
public restrooms throughout the United States. They found that 85% of the people
who were observed washed their hands after going to the bathroom.24 What is the
sample in this study?What is a reasonable population to which wemight generalize?

Solution The sample is the 6000 people who were observed. A reasonable population to gen-
eralize to would be all people in the US. There are other reasonable answers to
give for the population, such as all people in the US who use public restrooms or
all people in the US who use public restrooms in the cities in which the study was
conducted. Also, people might behave differently when alone than when there is
someone else in the restroom with them, so we might want to restrict the population
to people in a restroom with someone else.

We denote the size of the sample with the letter n. In Example 1.10, n = 6000
because there are 6000 people in the sample. Usually, the sample size, n, is much
smaller than the size of the entire population.

Since we rarely have data on the entire population, a key question is how to use
the information in a sample to make reliable statements about the population. This
is called statistical inference.

Statistical Inference

Statistical inference is the process of using data from a sample to gain
information about the population.

Figure 1.1 diagrams the process of selecting a sample from a population, and
then using that sample to make inferences about the population. Much of the data
analysis discussed in this text focuses on the latter step, statistical inference. How-
ever, the first step, selecting a sample from the population, is critical because the pro-
cess used to collect the sample determines whether valid inference is even possible.

24Zezima, K., “For many, ‘Washroom’ seems to be just a name,” New York Times, September 14, 2010,
p. A14.
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Figure 1.1 From
population to sample
and from sample to
population

Data Collection

Statistical Inference

Population

Sample

Sampling Bias

Example 1.11
Dewey Defeats Truman

The day after the 1948 presidential election, the Chicago Tribune ran the headline
“Dewey Defeats Truman.” However, Harry S Truman defeated Thomas E. Dewey
to become the 33rd president of the United States. The newspaper went to press
before all the results had come in, and the headline was based partly on the results
of a large telephone poll which showed Dewey sweeping Truman.

(a) What is the sample and what is the population?

(b) What did the pollsters want to infer about the population based on the sample?

(c) Why do you think the telephone poll yielded such inaccurate results?

Solution (a) The sample is all the people who participated in the telephone poll. The
population is all voting Americans.

(b) The pollsters wanted to estimate the percentage of all voting Americans who
would vote for each candidate.

(c) One reason the telephone poll may have yielded inaccurate results is that peo-
ple with telephones in 1948 were not representative of all American voters.
People with telephones tended to be wealthier and prefer Dewey while people
without phones tended to prefer Truman.

Underwood Archives/Getty Images

A triumphant Harry S Truman holds the Chicago Tribune
published with the incorrect headline “Dewey Defeats
Truman”
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The previous example illustrates sampling bias, because the method of selecting
the sample biased the results by selecting only people with telephones.

Sampling Bias

Sampling bias occurs when the method of selecting a sample causes
the sample to differ from the population in some relevant way. If sam-
pling bias exists, then we cannot trust generalizations from the sample
to the population.

Example 1.12
After a flight, one of the authors received an email from the airline asking her to
fill out a survey regarding her satisfaction with the travel experience. The airline
analyzes the data from all responses to such emails.

(a) What is the sample and in what population is the airline interested?

(b) Do you expect these survey results to accurately portray customer satisfaction?

Solution (a) The sample is all people who choose to fill out the survey and the population is
all people who fly this airline.

(b) The survey results will probably not accurately portray customer satisfaction.
Many people won’t bother to fill out the survey if the flight was uneventful, while
people with a particularly bad or good experience are more likely to fill out the
survey.

A sample comprised of volunteers (like the airline survey) often creates sampling
bias in opinion surveys, because the people who choose to participate (the sample)
often have more extreme opinions than the population.

To avoid sampling bias, we try to obtain a sample that is representative of the
population. A representative sample resembles the population, only in smaller num-
bers. The telephone survey in 1948 reached only people wealthy enough to own a
telephone, causing the sample to be wealthier than the population, so it was not a
representative sample. The more representative a sample is, the more valuable the
sample is for making inferences about the population.

Example 1.13
An online poll conducted on biblegateway.com asked, “How often do you talk about
the Bible in your normal course of conversation?” Over 5000 people answered the
question, and 78% of respondents chose the most frequent option: Multiple times a
week. Can we infer that 78% of people talk about the bible multiple times a week?
Why or why not?

Solution No. People who visit the website for Bible Gateway and choose to take the poll
are probably more likely than the general public to talk about the bible. This sam-
ple is not representative of the population of all people, so the results cannot be
generalized to all people.

Simple Random Sample
Since a representative sample is essential for drawing valid inference to the popula-
tion, you are probably wondering how to select such a sample! The key is random
sampling. We can imagine putting the names of all the cases in the population into
a hat and drawing out names to be in our sample. Random sampling avoids sam-
pling bias.
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Simple Random Sample

When choosing a simple random sample of n units, all groups of size
n in the population have the same chance of becoming the sample. As
a result, in a simple random sample, each unit of the population has
an equal chance of being selected, regardless of the other units chosen
for the sample.

Taking a simple random sample avoids sampling bias.

Part of the power of statistics lies in this amazing fact: A simple random sam-
ple tends to produce a good representative sample of the population. At the time
of writing this book, the population of the United States is more than 300 million
people. Although the census collects some data on the entire population, for many
questions of interest we are forced to rely on a small sample of individuals. Amaz-
ingly, if a simple random sample is selected, even a small sample can yield valid
inferences for all 300 million Americans!

Example 1.14
Election Polling

Right before the 2012 presidential election, Google Consumer Surveys25 randomly
sampled and collected data on n = 3252 Americans. The sample showed Barack
Obama ahead of Mitt Romney in the national popular vote by 2.3 percentage points.
Can we generalize these results to the entire population of 126 million voters in
order to estimate the popular vote in the election?

Solution Yes! Because the poll included a random sample of voters, the results from the
sample should generalize to the population. In the actual election, Obama won
the national popular vote by 2.6 percentage points. Of course, the sample data do
not perfectly match the population data (in Chapter 3 we will learn how closely we
expect sample results to match population results), but the fact that we can get such
an accurate guess from sampling only a very small fraction of the population is quite
astonishing!

Analogy to Soup

Patti McConville/Alamy Stock Photo

Sampling the soup

25Data from http://www.fivethirtyeight.com, “Which Polls Fared Best (and Worst) in the 2012 Presiden-
tial Race,” November 10, 2012, and Google Consumer Surveys, November 5, 2012, http://www.google
.com/insights/consumersurveys/view?survey=6iwb56wuu5vc6&question=2&filter=&rw=1.
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Do we need to eat an entire large pot of soup to know what the soup tastes
like? No! As long as the soup is well mixed, a few spoonfuls will give us a pretty
good idea of the taste of the soup. This is the idea behind sampling: Just sampling
a small part of the soup (or population) can still give us a good sense of the whole.
However, if the soup is not mixed, so that the broth is at the top, the meat at the
bottom, and so on, then a few spoonfuls will not give us a good sense of the taste of
the soup. This is analogous to taking a biased sample. Mixing the soup randomizes
the sample, so that the small part we taste is representative of the entire large pot.

How Do We Select a Random Sample?
You may think that you are capable of “randomly” selecting samples on

your own, but you are wrong! Deborah Nolan, a statistics professor, has half of
her students flip a coin and write the resulting sequence of heads and tails on
the board (flipping a coin is truly random), and the other half of her students
generate their own sequence of heads and tails without actually flipping the coin,
trying to fake randomness. She can always tell the difference.26 How can she tell?
Because students (and their professors and all people!) are very bad at actual
randomness.

Similarly, you may think you can select representative samples better than ran-
domness can, but again, you are most likely wrong! Just as humans are surprisingly
bad at faking randomness, humans are surprisingly bad at selecting representative
samples. We tend to oversample some types of units and undersample less obvious
types, even when we are explicitly trying hard not to do so. Luckily, randomness is
surprisingly good at selecting a representative sample.

If we can’t do randomness ourselves, how do we select a random sample? As
mentioned, one way is to draw names out of a hat. A more common way is to use
technology. Some forms of technology can automatically draw a sample randomly
from a list of the entire population, mimicking the process of drawing names from
a hat. Other forms produce random numbers, in which case we give a number to
each unit in the population, and our sample becomes the units corresponding to the
selected numbers.

Example 1.15
The dataset AllCountries contains data on 217 countries or economies. Select a
random sample of 5 of these.

Solution There are many ways to do this, depending on the technology or method available.
One way is to number the countries from 1 to 217 and then use a random number
generator to select five of the numbers between 1 and 217. Suppose we do this and
get the numbers

47 88 155 164 50

As we see in the dataset, the corresponding countries are Costa Rica (47), Hungary
(88), Peru (155), Samoa (164), and Cuba (50). These five countries are a random
sample from the population of all countries. Of course, the numbers are randomly
generated, so each sample generated this way is likely to be different. We talk more
about the variability of random samples in Chapter 3.

26Gelman, A. and Nolan, D., Teaching Statistics: A Bag of Tricks, Oxford University Press, New York,
2002.
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Random Sampling Caution

In statistics, random is NOT the same as haphazard! We cannot obtain
a random sample by haphazardly picking a sample on our own. We
must use a formal random sampling method such as technology or
drawing names out of a hat.

Realities of Random Sampling
While a random sample is ideal, often it may not be achievable. A list of the

entire population may not exist, it may be impossible to contact some members of
the population, or it may be too expensive or time consuming to do so. Often we
must make do with whatever sample is convenient. The study can still be worth
doing, but we have to be very careful when drawing inferences to the population
and should at least try to avoid obvious sampling bias as much as possible.

Example 1.16
If the Chicago Tribune had wanted to more accurately predict the outcome of the
1948 presidential election, what should they have done? Why do you think they
didn’t do this?

Solution To more accurately predict the 1948 presidential election, they should have
selected a random sample from the list of all registered voters and then asked the
selected people who they would vote for. There are several possible reasons they
did not select a random sample. They may not have had a list of all registered voters
available from which to sample randomly. Also, collecting data from a random
sample of voters might have required traveling to homes all over the country,
which would have been time consuming and expensive. Sampling only people with
telephones was cheaper and more convenient.

When it is difficult to take a random sample from the population of interest, we
may have to redefine the population to which we generalize.

Example 1.17
What Proportion of People Are Vegetarian?

To determine what proportion of people are vegetarian, we would need to take a
random sample of all people, which would be extremely difficult or impossible. How
might we redefine our population and question so that it is possible to obtain an
accurate estimate?

Solution One option is to narrow our population to those living in Boston and ask, “What
proportion of Bostonians are vegetarian?” It would be possible to take a random
sample of telephone numbers from a Boston phone book and call and ask whether
they eat meat. In this case our population would only include people with land line
phone numbers listed in the Boston phone book so would not include people who
rely only on cell phones or who have no phone at all.

For simplicity we only describe a simple random sample in detail, but
there are other types of random samples. If we want to know the average weight of
a population and want to ensure that the proportion of males and females in our
sample matches that of the population, we may take two simple random samples,
one within males and one within females. For a study on high school students, it is
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hard to take a simple random sample. We might first take a simple random sample
of schools and then, within each of the sampled schools, take a simple random
sample of students. These random sampling schemes are more complicated than the
simple random sample but can still yield valid inferences.

Other Sources of Bias
Sampling bias is not the only form of bias that can occur when collecting data. Par-
ticularly when collecting data on humans, even if we have a good random sample,
there are other issues that might bias the results.

Bias

Bias exists when the method of collecting data causes the sample data
to inaccurately reflect the population.

Bias can occur when people we have selected to be in our sample choose not to
participate. If the people who choose to respond would answer differently than the
people who choose not to respond, results will be biased.

Example 1.18
In 1997 in Somerset (a county in England), a study was conducted on lifestyle
choices associated with health.27 A random sample of 6009 residents of Somerset
were mailed a questionnaire that they were asked to fill out and return, and 57.6%
of the people in the sample returned the questionnaire. Do you think health-related
behavior such as exercise and smoking are accurately portrayed by the data
collected?

Solution Probably not. People who returned the questionnaire may have been more proud
of their responses, or may have been more organized and motivated in general, so
more likely to lead a healthy lifestyle.

The researchers followed up with phone interviews for a random sample of
those who had not responded. As suspected, the non-responders were quite dif-
ferent regarding health behaviors. For example, only 35.9% of initial responders
reported getting no moderate or vigorous physical activity, while this percentage
was almost doubled, 69.6%, for non-responders. Using only the data from the initial
responders is very misleading.

The way questions are worded can also bias the results. In 1941 Daniel Rugg28 asked
people the same question in two different ways. When asked “Do you think that
the United States should allow public speeches against democracy?” 21% said the
speeches should be allowed. However, when asked “Do you think that the United
States should forbid public speeches against democracy?” 39% said the speeches
should not be forbidden. Merely changing the wording of the question nearly dou-
bled the percentage of people in favor of allowing (not forbidding) public speeches
against democracy.

27Hill, A., Roberts, J., Ewings, P., and Gunnell, D., “Non-response bias in a lifestyle survey,” Journal of
Public Health Medicine, June 1997; 19(2): 203–207.
28Rugg, D., “Experiments in wording questions,” Public Opinion Quarterly, 1941; 5: 91–92.
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Would you have children?

D A T A 1 . 4 “If You Had It to Do Over Again, Would You Have Children?”
In 1976, a young couple wrote to the popular columnist Ann Landers, asking for
advice on whether or not to have children.29 Ann ran the letter from the young
couple (which included various reasons not to have kids, but no positive aspects
of parenting) and asked her readers to respond to the question “If you had it to
do over again, would you have children?” Her request for data yielded over
10,000 responses, and to her surprise, only 30% of readers answered “Yes.” She
later published these results in Good Housekeeping, writing that she was
“stunned, disturbed, and just plain flummoxed” by the survey results. She
again asked readers to answer the exact same question, and this time 95% of
responders said “Yes.” ◼

Example 1.19
In Data 1.4, why do you think the two percentages, 30% and 95%, are so drastically
different?

Solution The initial request for data was in a column with a letter stating many reasons not to
have kids, which may have brought these issues to the minds of the responders. The
second request was in an article mentioning Ann Landers’ dismay at parents answer-
ing no, which may have influenced responses. The context in which the question is
asked can bias answers one way or another.

Sampling bias is also present, since readers of her column in the newspaper
and readers of Good Housekeeping and readers who choose to respond to each
request for data are probably not representative of the population and probably
differ from each other. For the first request, people with more negative experiences
with children may have been encouraged to respond, while the opposite may have
been true in the second case. You may be able to think of additional reasons for the
discrepancy in the sample results.

Example 1.20
Suppose you are considering having children and would really like to know whether
more parents are happy about having kids or regret their decision. Which percent-
ages in Data 1.4 can you trust? How would you go about collecting data you can
trust?

29http://www.stats.uwo.ca/faculty/bellhouse/stat353annlanders.pdf.
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Solution Since both of these samples only include people who decided to write in (volunteer
samples) instead of taking a random sample, both almost definitely contain sampling
bias, so neither should be trusted. To collect data you can trust, you should take a
random sample of all parents (or perhaps take a random sample of all parents of
your nationality).

Newsday took a random sample of all parents in the US, asking the same ques-
tion as in Data 1.4. In this random sample, 91% said “Yes,” they would have children
again if given the choice. This doesn’t mean that exactly 91% of parents are happy
they had kids, but because it was a random sample, it does mean that the true per-
centage is close to 91%. In Chapter 3 we’ll learn how to assess exactly how close we
expect it to be. (Notice that the initial sample result of 30% is extremely misleading!)

Bias may also be introduced if people do not answer truthfully. If the sample
data cannot be trusted, neither can generalizations from the sample to the popula-
tion.

Example 1.21
Illicit Drug Use

The National Survey on Drug Use and Health30 selected a random sample of US
college students and asked them about illicit drug use, among other things. In the
sample, 22.7% of the students reported using illicit drugs in the past year. Do you
think this is an accurate portrayal of the percentage of all college students using
illicit drugs?

Solution This may be an underestimate. Even if the survey is anonymous, students may be
reluctant to report illicit drug use on an official survey and thus may not answer
truthfully.

Bias in data collection can result in many other ways not discussed here. The
most important message is to always think critically about the way data are collec-
ted and to recognize that not all methods of data collection lead to valid inferences.
Recognizing sources of bias is often simply common sense, and you will instantly
become a more statistically literate individual if, each time you are presented with a
statistic, you just stop, inquire, and think about how the data were collected.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between a sample and a population

• Recognize when it is appropriate to use sample data to infer informa-
tion about the population

• Critically examine the way a sample is selected, identifying possible
sources of sampling bias

• Recognize that random sampling is a powerful way to avoid sampling
bias

• Identify other potential sources of bias that may arise in studies on
humans

30Substance Abuse and Mental Health Services Administration, Results from the 2009 National Survey
on Drug Use and Health: Volume I. Summary of National Findings (Office of Applied Studies, NSDUH
Series H-38A, HHS Publication No. SMA 10-4856Findings), Rockville, MD, 2010, https://nsduhweb
.rti.org/.
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Exercises for Section 1.2

SKILL BUILDER 1
In Exercises 1.34 to 1.37, state whether the data are
best described as a population or a sample.

1.34 To estimate size of trout in a lake, an angler
records the weight of 12 trout he catches over a
weekend.

1.35 A subscription-based music website tracks its
total number of active users.

1.36 The US Department of Transportation
announces that of the 250 million registered pas-
senger vehicles in the US, 2.1% are electro-gas
hybrids.
1.37 A questionnaire to understand athletic partic-
ipation on a college campus is emailed to 50 college
students, and all of them respond.

SKILL BUILDER 2
In Exercises 1.38 to 1.41, describe the sample and
describe a reasonable population.

1.38 A sociologist conducting a survey at a mall
interviews 120 people about their cell phone use.

1.39 Five hundred Canadian adults are asked if
they are proficient on a musical instrument.

1.40 A cell phone carrier sends a satisfaction survey
to 100 randomly selected customers.

1.41 The Nielsen Corporation attaches databoxes
to televisions in 1000 households throughout the
US to monitor what shows are being watched and
produce the Nielsen Ratings for television.

SKILL BUILDER 3
In Exercises 1.42 to 1.45, a biased sampling situation
is described. In each case, give:

(a) The sample

(b) The population of interest

(c) A population we can generalize to given the
sample

1.42 To estimate the proportion of Americans who
support changing the drinking age from 21 to 18, a
random sample of 100 college students are asked
the question “Would you support a measure to
lower the drinking age from 21 to 18?”

1.43 To estimate the average number of tweets
from all twitter accounts in 2019, one of the authors
randomly selected 10 of his followers and counted
their tweets.

1.44 To investigate interest across all residents of
the US in a new type of ice skate, a random sample
of 1500 people in Minnesota are asked about their
interest in the product.

1.45 To determine the height distribution of female
high school students, the rosters are collected from
20 randomly selected high school girls basketball
teams.

SKILL BUILDER 4
In Exercises 1.46 to 1.51, state whether or not the
sampling method described produces a random
sample from the given population.

1.46 The population is incoming students at a par-
ticular university. The name of each incoming stu-
dent is thrown into a hat, the names are mixed, and
20 names (each corresponding to a different stu-
dent) are drawn from the hat.

1.47 The population is the approximately 25,000
protein-coding genes in human DNA. Each gene
is assigned a number (from 1 to 25,000), and com-
puter software is used to randomly select 100 of
these numbers yielding a sample of 100 genes.

1.48 The population is all employees at a company.
All employees are emailed a link to a survey.
1.49 The population is adults between the ages of
18 and 22. A sample of 100 students is collected
from a local university, and each student at the uni-
versity had an equal chance of being selected for the
sample.

1.50 The population is all trees in a forest. We walk
through the forest and pick out trees that appear to
be representative of all the trees in the forest.

1.51 The population is all people who visit the web-
siteCNN.com. All visitors to the website are invited
to take part in the daily online poll.

IS IT BIASED?
In Exercises 1.52 to 1.56, indicate whether we
should trust the results of the study. Is the method
of data collection biased? If it is, explain why.

1.52 Ask a random sample of students at the library
on a Friday night “How many hours a week do you
study?” to collect data to estimate the average num-
ber of hours a week that all college students study.

1.53 Ask a random sample of people in a given
school district, “Excellent teachers are essential
to the well-being of children in this community,
and teachers truly deserve a salary raise this year.
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Do you agree?” Use the results to estimate the pro-
portion of all people in the school district who sup-
port giving teachers a raise.

1.54 Take 10 apples off the top of a truckload of
apples andmeasure the amount of bruising on those
apples to estimate how much bruising there is, on
average, in the whole truckload.

1.55 Take a random sample of one type of printer
and test each printer to see how many pages of text
each will print before the ink runs out. Use the aver-
age from the sample to estimate how many pages,
on average, all printers of this type will last before
the ink runs out.

1.56 Send an email to a random sample of students
at a university asking them to reply to the question:
“Do you think this university should fund an ulti-
mate frisbee team?” A small number of students
reply. Use the replies to estimate the proportion of
all students at the university who support this use of
funds.

1.57 Do Parents Regret Having Children? In
Data 1.4 on page 25, we describe the results of a
question asked by a national newspaper columnist:
“If you had it to do over again, would you have
children?” In addition to those results and a follow-
up national survey, the Kansas City Star selected a
random sample of parents from Kansas City and
asked them the same question. In this sample, 94%
said “Yes.” To what population can this statistic be
generalized?

1.58 Wearing a Uniform to Work The website
fox6now.com held an online poll in June 2015 ask-
ing “What do you think about the concept of having
an everyday uniform for work, like Steve Jobs did?”
Of the people who answered the question, 24% said
they loved the idea, 58% said they hated the idea,
and 18% said that they already wore a uniform to
work.
(a) Are the people who answered the poll likely to

be representative of all adult workers? Why or
why not?

(b) Is it reasonable to generalize this result and esti-
mate that 24% of all adult workers would like to
wear a uniform to work?

1.59 Canadians Stream Music In a random sample
of 3500 Canadian consumers, about 71% report that
they regularly stream music.31

31“What Moves Today’s Teenage Canadian Music Fan?,”
http://www.nielsen.com/ca/en/insights/news/2015/what-moves-
todays-teenage-canadian-music-fan.html, Neilsen, Media and
Entertainment, June 2, 2015.

(a) Is the sample likely to be representative of all
Canadian consumers? Why or why not?

(b) Is it reasonable to generalize this result and esti-
mate that about 71% of all Canadian consumers
regularly stream music?

1.60 Climate Change In June 2018, a poll asked a
random sample of 1000 US adults whether global
warming will be a serious problem for the United
States.32 The results show that 51% think global
warming will be a very serious problem, 27% think
it will be a somewhat serious problem, and 21%
think it will not be a serious problem.
(a) What is the sample? What is the intended pop-

ulation?

(b) Is it reasonable to generalize this result and esti-
mate that 21% of US adults think that global
warming will not be a serious problem for the
United States?

1.61 Do You Use a Food Delivery App? A 2019
study conducted by eMarketer33 asked 800 US
smartphone users whether they had used a food
delivery app at least once in the last month. The sur-
vey also asked which food delivery app, if any, was
used. The survey showed that 16.3% of respondents
had used a food delivery app in the last month.
Of those that had used one, 27.6% used DoorDash,
26.7% used Grubhub, 25.2% used UberEats, while
the rest used another.

(a) What is the sample? What is the intended pop-
ulation?

(b) What are the cases? What are the variables?
Classify variables as quantitative or categorical.

1.62 Pennsylvania High School Seniors
Exercise 1.24 describes a dataset, stored in PASe-
niors, for a sample of students who filled out a
survey though the US Census at School project.
When downloading the sample34 we specified Penn-
sylvania as the state and Grade 12 as the school
year, then the website chose a random sample of
457 students from among all students who matched
those criteria. We’d like to generalize results from
this sample to a larger population. Discuss whether
this would be reasonable for each of the groups
listed below.

32https://www.rff.org/energy-and-climate/surveying-american-
attitudes-toward-climate-change-and-clean-energy/. Accessed
July 2019.
33“US Food Delivery App Usage Will Approach 40 Million
Users in 2019,” www.eMarketer.com, July 2, 2019. Sample size
is approximated.
34Sample data obtained Data from U.S. Census at School
(https://www.amstat.org/censusatschool) used with the permis-
sion of the American Statistical Association.
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(a) The 457 students in the original sample

(b) All Pennsylvania high school seniors who par-
ticipated in the Census at School survey

(c) All Pennsylvania high school seniors

(d) All students in the United States who partici-
pated in the Census at School survey

1.63 How Easily are You Influenced? Mentally
simulate ten tosses of a coin by writing down a
sequence of Heads and Tails that might result from
ten flips of a fair coin. (Try this now!) When a ran-
dom sample of people were asked to do this, over
80% of them wrote down Heads as the first flip.
Expanding on this result,35 when the instructions
asked for a sequence of “Tails and Heads,” par-
ticipants were more likely to put Tails as the first
flip. Indeed, when they were told that an imagi-
nary coin was purple on one side and orange on
the other (with the two colors presented in random
order), participants were more likely to start with
whichever color was mentioned first.36 Researchers
could influence the results just based on the order
in which they listed the options.

(a) Is this an illustration of sampling bias or word-
ing bias or both or neither?

(b) If you are letting a friend choose between
Option Q and Option W, and you are really
hoping that they pick Option W, in what order
should you present the options?

1.64 Does Chocolate Milk Come from Brown
Cows? The US National Dairy Council, a dairy
advocacy group, conducted a survey that appears
to show that 7% of Americans (which is about 16.4
million people) believe that chocolate milk comes
from brown cows. This result was picked up and
shared widely, including by CNN.com, the Wash-
ington Post, the Today show, and NPR (National
Public Radio).37 The goal of the survey was to find
some fun facts to share and the advocacy group has
not made the full survey results, or the sampling
method, publicly available.

(a) Do you think it is likely that there is sam-
pling bias in this study? Without knowing how
the sample was determined, can we know if it
is appropriate to generalize to all Americans?

35Bar-Hillel M, Peer E, Acquisti A, “Heads or tails? A Reacha-
bility Bias in Binary Choice,” Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 40(6), April 28, 2014.
36This is called the primacy effect, in which the first option given
is more likely to be selected.
37Griffin L and Campbell T, “Take that chocolate milk survey
with a grain of salt,” The Conversation, June 28, 2017.

Can you think of a way in which the sample
might have been determined that would create
sampling bias?

(b) While we don’t know how the sample was deter-
mined, interviewers on NPR were able to find
out how the question was phrased.38 Survey
respondents were asked to select one option
to the following: “Where does chocolate milk
come from? (a) Brown cows, (b) Black and
white spotted cows, (c) I don’t know.” Do you
think the way the question was worded might
have biased the results? Give a different pos-
sible way to word the question that might give
more accurate results.

1.65 How Many People Wash Their Hands after
Using the Washroom? In Example 1.10 on page 18,
we introduce a study by researchers from Har-
ris Interactive who were interested in determining
what percent of people wash their hands after using
the washroom. They collected data by standing
in public restrooms and pretending to comb their
hair or put on make-up as they observed patrons’
behavior.39 Public restrooms were observed at
Turner’s Field in Atlanta, Penn Station and Grand
Central Station in New York, the Museum of Sci-
ence and Industry and the Shedd Aquarium in
Chicago, and the Ferry Terminal Farmers Market
in San Francisco. Of the over 6000 people whose
behavior was observed, 85% washed their hands.
Women were more likely to wash their hands: 93%
of women washed, while only 77% of men did. The
Museum of Science and Industry in Chicago had the
highest hand-washing rate, while men at Turner’s
Field in Atlanta had the lowest.

(a) What are the cases? What are the vari-
ables? Classify each variable as quantitative or
categorical.

(b) In a separate telephone survey of more than
1000 adults, more than 96% said they always
wash their hands after using a public restroom.
Why do you think there is such a discrepancy
in the percent from the telephone survey com-
pared to the percent observed?

1.66 Teaching Ability In a sample survey of pro-
fessors at the University of Nebraska, 94% of
them described themselves as “above average”
teachers.40

38Meikle G, “This survey is as murky as chocolate milk,”
Columbia Journalism Review, June 21, 2017.
39Bakalar, “Study: More people washing hands after using bath-
room,” Salem News, September 14, 2010.
40Cross, P., “Not can, but will college teaching be improved?,”
New Directions for Higher Education, 1977; 17: 115.
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(a) What is the sample? What is the population?

(b) Based on the information provided, can we con-
clude that the study suffers from sampling bias?

(c) Is 94% a good estimate for the percentage of
above-average teachers at the University of
Nebraska? If not, why not?

1.67 Effects of Alcohol and Marijuana In 1986
the Federal Office of Road Safety in Australia
conducted an experiment to assess the effects of
alcohol and marijuana on mood and performance.41

Participants were volunteers who responded to
advertisements for the study on two rock radio
stations in Sydney. Each volunteer was given a ran-
domly determined combination of the two drugs,
then tested and observed. Is the sample likely rep-
resentative of all Australians? Why or why not?

1.68 What Percent of Young Adults Move Back
in with Their Parents? The Pew Research Center
polled a random sample of n = 808 US residents
between the ages of 18 and 34. Of those in the sam-
ple, 24% had moved back in with their parents for
economic reasons after living on their own.42 Do
you think that this sample of 808 people is a rep-
resentative sample of all US residents between the
ages of 18 and 34? Why or why not?

1.69 Do Cat Videos Improve Mood? As part of
an “internet cat videos/photos” study, Dr. Jessica
Gall Myrick posted an on-line survey to Facebook
and Twitter asking a series of questions regarding
how individuals felt before and after the last time
they watched a cat video on the Internet.43 One
of the goals of the study was to determine how
watching cat videos affects an individual’s energy
and emotional state. People were asked to share the
link, and everyone who clicked the link and com-
pleted the survey was included in the sample. More
than 6000 individuals completed the survey, and the
study found that after watching a cat video peo-
ple generally reported more energy, fewer negative
emotions, and more positive emotions.

41Chesher, G., Dauncey, H., Crawford, J., and Horn, K., “The
Interaction betweenAlcohol andMarijuana: ADoseDependent
Study on the Effects on Human Moods and Performance Skills,”
Report No. C40, Federal Office of Road Safety, Federal Depart-
ment of Transport, Australia, 1986.
42Parker, K., “The Boomerang Generation: Feeling OK about
Living with Mom and Dad,” Pew Research Center, March 15,
2012.
43Gall Myrick, J., “Emotion regulation, procrastination, and
watching cat videos online: Who watches Internet cats, why, and
to what effect?,” Computers in Human Behavior, June 12, 2015.

(a) Would this be considered a simple random sam-
ple from a target population? Why or why not?

(b) Ignoring sampling bias, what other ways could
bias have been introduced into this study?

1.70 Diet Cola and Weight Gain in Rats A study44

fed one group of rats a diet that included yogurt
sweetened with sugar, and another group of rats a
diet that included yogurt sweetened with a zero-
calorie artificial sweetener commonly found in diet
cola. The rats that were fed a zero-calorie sweetener
gained more weight and more body fat compared
to the rats that were fed sugar. After the study was
published, many news articles discussed the impli-
cation that people who drink diet soda gain more
weight. Explain why we cannot conclude that this is
necessarily true.

1.71 Armoring Military Planes During the Second
World War, the U.S. military collected data on bul-
let holes found in B-24 bombers that returned from
flight missions. The data showed that most bullet
holes were found in the wings and tail of the aircraft.
Therefore, the military reasoned that more armor
should be added to these regions, as they are more
likely to be shot. Abraham Wald, a famous statis-
tician of the era, is reported to have argued against
this reasoning. In fact, he argued that based on these
data more armor should be added to the center of
the plane, and NOT the wings and tail. What was
Wald’s argument?

1.72 Employment SurveysEmployment statistics in
the US are often based on two nationwide monthly
surveys: the Current Population Survey (CPS) and
the Current Employment Statistics (CES) survey.
The CPS samples approximately 60,000 US house-
holds and collects the employment status, job type,
and demographic information of each resident in
the household. The CES survey samples 140,000
nonfarm businesses and government agencies and
collects the number of payroll jobs, pay rates, and
related information for each firm.
(a) What is the population in the CPS survey?

(b) What is the population in the CES survey?

(c) For each of the following statistical questions,
state whether the results from the CPS or CES
survey would be more relevant.

i. Do larger companies tend to have higher
salaries?

44Swithers, S.E., Sample, C.H., and Davidson, T.L., “Adverse
effects of high-intensity sweeteners on energy intake and weight
control in male and obesity-prone female rats.” Behavioral neu-
roscience, 2013; 127(2), 262.
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ii. What percentage of Americans are self-
employed?

iii. Are married men more or less likely to be
employed than single men?

1.73 National Health StatisticsThe Centers for Dis-
ease Control and Prevention (CDC) administers
a large number of survey programs for monitor-
ing the status of health and health care in the
US. One of these programs is the National Health
and Nutrition Examination Survey (NHANES),
which interviews and examines a random sample of
about 5000 people in the US each year. The sur-
vey includes questions about health, nutrition, and
behavior, while the examination includes physical
measurements and lab tests. Another program is the
National Hospital Ambulatory Medical Care Sur-
vey (NHAMCS), which includes information from
hospital records for a random sample of individu-
als treated in hospital emergency rooms around the
country.

(a) To what population can we reasonably general-
ize findings from the NHANES?

(b) To what population can we reasonably general-
ize findings from the NHAMCS?

(c) For each of the questions below, indicate which
survey, NHANES or NHAMCS, would proba-
bly be more appropriate to address the issue.

i. Are overweight people more likely to
develop diabetes?

ii. What proportion of emergency room visits
in the US involve sports-related injuries?

iii. Is there a difference in the average wait-
ing time to be seen by an emergency
room physician between male and female
patients?

iv. What proportion of US residents have vis-
ited an emergency room within the past
year?

1.74 Interviewing the Film Crew on Hollywood
Movies There were 1295 movies made in Holly-
wood between 2012 and 2018. Suppose that, for a
documentary about Hollywood film crews, a ran-
dom sample of 5 of these movies will be selected for
in-depth interviews with the crewmembers. Assum-
ing the movies are numbered 1 to 1295, use a ran-
dom number generator or table to select a random
sample of five movies by number. Indicate which
numbers were selected. (If you want to know which
movies you selected, check out the dataset Holly-
woodMovies.)

1.75 Sampling Some Starbucks Stores The Star-
bucks chain has about 24,000 retail stores in 70
countries.45 Suppose that a member of the Star-
bucks administration wishes to visit six of these
stores, randomly selected, to gather some first-
hand data. Suppose the stores are numbered 1 to
24,000. Use a random number generator or table to
select the numbers for 6 of the stores to be in the
sample.

45https://www.starbucks.com/about-us/company-information/
starbucks-company-profile.

1.3EXPERIMENTS AND OBSERVATIONAL STUDIES

Association and Causation
Three neighbors in a small town in northern NewYork State enjoy living in a climate
that has four distinct seasons: warm summers, cold winters, and moderate tempera-
tures in the spring and fall. They also share an interest in using data to help make
decisions about questions they encounter at home and at work.

• Living in the first house is a professor at the local college. She’s been looking at
recent heating bills and comparing them to data on average outside temperature.
Not surprisingly, when the temperature is lower, her heating bills tend to be much
higher. She wonders, “It’s going to be an especially cold winter; should I budget
for higher heating costs?”

• Her neighbor is the plant manager for a large manufacturing plant. He’s also been
looking at heating data and has noticed that when the building’s heating plant is
used, there are more employees missing work due to back pain or colds and flu.
He wonders, “Could emissions from the heating system be having adverse health
effects on the workers?”
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• The third neighbor is the local highway superintendent. He is looking at data on
the amount of salt spread on the local roads and the number of auto accidents. (In
northern climates, salt is spread on roads to help melt snow and ice and improve
traction.) The data clearly show that weeks when lots of salt is used also tend to
have more accidents. He wonders, “Should we cut down on the amount of salt we
spread on the roads so that we have fewer accidents?”

Each of these situations involves a relationship between two variables. In each
scenario, variations in one of the variables tend to occur in some regular way with
changes in the other variable: lower temperatures go along with higher heating costs,
more employees have health issues when there is more activity at the heating plant,
and more salt goes with more accidents. When this occurs, we say there is an associ-
ation between the two variables.

Association

Two variables are associated if values of one variable tend to be
related to the values of the other variable.

The three neighbors share a desirable habit of using data to help make decisions,
but they are not all doing so wisely. While colder outside temperatures probably
force the professor’s furnace to burn more fuel, do you think that using less salt on
icy roads will make them safer? The key point is that an association between two
variables, even a very strong one, does not imply that there is a cause and effect
relationship between the two variables.

Causation

Two variables are causally associated if changing the value of one vari-
able influences the value of the other variable.

The distinction between association and causation is subtle, but important. In
a causal relationship, manipulating one of the variables tends to cause a change in
the other. For example, we put more pressure on the gas pedal and a car goes faster.
When an association is not causal, changing one of the variables will not produce
a predictable change in the other. Causation often implies a particular direction, so
colder outside temperatures might cause a furnace to use more fuel to keep the pro-
fessor’s house warm, but if she increases her heating costs by buying more expensive
fuel, we should not expect the outdoor temperatures to fall!

Recall from Section 1.1 that values of an explanatory variable might help predict
values of a response variable. These terms help us make the direction of a causal
relationship more clear: We say changing the explanatory variable tends to cause
the response variable to change. A causal statement (or any association statement)
means that the relationship holds as an overall trend—not necessarily in every case.

Example 1.22
For each sentence discussing two variables, state whether the sentence implies no
association between the variables, association without implying causation, or associ-
ation with causation. If there is causation, indicate which variable is the explanatory
variable and which is the response variable.

(a) Studies show that taking a practice exam increases your score on an exam.

(b) Families with many cars tend to also own many television sets.
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(c) Sales are the same even with different levels of spending on advertising.

(d) Taking a low-dose aspirin a day reduces the risk of heart attacks.

(e) Goldfish who live in large ponds are usually larger than goldfish who live in small
ponds.

(f) Putting a goldfish into a larger pond will cause it to grow larger.

Solution (a) This sentence implies that, in general, taking a practice exam causes an increase
in the exam grade. This is association with causation. The explanatory variable is
whether or not a practice exam was taken and the response variable is the score
on the exam.

(b) This sentence implies association, since we are told that one variable (number
of TVs) tends to be higher when the other (number of cars) is higher. However,
it does not imply causation since we do not expect that buying another televi-
sion set will somehow cause us to own more cars, or that buying another car
will somehow cause us to own more television sets! This is association without
causation.

(c) Because sales don’t vary in any systematic way as advertising varies, there is no
association.

(d) This sentence indicates association with causation. In this case, the sentence
makes clear that a daily low-dose aspirin causes heart attack risk to go down.
The explanatory variable is taking aspirin and the response variable is heart
attack risk.

(e) This sentence implies association, but it only states that larger fish tend to be in
larger ponds, so it does not imply causation.

(f) This sentence implies association with causation. The explanatory variable is the
size of the pond and the response variable is the size of the goldfish.

Contrast the sentences in Example 1.22 parts (e) and (f). Both sentences are cor-
rect, but one implies causation (moving to a larger pond makes the fish grow bigger)
and one does not (bigger fish just happen to reside in larger ponds). Recognizing
the distinction is important, since implying causation incorrectly is one of the most
common mistakes in statistics. Try to get in the habit of noticing when a sentence
implies causation and when it doesn’t.

Many decisions are made based on whether or not an association is causal.
For example, in the 1950s, people began to recognize that there was an association
between smoking and lung cancer, but there was a debate that lasted for decades
over whether smoking causes lung cancer. It is now generally agreed that smok-
ing causes lung cancer, and this has led to a substantial decline in smoking rates
in the US. The fact that smoking causes lung cancer does not mean that every-
one who smokes will get lung cancer, but it does mean that people who smoke are
more likely to get it (in fact, 10 to 20 times more likely46). Other causal questions,
such as whether cell phones cause cancer or whether increasing online advertis-
ing would cause sales to increase, remain topics of research and debate. One of the
goals of this section is to help you determine when a study can, and cannot, establish
causality.

46http://www.cdc.gov/cancer/lung/basic_info/risk_factors.htm#1.
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Confounding Variables
Why are some variables associated even when they have no cause and effect rela-
tionship in either direction? As the next example illustrates, the reason is often the
effect of other variables.

D A T A 1 . 5 Vehicles and Life Expectancy
The US government collects data from many sources on a yearly basis. For
example, Table 1.5 shows the number of vehicles (in millions) registered in the
US47 and the average life expectancy (in years) of babies born48 in the US every
four years from 1970 to 2014. A more complete dataset with values for each of
the years from 1970 through 2017 is stored in LifeExpectancyVehicles. If we plot
the points in Table 1.5, we obtain the graph in Figure 1.2. (This graph is an
example of a scatterplot, which we discuss in Chapter 2.) As we see in the table
and the graph, these two variables are very strongly associated; the more
vehicles that are registered, the longer people are expected to live. ◼

Table 1.5 Vehicle registrations
(millions) and life expectancy

Year Vehicles Life Expectancy

1970 108.4 70.8
1974 129.9 72.0
1978 148.4 73.5
1982 159.6 74.5
1986 175.7 74.7
1990 188.8 75.4
1994 198.0 75.7
1998 211.6 76.7
2002 229.6 77.3
2006 244.2 77.7
2010 242.1 78.7
2014 260.4 78.9

Figure 1.2 A strong
association between
vehicles and life
expectancy
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47Vehicle registrations from US Federal Highway Administration, https://www.fhwa.dot.gov/policy
information/statistics.cfm.
48Centers for Disease Control and Prevention, National Center for Health Statistics, Health Data Inter-
active, www.cdc.gov/nchs/hdi.htm, Accessed October 2019.
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There is a clear association between vehicle registrations and life expectancy. Is
this a causal association? If so, which way might it go? Do people live longer because
they have a car to drive? When people live longer, do they have time to buy more
vehicles? Or is there something else driving this association?

Confounding Variable

A confounding variable, also known as a confounding factor or
lurking variable,49 is a third variable that is associated with both
the explanatory variable and the response variable. A confounding
variable can offer a plausible explanation for an association between
two variables of interest.

Example 1.23
Describe a possible confounding variable in Data 1.5 about vehicle registrations and
life expectancy.

Solution One confounding variable is the year. As time goes along, the population grows
so more vehicles are registered and improvements in medical care help people live
longer. Both variables naturally tend to increase as the year increases and may have
little direct relationship with each other. The years are an explanation for the asso-
ciation between vehicle registrations and life expectancy.

When faced with a strong association such as that between vehicles and life
expectancy, it can be tempting to immediately jump to conclusions of causality.
However, it is important to stop and think about whether there are confounding
variables which could be explaining the association instead.

Example 1.24
In 2008, the Los Angeles Times published a headline50 that included “Hospitals…
Riskier than a Casino in Event of Cardiac Arrest.” The article, based on a study
published in the New England Journal of Medicine,51 states that the widespread
availability of defibrillators and bystanders in public places like casinos leads to a
higher survival rate than hospitals in the case of cardiac arrest.

(a) What are the primary variables of interest in this study? Which is the explana-
tory variable and which is the response variable?

(b) Give an example of one potential confounding variable in this study.

(c) If you are having a heart attack, would you go to a hospital or a casino?

Solution (a) The two primary variables of interest are the place of cardiac arrest (explana-
tory) and whether or not the person survives (response).

(b) A confounding variable is the health of the person at the time of cardiac arrest.
Older, frailer, sicker people are more likely to be in the hospital and also less
likely to survive (not because they are in a hospital, but just because they are
weaker to begin with). Someone in a casino is much more likely to be in better

49Some statisticians distinguish between confounding variables and lurking variables. However, for
simplicity in this book we treat them as synonymous.
50Maugh, T., “Study finds hospitals slow to defibrillate: Researchers say they’re riskier than a casino in
event of cardiac arrest,” Los Angeles Times, January 3, 2008.
51Chan, P., Krumholz, H., Nichol, G., and Nallamothu, B., American Heart Association National Reg-
istry of Cardiopulmonary Resuscitation Investigators, “Delayed Time to Defibrillation after In-Hospital
Cardiac Arrest,” New England Journal of Medicine, 2008; 358: 9–17.
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physical shape, and thus better able to survive a heart attack. Notice that the
confounding variable (health of the person) influences both of the variables of
interest: where the person might be and whether the person is likely to survive.

(c) If you are having a heart attack, you should go to a hospital! Even though casinos
have a higher survival rate, this can be explained by the confounding variable,
and we cannot conclude that being in a casino causes a higher survival rate. For
a person of a given health status, it is probably safer to be in a hospital under the
care of professionals.

Many seemingly surprising claims in the media (such as that hospitals are riskier
than casinos) can be explained simply by the presence of a confounding variable.
Knowing how and when to be on the lookout for confounding variables is essential
for statistical literacy and for assessing any data-based claims.

Observational Studies vs Experiments
How can we establish (statistically) when an association represents a causal rela-
tionship? The key is in how the data are collected. If we want to study how the
explanatory variable influences the response variable, we have to be able to control
or specify the values of the explanatory variable to make sure it is not associated
with any potential confounding variables.

Note that in data such as LifeExpectancyVehicles or the study of cardiac arrest
we merely collect available data after the fact. We call data collected in this way,
with no effort or ability to manipulate the variables of interest, an observational
study. With observational data we can never be certain that an apparent association
is not due to some confounding variable, and thus the association is not evidence of
a causal relationship.

The alternative is to intentionally control one or more of the explanatory vari-
ables when producing the data to see how the response variable changes. We call this
method of data collection a statistical experiment. With a well-designed experiment,
we canmake conclusions about causation when we see a strong association, since the
method for assigning the values of the explanatory variable(s) are not influenced by
any confounding variables.

Observational Studies and Experiments

An experiment is a study in which the researcher actively controls one
or more of the explanatory variables.

An observational study is a study in which the researcher does not
actively control the value of any variable but simply observes the val-
ues as they naturally exist.

Example 1.25
Both studies below are designed to examine the effect of fertilizer on the yield of an
apple orchard. Indicate whether each method of collecting the data is an experiment
or an observational study.

(a) Researchers find several different apple orchards and record the amount of
fertilizer that had been used and the yield of the orchards.

(b) Researchers find several different apple orchards and assign different amounts
of fertilizer to each orchard. They record the resulting yield from each.
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Solution (a) This is an observational study, since data were recorded after the fact and no
variables were actively manipulated. Notice that there are many possible con-
founding variables that might be associated with both the amount of fertilizer
used and the yield, such as the quality of soil.

(b) This is an experiment since the amount of fertilizer was assigned to different
orchards. The researchers actively manipulated the assignment of the fertilizer
variable, in order to determine the effect on the yield variable.

Al Diaz/Miami Herald/Getty Images

Do high fives help teams win?

Example 1.26
Basketball High Fives

In the 2011 NBA (National Basketball Association) finals, the Dallas Mavericks
defeated the Miami Heat. One headline on NBC sports52 stated, “Miami’s real
problem this series: Not enough high fives,” citing a study53 that found that teams
exhibiting more “touching,” such as high fives, early in the season had better per-
formance later in the season. Is this study an experiment or an observational study?
Does the study provide evidence that additional high fiving improves basketball per-
formance?

Solution The study is an observational study, because researchers did not manipulate or
assign the number of high fives. The word “improves” implies causality, but because
this was an observational study, confounding variables are likely and causality
cannot be established. This study does not provide evidence that giving high fives
improves basketball performance.

One possible confounding variable in Example 1.26 is how well a team gets
along, which is likely to be associated both with the number of high fives and a
team’s performance. While we consider methods to account for some confounding

52http://probasketballtalk.nbcsports.com/2011/06/09/miami’s-real-problem-this-series-not-enough-high-
fives/.
53Kraus, M., Huang, C., and Keltner, D., “Tactile communication, cooperation, and performance: An
ethological study of the NBA,” Emotion, 2010; 10(5): 745–749.
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variables later in this text, additional confounding variables may still exist. In an
observational study, there is no way of guaranteeing that we haven’t missed one.

Causation Caution

It is difficult to avoid confounding variables in observational studies.
For this reason, observational studies can almost never be used to
establish causality.

Randomized Experiments
In an experiment, the researcher controls the assignment of one or more variables.
This power can allow the researcher to avoid confounding variables and identify
causal relationships, if used correctly. But how can the researcher possibly avoid
all potential confounding variables? The key is surprisingly simple: a randomized
experiment. Just as randomness solved the problem of sampling bias, randomness
can also solve the problem of confounding variables.

Randomized Experiment

In a randomized experiment the value of the explanatory variable for
each unit is determined randomly, before the response variable is mea-
sured.

If a randomized experiment yields an association between the two
variables, we can establish a causal relationship from the explanatory
to the response variable.

In a randomized experiment, we don’t expect the explanatory variable to be
associated with any other variables at the onset of the study, because its values were
determined simply by random chance. If nothing is associated with the explanatory
variable, then confounding variables do not exist! For this reason, if an association is
found between the explanatory and response variables in a randomized experiment,
we can conclude that it indeed is a causal association.

Evaluating Evidence for Causality

There are three explanations for why an association may be observed
in sample data:

(i) There is a causal association.

(ii) There is an association, but it is due to confounding.

(iii) There is no actual association; the association seen in the sample
data occurred by random chance.

Evaluating evidence for the causal explanation requires evaluating
evidence against the other two competing explanations. The best evi-
dence against (ii), confounding, is the use of random assignment. We’ll
learn how to evaluate evidence against (iii), “just random chance,” in
Chapter 4.
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Example 1.27
Diet and Depression I

Ameta-analysis is a study that takes existing studies on a single topic and combines
them all into one study. Ameta-analysis54 combined 13 different observational stud-
ies that examined the association between diet and depression among adults, and
concluded that people who ate a healthy diet were significantly less likely to be
depressed.

(a) What is the explanatory variable? What is the response variable?

(b) Does this provide convincing evidence that eating a healthy diet causes a
reduced risk of depression? Why or why not?

(c) What might be a confounding variable?

Solution (a) The explanatory variable is healthy diet or not; the response variable is depres-
sion or not.

(b) No. These results are based on a combination of observational studies, so we
cannot determine whether the observed association is actually causal, or just
due to confounding.

(c) One possible confounding variable is exercise. People who exercise more tend to
have better dietary habits, and exercise is known to be associated with lower lev-
els of depression. In the presence of this confounding variable, we cannot deter-
mine whether it is the diet or the exercise that is making people less depressed.

Example 1.28
Diet and Depression II

A group of researchers55 in Australia conducted a short (three-week) dietary inter-
vention in a randomized controlled experiment. In the study, 75 college-age stu-
dents with elevated depression symptoms and relatively poor diet habits were ran-
domly assigned to either a healthy diet intervention group or a control group. The
researchers recorded whether the participants were male or female, and also the
change over the three-week period on two different numeric scales of depression
(the CESD-R scale and the DASS scale). The study concluded that even just a three-
week change in diet habits is significantly associated with lower depression levels.
Can we conclude from this study that improving dietary habits, even for only three
weeks, causes lower depression levels? Why or why not?

Solution Yes! People were randomly assigned to the healthy diet intervention or the con-
trol group, so we do not expect diet to be associated with anything else, and so do
not expect any confounding variables. (The word “significantly” provides evidence
against “just random chance,” as we’ll learn in Chapter 4.) Because this was a ran-
domized experiment, we can make causal conclusions!

Confounding and the importance of randomization may be easier to understand
in the special case of comparing groups, as in the diet and depression examples,
in which case “confounding” means the groups differ to begin with. Without ran-
dom assignment, the groups will almost surely differ in some way, even before they
receive different treatments, in which case it’s very difficult to determine whether

54Lai JS, et al., “A systematic review and meta-analysis of dietary patterns and depression in community-
dwelling adults,” The American Journal of Clinical Nutrition, 99(1), January 2014.
55Francis HM, et al., “A brief diet intervention can reduce symptoms of depression in your adults - A
randomised controlled trial,” PLoS ONE, 14(10), October 2019.
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an observed difference in outcomes is caused by the explanatory variable or just
the fact that the groups differed to begin with. In Example 1.27, people who choose
to eat a healthy diet almost certainly differ from those who don’t in many other
ways (they are probably more health-conscious in general), so we cannot conclude
whether the lower levels of depression were due to the different diets or the differ-
ences in the other health-conscious behaviors. If the groups are randomly assigned,
any pre-treatment differences should be purely random, so the groups should look
relatively similar to begin with. In Example 1.28, people were randomly assigned to
the healthy diet intervention or the control group, so we expect that these groups will
be relatively similar to begin with—before starting the diet, any differences between
them will be purely random! In this case, we can conclude that the lower levels of
depression were actually due to the diet!

This assessment of the reason for a difference can be generalized to any two
groups. Suppose we are comparing A versus B (two levels of an explanatory vari-
able), and in our sample, the A group has different outcomes than the B group. The
three general explanations for an association can be written more specifically in the
special case of a difference between two groups:

(i) A causes different outcomes than B.

(ii) The A group and the B group differed to begin with.

(iii) The difference is just due to random chance (not a real difference in outcomes
due to A and B).

Again, random assignment to groups is the best way to rule out explanation (ii).

Recall from Section 1.2 that “random” does not mean haphazard. A formal ran-
domization method (such as flipping a coin, dealing cards, drawing names out of
a hat, or using technology) must be used to assign the value of the explanatory
variable. This assures that the value of the explanatory variable for each unit is deter-
mined by random chance alone and is not influenced by any confounding variables.

The key idea of Section 1.2 was that results from a sample can only be
generalized to the population if the sampling units were selected randomly from
the population. The key idea of this section is that causality can only be established
if the values of the explanatory variable are randomly assigned to the units. Ran-
domness is the essential ingredient in both cases, but the type of randomness should
not be confused. In the first case we are randomly determining which units will be
a part of the study. In the second case we are randomly determining which value
of the explanatory variable will be assigned to each of the units already selected
to be in our sample. Lack of randomness in either stage drastically influences the
types of conclusions that can be made: Lack of randomness in sampling prevents
generalizing to the population, lack of randomness in assigning the values of the
explanatory variable prevents making causal conclusions. See Figure 1.3.

Figure 1.3 Two
fundamental questions
about data collection
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D A T A 1 . 6 Physicians’ Health Study
Does anyone you know regularly take a low-dose aspirin? If so, it may be
because of a randomized experiment conducted in the 1980s, the Physicians’
Health Study.56 The study recruited 22,071 male physicians and randomly
assigned half of them to take an aspirin every other day for about five years and
the other half to take a fake aspirin pill instead. They found that the physicians
who took the real aspirin had 44% fewer heart attacks than those taking the fake
aspirin. ◼

The study in Data 1.6 is a randomized experiment because the researchers
randomly determined which physicians received the real aspirin. The physicians
themselves had no choice and in fact did not even know which pill they were taking.
Because the physicians were split into two groups randomly, the only difference
between the groups should be the aspirin. Therefore, we can conclude that the
difference in heart attack rates must be caused by the aspirin. From this study
we can conclude that regularly taking a low-dose aspirin reduces the risk of heart
attack.

Many ideas of experimental design were originally developed for medical stud-
ies (such as Data 1.6) or agricultural experiments (like the fertilizer example of
Example 1.25). For this reason, we often refer to values of the explanatory vari-
able which the researcher controls as treatments. In Data 1.6, the treatments are the
real aspirin and the fake aspirin.

Example 1.29
Warming Up

Warming up is a regular part of almost every athlete’s pre-game routine, but the opti-
mal amount to warm up is not always known. Cyclists typically have a very intense
warm-up, and a study57 in 2011 tests whether a shorter, less intense warm-up is
better. Ten cyclists were recruited from the Calgary Track Cycling League and com-
pleted both a traditional intense warm-up and a shorter, less physically demanding,
experimental warm-up. Each cyclist completed each warm-up at different times,
and the order in which the warm-ups were performed was randomized. After each
warm-up, performance was measured. The study found performance to be better
after the shorter warm-up.

(a) What are the treatments?

(b) What conclusion can we draw from this study?

Solution (a) There are two treatments to be compared: the more intense traditional warm-up
and the shorter, less intense, experimental warm-up.

(b) Because the order of the warm-ups was randomized, causal conclusions can be
made. The shorter warm-up causes the cyclists to perform better.

56The Steering Committee of the Physicians’ Health Study Research Group, “Final report on the aspirin
component of the ongoing Physicians’ Health Study,” New England Journal of Medicine, 1989; 321:
129–135.
57Tomaras, E. and Macintosh, B., “Less is More: Standard Warm-up Causes Fatigue and Less Warm-up
Permits Greater Cycling Power Output,” Journal of Applied Physiology, May 5, 2011.
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In Example 1.28 andData 1.6, it was randomly determined which units got which
treatment. In Example 1.29, every unit got both treatments, but the order of the
treatments was randomly determined. Both ways of randomization yield valid ran-
domized experiments. The former is known as a randomized comparative experiment
because two groups of units are compared. The latter is known as a matched pairs
experiment, because each unit forms a pair of data values (one under each treat-
ment), and comparisons are made within each pair. These are only two of many
different ways to incorporate randomization into an experiment.

Two Types of Randomized Experiments

In a randomized comparative experiment, we randomly assign cases to
different treatment groups and then compare results on the response
variable(s).

In amatched pairs experiment, each case gets both treatments in ran-
dom order (or cases get paired up in some other obvious way), and we
examine individual differences in the response variable between the
two treatments.

Example 1.30
Is the Dominant Hand Stronger?

We wish to run an experiment using 30 right-handed people to determine whether
gripping strength in the dominant hand is greater than gripping strength in the other
hand.

(a) Describe the experiment if we use a randomized comparative design.

(b) Describe the experiment if we use a matched pairs design.

(c) Which design makes more sense in this case?

Solution (a) Using a randomized comparative design, we randomly divide the 30 people into
two groups of 15 each. We measure gripping strength in the right hand for one
of the groups and in the left hand for the other group, and compare results.

(b) In a matched pairs experiment, we measure the gripping strength in both hands
for each of the 30 people. The data are “paired” because we compare the right-
and left-handed gripping strength for each person, and examine the difference
between the two values. We randomize the order in which participants use the
hands: some (randomly determined) doing the right hand first and some the left
hand first. Notice that all participants are doing both, unlike in the experiment
described in part (a) with two distinct groups each assigned a different treat-
ment.

(c) A matched pairs experiment makes sense here because hand-gripping strength
can vary a great deal between different people and it makes sense to compare a
person’s right-hand strength to his or her own left-hand strength.

Control Groups, Placebos, and Blinding
The Physicians’ Health Study illustrates many aspects of a well-designed

experiment. The participants who did not take an aspirin pill are an example of a
control group. Nothing was done to this group that might directly influence the
response variable. The control group provides a good comparison for the group
that actually got the treatment of interest. Not all good experiments need a control
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group. In all cases, however, procedures for handling the groups should match as
closely as possible so that effective comparisons can be made.

If people believe they are getting an effective treatment, they may experience
the desired effect regardless of whether the treatment is any good. This phenomenon
is called the placebo effect. Although perhaps not intuitive, the placebo effect has
been studied extensively and can be very powerful. A placebo is a fake pill or treat-
ment, and placebos are often used to control for the placebo effect in experiments.
The fake aspirin pill given to participants in the control group of the Physicians’
Health Study is an example of a placebo.

Using a placebo is less helpful, however, if participants know they are not get-
ting the real treatment. This is one of the reasons that blinding is so important.
In a single-blind experiment, the participants are not told which group they are in. In
a double-blind experiment, the participants are not told which group they are in and
the people interacting with the participants and recording the results of the response
variable also do not know who is in which group. The Physicians’ Health Study was
double-blind: The people taking the pills did not know whether they were taking an
aspirin or a placebo and the doctors treating them and determining who had heart
attacks also did not know.

D A T A 1 . 7 Sham Knee Surgery
For people suffering from arthritis of the knee, arthroscopic surgery has been
one possible treatment. In the mid-1990s, a study58 was conducted in which
10 men with arthritic knees were scheduled for surgery. They were all treated
exactly the same except for one key difference: only some of them actually had
the surgery! Once each patient was in the operating room and anesthetized, the
surgeon looked at a randomly generated code indicating whether he should do
the full surgery or just make three small incisions in the knee and stitch up the
patient to leave a scar. All patients received the same post-operative care,
rehabilitation, and were later evaluated by staff who didn’t know which
treatment they had. The result? The men who got the sham knee surgery and
the men who got the real knee surgery showed similar and indistinguishable
levels of improvement. ◼

Example 1.31
Discuss the experiment in Data 1.7. How is randomization used? Is there a placebo?
Is the study double-blind? Why did the doctors make incisions in the knees of the
men not getting the surgery?

Solution Randomization was used to divide the men into groups, determining who got the
real surgery and who didn’t. The placebo was the fake surgery. Because the placebo
surgery should match the real surgery as much as possible, those in the placebo
group still received incisions and stitches. The men needed similar scars so that both
the patients and the staff giving follow-up care were blind as to who actually had
surgery done inside their knee. This made the study double-blind.

58Talbot, M., “The Placebo Prescription,” The New York Times, January 9, 2000.
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You may wonder whether data from only 10 patients are sufficient to make
strong conclusions about the best treatment plan for arthritic knees. That would
be a valid concern. In general, we would like to replicate each treatment on as many
experimental units as is feasible. In many situations a small pilot study, such as the
one described in Data 1.7, is used for initial guidance before undertaking a larger,
more expensive experiment. In the case of the placebo knee surgery, a follow-up
study with 180 patients produced similar results59 – indicating that full knee surgery
may not be needed for patients with this condition.

Example 1.32
Does an injection of caffeine help rats learn a maze faster? Design an experiment to
investigate this question. Incorporate elements of a well-designed experiment.

Solution We take the rats that are available for the study and randomly divide them into two
groups. One group will get a shot of caffeine, while the other group will get a shot
of saline solution (placebo). We have the rats run the maze and record their times.
Don’t tell the rats which group they are in! Ideally, all people who come in contact
with the rats (the people giving the shots, the people recording the maze times, and
so on) should not know which rats are in which group. This makes the study double-
blind. Only the statistician analyzing the data will know which rats are in which
group. (We describe here a randomized comparative experiment. A matched pairs
experiment would also work, and in that case we would also use randomization and
a placebo and blinding.)

Realities of Randomized Experiments
Randomization should always be used in designing an experiment. Blinding and

the use of a placebo treatment should be used when appropriate and possible. How-
ever, there are often ethical considerations that preclude the use of an experiment
in any form. For example, imagine designing an experiment to determine whether
cell phones cause cancer or whether air pollution leads to adverse health conse-
quences. It would not be appropriate to require people to wear a cell phone on their
head for large amounts of time to see if they have higher cancer rates! Similarly, it
would not be appropriate to require some people to live in areas with more polluted
air. In situations such as these, observational studies can at least help us determine
associations.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize that not every association implies causation

• Identify potential confounding variables in a study

• Distinguish between an observational study and a randomized
experiment

• Recognize that only randomized experiments can lead to claims of
causation

• Explain how and why placebos and blinding are used in experiments

• Distinguish between a randomized comparative experiment and a
matched pairs experiment

• Design and implement a randomized experiment

59Moseley, J., et al., “A Controlled Trial of Arthroscopic Surgery for Osteoarthritis of the Knee,” The
New England Journal of Medicine, 2002; 347: 81–88.
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Exercises for Section 1.3

SKILL BUILDER 1
In Exercises 1.76 to 1.81, we give a headline that
recently appeared online or in print. State whether
the claim is one of association and causation, asso-
ciation only, or neither association nor causation.

1.76 Daily exercise improves mental performance.

1.77 Among college students, no link found
between number of friends on social networking
websites and size of the university.

1.78 Cell phone radiation leads to deaths in honey
bees.

1.79 Wealthy people are more likely than other
folks to lie, cheat, and steal.

1.80 Cat owners tend to be more educated than dog
owners.

1.81 Want to lose weight? Eat more fiber!

SKILL BUILDER 2
Exercises 1.82 to 1.87 describe an association bet-
ween two variables. Give a confounding variable
that may help to account for this association.

1.82 More ice cream sales have been linked to more
deaths by drowning.

1.83 The total amount of beef consumed and the
total amount of pork consumed worldwide are
closely related over the past 100 years.

1.84 People who own a yacht are more likely to buy
a sports car.

1.85 Sales of toboggans tend to be higher when
sales of mittens are higher.

1.86 Air pollution is higher in places with a higher
proportion of paved ground relative to grassy
ground.

1.87 People with shorter hair tend to be taller.

SKILL BUILDER 3
In Exercises 1.88 to 1.91, we describe data collec-
tion methods to answer a question of interest. Are
we describing an experiment or an observational
study?

1.88 To examine whether eating brown rice affects
metabolism, we ask a random sample of people
whether they eat brown rice and we also measure
their metabolism rate.

1.89 To examine whether playing music in a store
increases the amount customers spend, we ran-
domly assign some stores to play music and some to

stay silent and compare the average amount spent
by customers.

1.90 To examine whether planting trees reduces air
pollution, we find a sample of city blocks with sim-
ilar levels of air pollution and we then plant trees
in half of the blocks in the sample. After waiting an
appropriate amount of time, we measure air pollu-
tion levels.

1.91 To examine whether farm-grown salmon con-
tain more omega-3 oils if water is more acidic, we
collect samples of salmon and water from multiple
fish farms to see if the two variables are related.

REVISITING QUESTIONS FROM
SECTION 1.1
Exercises 1.92 to 1.94 refer to questions of interest
asked in Section 1.1 in which we describe data col-
lection methods. Indicate whether the data come
from an experiment or an observational study.

1.92 “Is there a sprinting gene?” Introduced in
Example 1.5 on page 9.

1.93 “Do metal tags on penguins harm them?”
Introduced in Data 1.3 on page 10.

1.94 “Are there human pheromones?” Introduced
on page 11. Three studies are described; indicate
whether each of them is an experiment or an obser-
vational study.

1.95 Salt on Roads and Accidents Three situa-
tions are described at the start of this section, on
page 31. In the third bullet, we describe an asso-
ciation between the amount of salt spread on the
roads and the number of accidents. Describe a pos-
sible confounding variable and explain how it fits
the definition of a confounding variable.

1.96 Height and Reading Ability In elementary
school (grades 1 to 6), there is a strong association
between a child’s height and the child’s reading abil-
ity. Taller children tend to be able to read at a higher
level. However, there is a very significant confound-
ing variable that is influencing both height and
reading ability. What is it?

1.97 Golfing for a Long Life? A recent quote60 on
an online health site tells us “golfers’ average life
expectancy was 5 years longer than other people’s.”

60www.webmd.com, September 4, 2019.
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(a) What are the cases in this reported result?What
is/are the variable(s)?

(b) Does this information appear to come from an
experiment or an observational study?

(c) Give a confounding variable and explain how it
meets the definition of a confounding variable.

1.98 How to Debate a Science Denier Science
deniers oppose robust and valid results of sci-
entific inquiry. A recent study61 investigates the
most effective ways to debunk scientific misinfor-
mation. Science advocates can respond to misin-
formation using topic rebuttal (providing scientific
facts on the subject) or technique rebuttal (explain-
ing more generally the false techniques used by sci-
ence deniers). In the study, 1773 participants first
listened to a science denier and were then randomly
assigned to one of four conditions: no rebuttal, topic
rebuttal, technique rebuttal, or both topic and tech-
nique rebuttal. Participants’ attitudes toward the
science topic were measured and recorded three
times: before participation, after the science denier,
and after the rebuttal. Results indicate the impor-
tance of having a rebuttal: participants on aver-
age were influenced by the science denier, but the
influence was mitigated by having any rebuttal. The
study further showed that topic or technique rebut-
tal worked equally well, and having both provided
no additional benefit.

(a) What are the cases in this study?

(b) What is the explanatory variable? Is it categori-
cal or quantitative?

(c) Is this an observational study or an experiment?

(d) Howmany rows and howmany columns will the
dataset have, if we use cases as rows and vari-
ables as columns?

1.99 Music Volume and Beer Consumption A
study62 was conducted measuring the impact that
music volume has on beer consumption. The
researchers went into bars, controlled the music vol-
ume, and measured how much beer was consumed.
The article states that “the sound level of the
environmental music was manipulated according to

61Schmid P and Betsch C, “Effective Strategies for Rebut-
ting Science Denialism in Public Discussion,” Nature Human
Behaviour, June 24, 2019.
62Gueguen, N., Jacob, C., Le Guellec, H., Morineau, T., and
Lourel, M., “Sound Level of Environmental Music and Drinking
Behavior: A Field Experiment with Beer Drinkers,”Alcoholism:
Clinical and Experimental Research, 2008; 32: 1795–1798.

a randomization scheme.” It was found that louder
music corresponds to more beer consumption. Does
this provide evidence that louder music causes peo-
ple to drink more beer? Why or why not?

1.100 Nuts and Cholesterol Several studies have
been performed to examine the relationship
between nut consumption and cholesterol levels.
Here we consider two such studies. In Study 1,63

participants were assigned into two groups: one
group was given nuts to eat each day, and the other
group was told to consume a diet without nuts. In
Study 2,64 participants were free to follow their own
diet, and reported how many nuts they consumed.
Cholesterol levels were measured for all partici-
pants, and both studies found that nut consumption
was associated with lower levels of LDL (“bad”)
cholesterol. Based on the information above, which
study do you think provides better evidence that
nut consumption reduces LDL cholesterol? Explain
your answer.

1.101 Antibiotics in Infancy and Obesity in Adults
“Antibiotics in infancy may cause obesity in adults,”
claims a recent headline.65 A study in mice ran-
domly assigned infant mice to either be given antibi-
otics or not, and the mice given antibiotics were
more likely to be obese as adults. A separate study
in humans found that children who had been given
antibiotics before they were a year old (for example,
for an ear infection) were more likely to be obese
as adults. (Researchers believe the effect may be
due to changes in the gut microbiome.) Based on
these studies, is the headline an appropriate conclu-
sion to make:

(a) For mice?

(b) For humans?

1.102 Fast-Food Diet and Depression A study66

involving 84 middle-school students investigates the
link between a diet high in processed foods and
rates of depression. Researchers collected the urine
of the participants and measured levels of sodium
and potassium. A diet high in processed food, such

63Morgan, W.A., and Clayshulte, B.J., “Pecans lower low density
lipoprotein cholesterol in people with normal lipid levels.” Jour-
nal of the American Dietetic Association, 2000; 100(3), 312–318.
64Li, T.Y., Brennan, A.M., Wedick, N.M., Mantzoros, C., Rifai,
N., and Hu, F.B. “Regular consumption of nuts is associated with
a lower risk of cardiovascular disease in women with type 2 dia-
betes.” The Journal of Nutrition, 2009; 139(7), 1333–1338.
65Saey, T.H., “Antibiotics in infancy may cause obesity in adults,”
Science News, September 20, 2014.
66LaMotte S, “Fast foodmay contribute to teen depression, study
says,” CNN Health, August 29, 2019.



1.3 Experiments and Observational Studies 47

as fast food, is high in sodium and low in potassium.
The students were also evaluated on a 100-point
scale for depressive symptoms. The study found that
high levels of sodium and low levels of potassium
were both associated with higher depression levels.

(a) Is this an experiment or an observational study?

(b) Can we conclude that eating a diet high in
sodium and low in potassium increases the like-
lihood of having depression? Why or why not?

(c) Give a possible confounding variable in this
study, and explain how it meets the definition
of a confounding variable.

1.103 Potassium Levels in SpinachA study examin-
ing spinach leaves from a variety of different loca-
tions finds that spinach grown in soil with high
amounts of iron tends to have lower levels of
potassium.67

(a) What are the two variables? Is each quantitative
or categorical?

(b) Which is the explanatory variable?

(c) Does the result appear to come from an obser-
vational study or an experiment?

(d) Can we assume that higher levels of iron in the
soil cause spinach to have less potassium?

(e) Describe anything that might be a possible con-
founding variable.

1.104 Encourage Kids to Read! Researchers68

asked parents of 19 American children, ages 8 to 12,
to complete surveys on the number of hours their
children spent reading and on the number of hours
they spent on screen-based media time. Each of the
children also underwent magnetic resonance imag-
ing to assess connectivity in the brain. More time
spent reading was associated with higher connec-
tivity, while more screen time was associated with
lower connectivity in the brains of the children.

(a) How many cases are there in this study? How
many variables are there?

(b) Identify each of the variables as quantitative or
categorical. Also, identify each of the variables
as an explanatory variable or a response vari-
able.

(c) Is this an experiment or an observational study?

67Shea K, Health & Nutrition Update, Tufts University, August
11, 2019.
68Horowitz-Kraus T and Hutton J, “Brain connectivity in chil-
dren is increased by the time they spend reading books and
decreased by the length of exposure to screen-based media,”
Acta Paediatrica, 107, 2018.

(d) Can we conclude that more time spent reading
increases connectivity in children’s brains?

(e) Identify a possible confounding variable and
explain how it meets the definition of a con-
founding variable.

1.105 Want to Be Healthier? Take a Vacation! A
study69 measured health characteristics (including
triglyceride level, cholesterol, and blood glucose)
for each of 63 adult participants and also asked par-
ticipants how many vacations they had taken in the
last year. Results showed that those who had taken
more vacations had better results on the health
measures.

(a) Is this an experiment or an observational study?

(b) Give a possible confounding variable and
explain how it meets the definition of a con-
founding variable.

(c) Indicate whether each of the following is an
appropriate conclusion (Yes or No) from this
study:

(i) People who are healthier tend to take more
vacations.

(ii) People who take vacations tend to be
healthier.

(iii) Taking vacations will improve a person’s
health.

(iv) Improving one’s health will allow a person
to take additional vacations.

(d) Is the title of this exercise an appropriate con-
clusion from this study?

1.106 Do Online Cat Videos Improve Mood?
Exercise 1.69 on page 30 introduced a study on cat
videos, in which people who clicked on the link
were asked questions regarding their mood before
and after the most recent time they watched a
cat video. Overall, participants reported that after
watching a cat video they had significantly more
energy, fewer negative emotions, and more posi-
tive emotions. Can we conclude from this study that
watching cat videos increases energy and improves
emotional state?

1.107 Green Spaces Make Kids Smarter A recent
article70 claims that “Green Spaces Make Kids
Smarter.” The study described in the article
involved 2623 schoolchildren in Barcelona. The

69Voelker R, “Vacationing More Often May Reduce Metabolic
Syndrome Risk,” JAMA, August 14, 2019.
70Khazan, O., “Green Spaces Make Kids Smarter,” The Atlantic,
June 16, 2016.
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researchers measured the amount of greenery
around the children’s schools, and then measured
the children’s working memories and attention
spans. The children who had more vegetation
around their schools did better on the memory and
attention tests.

(a) What are the cases in this study?

(b) What is the explanatory variable?

(c) What is the response variable?

(d) Does the headline imply causation?

(e) Is the study an experiment or an observational
study?

(f) Is it appropriate to conclude causation in this
case?

(g) Suggest a possible confounding variable, and
explain why it meets the requirements of a con-
founding variable.

1.108 Infections Can Lower IQ A headline in June
2015 proclaims “Infections can lower IQ.”71 The
headline is based on a study in which scientists gave
an IQ test to Danish men at age 19. They also ana-
lyzed the hospital records of the men and found that
35% of them had been in a hospital with an infec-
tion such as an STI or a urinary tract infection. The
average IQ score was lower for the men who had an
infection than for the men who hadn’t.

(a) What are the cases in this study?

(b) What is the explanatory variable? Is it categori-
cal or quantitative?

(c) What is the response variable? Is it categorical
or quantitative?

(d) Does the headline imply causation?

(e) Is the study an experiment or an observational
study?

(f) Is it appropriate to conclude causation in this
case?

1.109 Sitting Is the New Smoking A 2014 head-
line reads “Sitting Is the New Smoking: Ways a
Sedentary Lifestyle is Killing You,”72 and explains
the mounting evidence for ways in which sitting
is bad for you. A more recent large 2015 study73

71“Infections can lower IQ,” The Week, June 12, 2015, p. 18.
72“Sitting Is the New Smoking: Ways a Sedentary Lifestyle
Is Killing You,” http://www.huffingtonpost.com/the-active-times/
sitting-is-the-new-smokin_b_5890006.html, September 29, 2014,
Accessed July 17, 2015.
73Patel, A.V., et al., “Leisure-time spent sitting and site-specific
cancer incidence in a large US cohort,” Cancer Epidemiol-
ogy, Biomarkers & Prevention, June 30, 2015, doi:10.1158/1055-
9965.EPI-15-0237.

contributed to this evidence by following 69,260
men and 77,462 women and finding that for women,
those who spent more leisure time sitting were sig-
nificantly more likely to get cancer.

(a) What are the explanatory and response vari-
ables for the 2015 study?

(b) Is the 2015 study an observational study or a
randomized experiment?

(c) Can we conclude from the 2015 study that
spending more leisure time sitting causes cancer
in women? Why or why not?

(d) Can we conclude from the 2015 study that
spending more leisure time sitting does not
cause cancer in women?

1.110 Late Night Eating It is well-known that lack
of sleep impairs concentration and alertness, and
this might be due partly to late night food consump-
tion. A study74 took 44 people aged 21 to 50 and
gave them unlimited access to food and drink dur-
ing the day, but allowed them only 4 hours of sleep
per night for three consecutive nights. On the fourth
night, all participants again had to stay up until
4 am, but this time participants were randomized
into two groups; one group was only given access
to water from 10 pm until their bedtime at 4 am
while the other group still had unlimited access to
food and drink for all hours. The group forced to
fast from 10 pm on performed significantly better
on tests of reaction time and had fewer attention
lapses than the group with access to late night food.

(a) What are the explanatory and response
variables?

(b) Is this an observational study or a randomized
experiment?

(c) Can we conclude that eating late at night
worsens some of the typical effects of sleep
deprivation (reaction time and attention
lapses)?

(d) Are there likely to be confounding variables?
Why or why not?

1.111 Does Early Language Reduce Tantrums?
A recent headline reads “Early Language Skills
Reduce Preschool Tantrums, Study Finds,”75 and

74University of Pennsylvania School of Medicine. “Eating less
during late night hours may stave off some effects of sleep
deprivation.” ScienceDaily, June 4, 2015 www.sciencedaily.com/
releases/2015/06/150604141905.htm.
75“Early Language Skills Reduce Preschool Tantrums, Study
Finds,” US News and World Report, http://health.usnews.com/
health-news/news/articles/2012/12/20/early-language-skills-redu
ce-preschool-tantrums-study-finds, 20 December 2012, Accessed
July 17, 2015.
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the article offers a potential explanation for this:
“Verbalizing their frustrations may help little ones
cope.” The article refers to a study that recorded the
language skill level and the number of tantrums of
a sample of preschoolers.

(a) Is this an observational study or a randomized
experiment?

(b) Can we conclude that “Early Language Skills
Reduce Preschool Tantrums”? Why or why
not?

(c) Give a potential confounding variable.

1.112 Does Buying Organic Food Improve Your
Health? The National Health and Nutrition Exam-
ination Survey (NHANES)76 surveys a large
national random sample of Americans about a wide
variety of health related topics. Among many ques-
tions, the 2009–2010 survey included a question
about eating organic (“In the past 30 days, did you
buy any food that had the word ’organic’ on the
package?”), and also a question about self-reported
health status (“Would you say your health in gen-
eral is Excellent, Very good, Good, Fair, or Poor?”).
For the 5060 people who answered both questions,
46% of the people who had bought organic food
reported their health as very good or excellent,
as opposed to only 33% of the people who had
not bought organic food. Remember that there
are three possible explanations for this observed
difference:

(i) Causal association; buying (and then, presum-
ably eating) organic food improves general
health status.

(ii) Association due to confounding; the groups
(people who buy organic and those who don’t)
differed to begin with.

(iii) No actual association; just random chance.

Also recall that evaluating evidence for the causal
explanation, (i), requires evaluating evidence
against the alternative explanations, (ii) and (iii).
In Chapter 6 we rule out explanation (iii). What
about explanation (ii)?

(a) Does this study provide evidence against con-
founding and groups differing to begin with?
Why or why not?

(b) If your answer to part (a) was no, name a poten-
tial confounding variable or a way in which the
groups may differ to begin with.

76https://www.cdc.gov/nchs/nhanes/index.htm

(c) Based on your answer to part (a), does this
study provide convincing evidence that buying
organic food improves general health status?
Why or why not?

1.113 Does Eating Organic Food Make Fruit Flies
Live Longer? For a high school science project, a
16-year-old girl randomly divided fruit flies into two
groups, and fed one group organic food and the
other group conventional (non-organic) food.77 The
flies fed organic food lived an average of 3.25 days
longer than the flies fed conventional food (which is
a long time in the lifespan of a fruit fly!). Remember
that there are three possible explanations for this
observed difference:

(i) Causal association; eating organic food causes
fruit flies to live longer.

(ii) Association due to confounding; the groups
(organic fed and conventional fed fruit flies)
differed to begin with.

(iii) No actual association; just random chance.

Also recall that evaluating evidence for the
causal explanation, (i), requires evaluating evidence
against the alternative explanations, (ii) and (iii). In
Chapter 5 we rule out explanation (iii). What about
explanation (ii)?

(a) Does this study provide evidence against con-
founding and groups differing to begin with?
Why or why not?

(b) If your answer to part (a) was no, name a poten-
tial confounding variable or a way in which the
groups may differ to begin with.

(c) Based on your answer to part (a), does this
study provide convincing evidence that eating
organic food causes fruit flies to live longer?
Why or why not?

1.114 Goldilocks Effect: Read to Your Kids!
(Part 2) Exercise 1.13 introduces a study in which
27 four-year-old children are presented with stories
three different ways: audio only, illustrated, and ani-
mated. Every child was presented with all three for-
mats while an MRI machine measured their brain
connectivity. The researchers found a “Goldilocks
effect,” in which both audio (too cold) and anima-
tion (too hot) showed low brain connectivity, while
the illustrated format (similar to reading a book to a
child) showed the highest connectivity (just right!).

77Chhabra R, Kolli S, Bauer JH (2013) Organically Grown Food
Provides Health Benefits to Drosophila melanogaster. PLoS
ONE 8(1): e52988.
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(a) Is this an observational study, a randomized
controlled experiment or a matched pairs type
experiment?

(b) Can we conclude that reading to a child
increases connectivity in their brain more than
listening to a story or watching a movie does?

(c) How should randomization be used in the
design of this study?

1.115 Sleep and Recognition of Facial Expressions
The ability to recognize and interpret facial expres-
sions is key to successful human interaction. Could
this ability be compromised by sleep deprivation?
A study78 took 18 healthy young adult volunteers
and exposed them to 70 images of facial expres-
sions, ranging from friendly to threatening. They
were each shown images both after a full night of
sleep and after sleep deprivation (24 hours of being
awake), and whether each individual got a full night
of sleep or was kept awake first was randomly deter-
mined. The study found that people were much
worse at recognizing facial expressions after they
had been kept awake.

(a) What are the explanatory and response
variables?

(b) Is this an observational study or a randomized
experiment? If it is a randomized experiment,
is it a randomized comparative experiment or a
matched pairs experiment?

(c) Can we conclude that missing a night of sleep
hinders the ability to recognize facial expres-
sions? Why or why not?

(d) In addition, for the people who had slept,
the study found a strong positive associa-
tion between quality of Rapid Eye Movement
(REM) sleep and ability to recognize facial
expressions. Can we conclude that better qual-
ity of REM sleep improves ability to recog-
nize facial expressions? Why or why not? (Hint:
What is the explanatory variable in this case?
Was it randomly assigned?)

1.116 Diet Cola and Weight Gain in Humans A
study79 found that American senior citizens who

78Goldstein-Piekarski, A., et al., “Sleep Deprivation Impairs the
Human Central and Peripheral Nervous System Discrimination
of Social Threat,” The Journal of Neuroscience, July 15, 2015;
35(28): 10135–10145; doi: 10.1523/JNEUROSCI.5254-14.2015
79Fowler, S.P., Williams, K., and Hazuda, H.P. “Diet Soda Intake
Is Associated with LongTerm Increases in Waist Circumference
in a Bioethnic Cohort of Older Adults: The San Antonio Lon-
gitudinal Study of Aging.” Journal of the American Geriatrics
Society, 2015; 63(4), 708–715.

report drinking diet soda regularly experience a
greater increase in weight and waist circumference
than those who do not drink diet soda regularly.

(a) From these results, can we conclude that drink-
ing diet soda causes weight gain? Explain why
or why not.

(b) Consider the results of this study on senior cit-
izens, and the randomized experiment on rats
introduced in Exercise 1.70 on page 30, which
showed a similar association. Discuss what
these two studies together might imply about
the likelihood that diet cola causes weight gain
in humans.

1.117 Urban Brains and Rural BrainsA study pub-
lished in 2010 showed that city dwellers have a 21%
higher risk of developing anxiety disorders and a
39% higher risk of developing mood disorders than
those who live in the country. A follow-up study
published in 2011 used brain scans of city dwellers
and country dwellers as they took a difficult math
test.80 To increase the stress of the participants,
those conducting the study tried to humiliate the
participants by telling them how poorly they were
doing on the test. The brain scans showed very dif-
ferent levels of activity in stress centers of the brain,
with the urban dwellers having greater brain activity
than rural dwellers in areas that react to stress.

(a) Is the 2010 study an experiment or an observa-
tional study?

(b) Can we conclude from the 2010 study that living
in a city increases a person’s likelihood of devel-
oping an anxiety disorder or mood disorder?

(c) Is the 2011 study an experiment or an observa-
tional study?

(d) In the 2011 study, what is the explanatory vari-
able and what is the response variable? Indicate
whether each is categorical or quantitative.

(e) Can we conclude from the 2011 study that living
in a city increases activity in stress centers of the
brain when a person is under stress?

1.118 Split the Bill? When the time comes for a
group of people eating together at a restaurant to
pay their bill, sometimes they might agree to split
the costs equally and other times will pay individ-
ually. If this decision were made in advance, would
it affect what they order? Suppose that you’d like
to do an experiment to address this question. The
variables you will record are the type of payment

80“A New York state of mind,” The Economist, June 25,
2011, p. 94.
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(split or individual), sex of each person, number
of items ordered, and the cost of each person’s
order. Identify which of these variables should be
treated as explanatory and which as response. For
each explanatory variable, indicate whether or not
it should be randomly assigned.

1.119 Be Sure to Get Your Beauty Sleep! New
research81 supports the idea that people who get a
good night’s sleep lookmore attractive. In the study,
23 subjects ages 18 to 31 were photographed twice,
once after a good night’s sleep and once after being
kept awake for 31 hours. Hair, make-up, clothing,
and lighting were the same for both photographs.
Observers then rated the photographs for attrac-
tiveness, and the average rating under the two
conditions was compared. The researchers report
in the British Medical Journal that “Our findings
show that sleep-deprived people appear less attrac-
tive compared with when they are well rested.”

(a) What is the explanatory variable? What is the
response variable?

(b) Is this an experiment or an observational study?
If it is an experiment, is it a randomized compar-
ative design or a matched pairs design?

(c) Can we conclude that sleep deprivation causes
people to look less attractive? Why or why not?

1.120 Do Antidepressants Work? Following the
steps given, design a randomized comparative
experiment to test whether fluoxetine (the active
ingredient in Prozac pills) is effective at reducing
depression. The participants are 50 people suffer-
ing from depression and the response variable is the
change on a standard questionnaire measuring level
of depression.

(a) Describe how randomization will be used in the
design.

(b) Describe how a placebo will be used.

(c) Describe how to make the experiment
double-blind.

81Stein, R., “Beauty sleep no myth, study finds,” Washington
Post, washingtonpost.com, Accessed December 15, 2010.

1.121 Do Children Need Sleep to Grow? About
60% of a child’s growth hormone is secreted during
sleep, so it is believed that a lack of sleep in children
might stunt growth.82

(a) What is the explanatory variable and what is the
response variable in this association?

(b) Describe a randomized comparative experi-
ment to test this association.

(c) Explain why it is difficult (and unethical) to
get objective verification of this possible causal
relationship.

1.122 Carbo Loading It is commonly accepted that
athletes should “carbo load,” that is, eat lots of
carbohydrates, the day before an event requiring
physical endurance. Is there any truth to this?
Suppose you want to design an experiment to
find out for yourself: “Does carbo loading actually
improve athletic performance the following day?”
You recruit 50 athletes to participate in your study.

(a) How would you design a randomized compara-
tive experiment?

(b) How would you design a matched pairs
experiment?

(c) Which design do you think is better for this sit-
uation? Why?

1.123 Alcohol and Reaction Time Does alcohol
increase reaction time? Design a randomized exper-
iment to address this question using the method
described in each case. Assume the participants are
40 college seniors and the response variable is time
to react to an image on a screen after drinking either
alcohol or water. Be sure to explain how randomiza-
tion is used in each case.

(a) A randomized comparative experiment with
two groups getting two separate treatments

(b) A matched pairs experiment

1.124 Causation and Confounding Causation does
not necessarily mean that there is no confound-
ing variable. Give an example of an association
between two variables that have a causal relation-
ship AND have a confounding variable.

82Rochman, B., “Please, Please, Go to Sleep,” Time Magazine,
March 26, 2012, p. 46.
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Describing
Data

“Technology [has] allowed us to collect vast amounts of data in almost every business. The

people who are able to in a sophisticated and practical way analyze that data are going to

have terrific jobs.”

Chrystia Freeland, Managing Editor, Financial Times∗

∗Speaking on CNN Your Money, November 29, 2009.
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Questions and Issues
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2 Describing Data 52
2.1 Categorical Variables 54

2.2 One Quantitative Variable: Shape and Center 72

2.3 One Quantitative Variable: Measures of Spread 86

2.4 Boxplots and Quantitative/Categorical
Relationships 103

2.5 Two Quantitative Variables: Scatterplot
and Correlation 117

2.6 Two Quantitative Variables: Linear Regression 136

2.7 Data Visualization and Multiple Variables 152

Here are some of the questions and issues we will discuss in this chapter:

• Can dogs smell cancer in humans?

• What percent of college students say stress negatively affects their grades?

• How big is the home field advantage in soccer?

• Does electrical stimulation of the brain help with problem solving?

• Can cricket chirps be used to predict the temperature?

• Which coffee has more caffeine: light roast or dark roast?

• Howmuch do restaurant customers tip?

• How does a person’s body posture affect levels of stress?

• Do movies with larger budgets get higher audience ratings?

• Does it pay to get a college degree?

• What percent of college students have been in an emotionally abusive relationship?

• What percent of NBA basketball players never attempt a 3-point shot?

• Are there “commitment genes”? Are there “cheating genes”?

• Do antibiotics in infancy affect the tendency to be overweight?

• Do online sites charge different amounts depending on the browser you use?

• What is the impact of “social jetlag” in which weekend sleep time is different from weekday sleep time?

• What proportion of colleges students have a paying job?

• Which food delivery app is most popular?

• How similar are ratings frommovie critics to audience ratings?

• Can a short period of eating healthier food improve depression symptoms?
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2.1CATEGORICAL VARIABLES

In Chapter 1, we learned that there are two types of variables, categorical and quan-
titative. In this chapter, we see how to describe both types of variables and the
relationships between them. In each case, the description takes two parts: We see
how to visualize the data using graphs and we see how to summarize key aspects of
the data using numerical quantities, called summary statistics. We start by investigat-
ing categorical variables in this section.

istock.com/Denis Zbukarev

Does each person have one true love?

Do you believe that there is only one true love for each person? What pro-
portion of people do you think share your opinion? A recent survey addressed this
question.

D A T A 2 . 1 Is there one true love for each person?

A nationwide US telephone survey conducted by the Pew Foundation1 asked
2625 adults ages 18 and older, “Some people say there is only one true love for
each person. Do you agree or disagree?” In addition to finding out the
proportion who agree with the statement, the Pew Foundation also wanted to
find out if the proportion who agree is different between males and females,
and whether the proportion who agree is different based on level of education
(no college, some college, or college degree). The survey participants were
selected randomly, by landlines and cell phones. ◼

Example 2.1
What is the sample?What is the population?Do you believe themethod of sampling
introduces any bias? Can the sample results be generalized to the population?

Solution The sample is the 2625 people who were surveyed. The population is all US adults
ages 18 or older who have a landline telephone or cell phone. Since the sampling
was random, there is no sampling bias. There are no obvious other forms of bias, so
the sample results can probably generalize to the population.

1Adapted from “The Decline of Marriage and Rise of New Families,” Social and Demographic Trends,
Pew Research Center, http://www.pewresearch.org, released November 18, 2010.
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Example 2.2
What are the cases in the survey about one true love? What are the variables? Are
the variables categorical or quantitative? How many rows and how many columns
would the data table have?

Solution The cases are the adults who answered the survey questions. The description indi-
cates that there are at least three variables. One variable is whether the responder
agrees or disagrees with the statement that each person has only one true love. A
second variable is sex and a third is level of education. All three variables are cate-
gorical. The data table will have one row for each person who was surveyed, so there
will be 2625 rows. There is a column for each variable, and there are at least three
variables so there will be at least three columns.

One Categorical Variable
Of the n = 2625 people who responded to the survey, 735 agree with the statement
that there is only one true love for each person, while 1812 disagree and 78 say
they don’t know. Table 2.1 displays these results in a frequency table, which gives the
counts in each category of a categorical variable.

Table 2.1 A frequency table: Is
there one true love for each person?

Response Frequency

Agree 735
Disagree 1812
Don’t know 78

Total 2625

What proportion of the responders agree with the statement that we all have
exactly one true love? We have

Proportion who agree =
Number who agree

Total number
= 735

2625
= 0.28

This proportion is a summary statistic that helps describe the categorical variable
for this group of adults. We see that the proportion who agree that there is one true
love is 0.28 or 28%.2

Proportion

The proportion in some category is found by

Proportion in a category =
Number in that category

Total number

2The two values 0.28 and 28% are equivalent and we use them interchangeably.
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Proportions are also called relative frequencies, and we can display them in a
relative frequency table. The proportions in a relative frequency table will add to 1
(or approximately 1 if there is some round-off error). Relative frequencies allow us
to make comparisons without referring to the sample size.

Example 2.3
Find the proportion of responders who disagree in the one-true-love survey and the
proportion who don’t know and display all the proportions in a relative frequency
table.

Solution The proportion of responders who disagree is 1812∕2625 = 0.69 and the proportion
who responded that they didn’t know is 78∕2625 = 0.03. A frequency table or rel-
ative frequency table includes all possible categories for a categorical variable, so
the relative frequency table includes the three possible answers of “Agree,” “Dis-
agree,” and “Don’t know,” with the corresponding proportions. See Table 2.2. The
proportions add to 1, as we expect.

Table 2.2 A relative frequency table:
Is there one true love for each person?

Response Relative Frequency

Agree 0.28
Disagree 0.69
Don’t know 0.03

Total 1.00

Visualizing the Data in One Categorical Variable
Figure 2.1(a) displays a bar chart of the results in Table 2.1. The vertical axis

gives the frequency (or count), and a bar of the appropriate height is shown for
each category. Notice that if we used relative frequencies or percentages instead of
frequencies, the bar chart would be identical except for the scale on the vertical axis.
The categories can be displayed in any order on the horizontal axis. Another way to
display proportions for a categorical variable, common in the popular media, is with
a pie chart, as in Figure 2.1(b), in which the proportions correspond to the areas of
sectors of a circle.

Don’t knowDisagreeAgree
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One true love?

Category
Agree
Disagree
Don’t know

(a) A bar chart (b) A pie chart

Figure 2.1 Is there one true love for each person?



2.1 Categorical Variables 57

Notation for a Proportion
As we saw in Chapter 1, it is important to distinguish between a population

and a sample. For this reason, we often use different notation to indicate whether a
quantity such as a proportion comes from a sample or an entire population.

Notation for a Proportion

The proportion for a sample is denoted p̂ and read “p-hat.”

The proportion for a population is denoted p.

Example 2.4
In each of the situations below,3 find the proportion of people who identify them-
selves as Hispanic or Latino. Use the correct notation with each answer.

(a) The 2010 US Census shows a US population of 308,745,538 people, and
50,325,523 of these people identify themselves as Hispanic or Latino.

(b) A random sample of 300 US citizens in Colorado shows that 62 of them identify
themselves as Hispanic or Latino.

Solution (a) The US Census gives information about essentially all residents of the US. This
is a population, so we use the notation p for the proportion and we have

p = 50,325,523
308,745,538

= 0.163

(b) This is a sample of the population of Colorado, so we use the notation p̂ for the
sample proportion. We have

p̂ = 62
300

= 0.207

Two Categorical Variables: Two-Way Tables
Does the proportion of people who agree that there is exactly one true love for each
person differ between males and females? Does it differ based on the education
level of the responders? Both questions are asking about a relationship between two
categorical variables. We investigate the question about sex here and investigate the
effect of education level in Exercise 2.21.

To investigate a possible relationship between two categorical variables we use
a two-way table. In a two-way table, we add a second dimension to a frequency table
to account for the second categorical variable. Table 2.3 shows a two-way table for
the responses to the question of one true love by sex.

Two-Way Table

A two-way table is used to show the relationship between two categor-
ical variables. The categories for one variable are listed down the side
(rows) and the categories for the second variable are listed across the
top (columns). Each cell of the table contains the count of the number
of data cases that are in both the row and column categories.

3http://www.2010.census.gov/2010census.
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Table 2.3 Two-way table: Is there
one true love for each person?

Male Female
Agree 372 363
Disagree 807 1005
Don’t know 34 44

It is often helpful to also include the totals (both for rows and columns) in the
margins of a two-way table, as in Table 2.4. Notice the column labeled “Total” cor-
responds exactly to the frequency table in Table 2.1.

Table 2.4 Two-way table with row and
column totals

Male Female Total
Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78
Total 1213 1412 2625

So, are men or women more hopelessly romantic? The two-way table can help
us decide.

Example 2.5
Use Table 2.4 to answer the following questions.

(a) What proportion of females agree?

(b) What proportion of the people who agree are female?

(c) What proportion of males agree?

(d) Are females or males more likely to believe in one true love?

(e) What proportion of survey responders are female?

Solution (a) To determine what proportion of females agree, we are interested only in the
females, so we use only that column. We divide the number of females who
agree (363) by the total number of females (1412):

Proportion of females who agree =
Number of females who agree

Number of females

= 363
1412

= 0.26

(b) To determine what proportion of the people who agree are female, we are inter-
ested only in the people who agree, so we use only that row. We have

Proportion who agree that are female =
Number of females who agree

Number who agree

= 363
735

= 0.49

Notice that the answers for parts (a) and (b) are NOT the same! The proportion
in part (a) is probably more useful. More females than males happened to be
included in the survey, and this affects the proportion in part (b), but not in
part (a).
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(c) To determine what proportion of males agree, we have

Proportion of males who agree =
Number of males who agree

Number of males

= 372
1213

= 0.31

(d) We see in part (c) that 31% of the males in the survey agree that there is one
true love for each person, while we see in part (a) that only 26% of the females
agree with that statement. In this sample, males are more likely than females to
believe in one true love.

(e) To determine what proportion of all the survey responders are female, we use
the total row. We have

Proportion of females = Number of females
Total number

= 1412
2625

= 0.54

We see that 54% of the survey respondents are female and the other 46% are
male.

Be sure to read questions carefully when using a two-way table. The questions
“What proportion of females agree?” and “What proportion of people who agree
are female?” in Example 2.5(a) and (b) sound similar but are asking different ques-
tions. Think about the proportion of US senators who aremale and the proportion of
males who are US senators; clearly, these proportions are not the same!

Example 2.6
In the StudentSurvey dataset, students are asked which award they would prefer
to win: an Academy Award, a Nobel Prize, or an Olympic gold medal. The data
show that 20 of the 31 students who prefer an Academy Award are female, 76 of the
149 students who prefer a Nobel Prize are female, and 73 of the 182 who prefer an
Olympic gold medal are female.

(a) Create a two-way table for these variables.

(b) Which award is the most popular with these students? What proportion of all
students selected this award?

Solution (a) The relevant variables are sex and which award is preferred. Table 2.5 shows
a two-way table with three columns for award and two rows for sex. It doesn’t
matter which variable corresponds to rows and which to columns, but we need
to be sure that all categories are listed for each variable. The numbers given in
the problem are shown in bold, and the rest of the numbers can be calculated
accordingly.

Table 2.5 Two-way table of sex and preferred award

Academy Nobel Olympic Total
Female 20 76 73 169
Male 11 73 109 193
Total 31 149 182 362

(b) More students selected an Olympic gold medal than either of the others, so that
award is the most popular. We have

Proportion selecting Olympic =
Number selecting Olympic

Total number
= 182

362
= 0.503

We see that 50.3%, or about half, of the students prefer an Olympic gold medal
to the other options.
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Difference in Proportions

Example 2.7
In Example 2.6, we see that the most popular award is the Olympic gold medal. Is
preferring an Olympic gold medal associated with sex? Use Table 2.5 to determine
the difference between the proportion of males who prefer an Olympic gold medal
and the proportion of females who prefer an Olympic gold medal.

Solution Since the data come from a sample, we use the notation p̂ for a proportion, and since
we are comparing two different sample proportions, we can use subscriptsM and F
for males and females, respectively. We compute the proportion of males who prefer
an Olympic gold medal, p̂M,

p̂M = 109
193

= 0.565

and the proportion of females who prefer an Olympic gold medal, p̂F ,

p̂F = 73
169

= 0.432

The difference in proportions is

p̂M − p̂F = 0.565 − 0.432 = 0.133

Males in the sample are much more likely to prefer an Olympic gold medal, so
there appears to be an association between sex and preferring an Olympic gold
medal.

As in Example 2.7, we often use subscripts to denote specific sample propor-
tions and take the difference between two proportions. Computing a difference in
proportions is a useful measure of association between two categorical variables,
and in later chapters we develop methods to determine if this association is likely to
be present in the entire population.

Visualizing a Relationship between Two Categorical Variables
There are several different types of graphs to use to visualize a relation-

ship between two categorical variables. One is a segmented bar chart, shown
in Figure 2.2(a), which gives a graphical display of the results in Table 2.5. In a
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Figure 2.2 Displaying a relationship between sex and preferred award
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segmented bar chart, the height of each bar represents the number of students
selecting each award, while the color (in this case, red for females and green for
males) indicates how many of the students who preferred each type were male and
how many were female.

Example 2.8
Use Figure 2.2(a) to determine which award was most preferred overall and which
award was most preferred by females. Explain.

Solution From the height of the bars, we see that more students in general preferred an
Olympic gold medal. From the colors, we see that the preferred award for females
was a Nobel prize, by a small margin over an Olympic gold medal.

This same information can instead be displayed in side-by-side bar charts, in
which separate bar charts are given for each group in one of the categorical variables.
In Figure 2.2(b), we show bar charts for each sex, males and females. We could have
also decided to show sex bar charts for each award. The graph we choose to display
depends on what information we hope to convey about the data. Graphs such as
a segmented bar chart or side-by-side bar charts are called comparative plots since
they allow us to compare groups in a categorical variable.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Display information from a categorical variable in a table or graph

• Use information about a categorical variable to find a proportion, with
correct notation

• Display information about a relationship between two categorical
variables in a two-way table

• Use a two-way table to find proportions

• Interpret graphs involving two categorical variables

Exercises for Section 2.1

SKILL BUILDER 1
Exercises 2.1 to 2.4 provide information about data
in StudentSurvey. Find the sample proportion p̂.

2.1 The survey students consisted of 169 females
and 193 males. Find p̂, the proportion who are
female.

2.2 The survey included 43 students who smoke and
319 who don’t. Find p̂, the proportion who smoke.

2.3 Of the students who identified their class year
in the survey, 94 were first years, 195 were sopho-
mores, 35 were juniors, and 36 were seniors. Find p̂,
the proportion who are upperclass students (juniors
or seniors.)

2.4 The math SAT score is higher than the verbal
SAT score for 205 of the 355 students who answered
the questions about SAT scores. Find p̂, the propor-
tion for whom the math SAT score is higher.

SKILL BUILDER 2
In Exercises 2.5 to 2.8, give the relevant proportion
using correct notation.

2.5 In the 2010 US Census, we see that 37,342,870
people, or 12.4% of all residents, are foreign-born.4

4http://www.census.gov.
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2.6 A recent headline states that “45% Think
Children of Illegal Immigrants Should Be Able to
Attend Public School.” The report gives the results
of a survey of 1000 randomly selected likely voters
in the US.5

2.7 A survey conducted of 1060 randomly selected
US teens aged 13 to 17 found that 605 of them say
they have made a new friend online.6

2.8 Of all 2,220,087 members of the high school
class of 2019 who took the SAT (Scholastic Apti-
tude Test), 554,665 reported their race as Hispanic/
Latino.7

SKILL BUILDER 3
In Exercises 2.9 and 2.10, data from the StudentSur-
vey dataset are given. Construct a relative fre-
quency table of the data using the categories given.
Give the relative frequencies rounded to three dec-
imal places.

2.9 Of the 362 students who answered the ques-
tion about what award they would prefer, 31 pre-
ferred an Academy Award, 149 preferred a Nobel
Prize, and 182 preferred an Olympic gold medal.

2.10 Of the 361 students who answered the ques-
tion about the number of piercings they had in their
body, 188 had no piercings, 82 had one or two pierc-
ings, and the rest had more than two.

SKILL BUILDER 4
In Exercises 2.11 and 2.12, a two-way table is shown
for two groups, 1 and 2, and two possible outcomes,
A and B. In each case,
(a) What proportion of all cases had Outcome A?

(b) What proportion of all cases are in Group 1?

(c) What proportion of cases in Group 1 had
Outcome B?

(d) What proportion of cases who had Outcome A
were in Group 2?

2.11

Outcome A Outcome B Total
Group 1 20 80 100
Group 2 60 40 100
Total 80 120 200

2.12

Outcome A Outcome B Total
Group 1 40 10 50
Group 2 30 20 50
Total 70 30 100

5Rassmussen Reports, October 10, 2013.
6Lenhart, A., “Teens, Technology, and Friendships,” Pew
Research Center, pewresearch.org, August 6, 2015.
7https://reports.collegeboard.org/sat-suite-program-results/class-
2019-results.

2.13 What Proportion of Canadian Adults Gradu-
ate High School? Canada conducts a census every
five years. The 2016 Canadian Census shows that
81.7% of Canadian adults have a secondary or
equivalent degree.8 Give the correct notation for
this value and write the value as a proportion with-
out a percent sign.

2.14 What Proportion of Canadian Adults Are
Married? Canada conducts a census every five
years. The 2016 Canadian Census shows that 45.7%
of Canadian adults are married.9 Give the correct
notation for this value and write the value as a pro-
portion without a percent sign.

2.15 Home Field Advantage in Soccer In the book
Scorecasting,10 we learn that “Across 43 profes-
sional soccer leagues in 24 different countries
spanning Europe, South America, Asia, Africa,
Australia, and the United States (covering more
than 66,000 games), the home field advantage [per-
cent of games won by the home team] in soccer
worldwide is 62.4%.” Is this a population or a sam-
ple? What are the cases and approximately how
many are there? What is the variable and is it cat-
egorical or quantitative? What is the relevant statis-
tic, including correct notation?

2.16 What Proportion of College Students Have a
Paying Job? The Higher Education Research Insti-
tute conducts Your First College Year survey every
year. The 2018 survey11 included 5204 first-year,
full-time college students. Their responses to a ques-
tion about whether they worked at a paying job
while attending college are given in Table 2.6.

(a) What proportion do not work at a paying job?

(b) What proportion do work at a paying job (either
on campus or off campus)?

(c) Make a relative frequency table of this variable.

Table 2.6 Proportion of first-year
full-time students with a job

Paying job? Frequency

Works on campus 1436
Works off campus 1119
Does not work 2649

Total 5204

8https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/index.cfm?Lang=E. Accessed January 2020.
9https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/index.cfm?Lang=E. Accessed January 2020.
10Moskowitz, T. and Wertheim, L., Scorecasting, Crown
Archetype, New York, 2011, p. 113.
11https://heri.ucla.edu/briefs/YFCY/YFCY-2018-Brief.pdf
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2.17 Which Food Delivery App Is Most Popular?
Exercise 1.61 introduces a 2019 study estimating
that 16.3% of US smartphone users regularly use
a food delivery app. Those using such an app were
asked which one they used most recently, and the
resulting proportions are shown in Table 2.7.

(a) Is Table 2.7 a frequency table, a relative fre-
quency table, or a two-way table?

(b) Fill in the missing value in the Table: what pro-
portion of food delivery app users in the sample
selected “Other”?

Table 2.7 Proportion using
different food delivery apps

App Proportion

DoorDash 0.276
Grubhub 0.267
UberEats 0.252
Postmates 0.121
Other missing

2.18 Airborne Antibiotics A study shows that
antibiotics added to animal feed to accelerate
growth can become airborne. Some of these drugs
can be toxic if inhaled and may increase the evo-
lution of antibiotic-resistant bacteria. Scientists12

analyzed 20 samples of dust particles from animal
farms. Tylosin, an antibiotic used in animal feed that
is chemically related to erythromycin, showed up in
16 of the samples.

(a) What is the variable in this study? What are the
individual cases?

(b) Display the results in a frequency table.

(c) Make a bar chart of the data.

(d) Give a relative frequency table of the data.

2.19 Rock-Paper-Scissors Rock-Paper-Scissors,
also called Roshambo, is a popular two-player game
often used to quickly determine a winner and loser.
In the game, each player puts out a fist (rock), a flat
hand (paper), or a hand with two fingers extended
(scissors). In the game, rock beats scissors which
beats paper which beats rock. The question is: Are
the three options selected equally often by players?

12Hamscher, G., et al., “Antibiotics in Dust Originating from a
Pig-Fattening Farm: A New Source of Health Hazard for Farm-
ers?” Environmental Health Perspectives, October 2003; 111(13):
1590–1594.

Knowing the relative frequencies with which the
options are selected would give a player a significant
advantage. A study13 observed 119 people play-
ing Rock-Paper-Scissors. Their choices are shown in
Table 2.8.

(a) What is the sample in this case? What is the
population? What does the variable measure?

(b) Construct a relative frequency table of the
results.

(c) If we assume that the sample relative frequen-
cies from part (b) are similar for the entire pop-
ulation, which option should you play if you
want the odds in your favor?

(d) The same study determined that, in repeated
plays, a player is more likely to repeat the
option just picked than to switch to a differ-
ent option. If your opponent just played paper,
which option should you pick for the next
round?

Table 2.8 Frequencies in Rock-Paper-Scissors

Option Selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

2.20 Sports-Related Concussions in Kids Resear-
chers examined all sports-related concussions
reported to an emergency room for children ages
5 to 18 in the United States over the course of one
year.14 Table 2.9 displays the number of concussions
in each of the major activity categories.

(a) Are these results from a population or a sam-
ple?

(b) What proportion of concussions came from
playing football?

(c) What proportion of concussions came from
riding bicycles?

(d) Can we conclude that, at least in terms of con-
cussions, riding bicycles is more dangerous to
children in the US than playing football? Why
or why not?

13Eyler, D., Shalla, Z., Doumaux, A., andMcDevitt, T., “Winning
at Rock-Paper-Scissors,” College Mathematics Journal, March
2009.
14Valasek, A. and Walter, K.D., “Pediatric and Adolescent
Concussion,” Springer, New York, 2012.
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Table 2.9 Concussion frequency
by activity in children ages 5–18

Activity Frequency
Bicycles 23,405
Football 20,293
Basketball 11,507
Playground 10,414
Soccer 7,667
Baseball 7,433
All-Terrain Vehicle 5,220
Hockey 4,111
Skateboarding 4,408
Swimming 3,846
Horseback Riding 2,648
Total 100,952

2.21 Does Belief in One True Love Differ by
Education Level? In Data 2.1 on page 54, we intro-
duce a study in which people were asked whether
they agreed or disagreed with the statement that
there is only one true love for each person. Is the
level of a person’s education related to the answer
given, and if so, how? Table 2.10 gives a two-way
table showing the results for these two variables. A
person’s education is categorized as HS (high school
degree or less), Some (some college), or College
(college graduate or higher).

(a) Create a new two-way table with row and col-
umn totals added.

(b) Find the percent who agree that there is only
one true love, for each education level. Does
there seem to be an association between edu-
cation level and agreement with the statement?
If so, in what direction?

(c) What percent of people participating in the sur-
vey have a college degree or higher?

(d) What percent of the people who disagree
with the statement have a high school degree
or less?

Table 2.10 Education level and belief in one
true love

HS Some College

Agree 363 176 196
Disagree 557 466 789
Don’t know 20 26 32

2.22 Juvenile Diabetes Treatment Juvenile dia-
betes (also known as Type 1 diabetes) is usually
diagnosed in children and has a genetic component.

A recent study15 enrolled 76 children at high risk
for the disease. Half the participants were randomly
assigned to a two-week intravenous course of the
new drug teplizumab while the other half served as
the control group. The study ended as soon as 42
people developed the disease, and the results are
shown in Table 2.11.

(a) What proportion of those in the control group
developed diabetes?

(b) What proportion of those in the teplizumab
group developed diabetes?

(c) Find the difference in proportions, p̂C − p̂T ,
using your answers to parts (a) and (b).

(d) Is this an experiment or an observational study?

(e) If this difference in proportions appears to be
strong, can we conclude that the drug is respon-
sible for stopping and/or delaying the onset of
the disease?

Table 2.11 Juvenile diabetes treatment

Diabetes No diabetes Total
Teplizumab 16 22 38
Control 26 12 38
Total 42 34 76

2.23 Social Media Use and ADHD A study16

examined whether frequent use of digital social
media during adolescence is associated with
subsequent occurrence of ADHD symptoms.
Researchers rated the frequency of digital social
media use (high frequency or low frequency of use)
of teens who were 15 or 16 years old and did not
show symptoms of ADHD at the start of the study.
They then followed the participants for two years,
and recorded whether or not ADHD symptoms
appeared. The results are shown in Table 2.12.

(a) Find p̂1, the proportion of teens with high fre-
quency of social media use that are diagnosed
with ADHD over this two-year period.

(b) Find p̂2, the proportion of teens with low fre-
quency of social media use that are diagnosed
with ADHD over this two-year period.

(c) Which group had a higher proportion develop-
ing symptoms of ADHD?

15Abbasi J, “Type 1 Diabetes Advances Could PaveWay for Pre-
vention,” JAMA, August 21, 2019.
16CK Ra, J Cho, MD Stone, “Association of Digital Media Use
with Subsequent Symptoms of Attention-Deficit/Hyperactivity
Disorder Among Adolescents,” JAMA, July 17, 2018.
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(d) Find the difference in proportions, p̂1 − p̂2.

(e) What proportion of all the teens in the study
developed ADHD?

(f) Is this an experiment or an observational study?

(g) Can we conclude that high social media use
by teens increases the chance that they will
develop ADHD symptoms?

Table 2.12 Social Media Use and ADHD
Diagnosis

Social Media Use ADHD No ADHD Total
High frequency 16 149 165
Low frequency 23 472 495
Total 39 621 660

2.24 Playing Hide-and-Seek with Rats Researchers
studying animal behavior have found that rats can
quickly learn to play hide-and-seek with humans.
The rats seem to love the game, squeaking and
jumping for joy when they find the human or are
found by the human. The game is played in a large
room with multiple boxes. Some of the boxes are
transparent and easy to see through, while others
are opaque and the inside cannot be seen. Rats go in
and out of these boxes and the researchers studied
whether they treated the boxes differently depend-
ing on whether they were hiding (and didn’t want
to be seen) or seeking (and didn’t care if they were
seen). For rats who had been learning the game for
about a week, the data17 on the number of times the
rats entered the two types of boxes in each situation
are shown in Table 2.13.

(a) When rats were hiding, what proportion of the
time did they go into opaque boxes?

(b) When rats were seeking, what proportion of the
time did they go into opaque boxes?

(c) Find the difference and give notation for the dif-
ference in sample proportions.

Table 2.13 Rats know how to hide in
hide-and-seek!

Transparent Opaque Total
Hiding 15 38 53
Seeking 17 14 31
Total 32 52 84

17Reinhold A, et al., “Behavioral and neural correlates of hide-
and-seek in rats,” Science, September 13, 2019.

2.25 Antibiotics in Infancy andWeightACanadian
longitudinal study18 examines whether giving anti-
biotics in infancy increases the likelihood that the
child will be overweight later in life. The children
were classified as having received antibiotics or not
during the first year of life and then being over-
weight or not at 9 years old. The study included 616
children, and the results are shown in Table 2.14.

(a) What proportion of all children in the study
were given antibiotics during the first year of
life?

(b) What proportion of all children in the study
were classified as overweight at age 9?

(c) What proportion of those receiving antibiotics
were classified as overweight at age 9?

(d) What proportion of those not receiving antibi-
otics were classified as overweight at age 9?

(e) If we use p̂A to denote the proportion from
part (c) and p̂N to denote the proportion from
part (d), calculate the difference in proportion
being overweight, p̂A − p̂N , between those who
were exposed to antibiotics and those who
weren’t.

(f) What proportion of all children classified as
overweight were given antibiotics during the
first year of life?

Table 2.14 Does antibiotic exposure early
in life affect weight later in life?

Not
Overweight overweight Total

Antibiotics 144 294 438
No antibiotics 37 141 178

Total 181 435 616

2.26 Culture and Mental Illness A recent study19

examining the link between schizophrenia and cul-
ture interviewed 60 people who had been diagnosed
with schizophrenia and who heard voices in their
heads. The participants were evenly split between
theUS, India, andGhana, and each was interviewed
to determine whether the voices were mostly nega-
tive, mostly neutral, or mostly positive. The results
are shown in Table 2.15. “Learned cultural expecta-
tions about the nature of mind and self” appear to
influence how the voices are perceived.

18Azad, M.B., Bridgman, S.L., Becker, A.B. and Kozyrskyj, A.L.,
“Infant antibiotic exposure and the development of childhood
overweight and central adiposity,” International Journal of Obe-
sity (2014) 38, 1290–1298.
19Bower, B., “Hallucinated voices’ attitudes vary with culture,”
Science News, December 10, 2014.
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(a) What proportion of all the participants felt that
the voices are mostly negative?

(b) What proportion of all US participants felt that
the voices are mostly negative?

(c) What proportion of non-US participants felt
that the voices are mostly negative?

(d) What proportion of participants hearing posi-
tive voices are from the US?

(e) Does culture appear to be associated with how
voices are perceived by people with schizophre-
nia?

Table 2.15 How do people with
schizophrenia perceive the voices?

US India Ghana Total

Negative 14 4 2 20
Neutral 6 3 2 11
Positive 0 13 16 29

Total 20 20 20 60

2.27 Does It Pay to Get a College Degree? The
Bureau of Labor Statistics20 in the US tells us that,
in 2010, the unemployment rate for high school
graduates with no college degree is 9.7% while
the unemployment rate for college graduates with
a bachelor’s degree is only 5.2%. Find the differ-
ence in proportions of those unemployed between
these two groups and give the correct notation for
the difference, with a minus sign. Since the data
come from the census, you can assume that the val-
ues are from a population rather than a sample. Use
the correct notation for population proportions, and
use subscripts on the proportions to identify the two
groups.

2.28 Can Dogs Smell Cancer? Scientists are work-
ing to train dogs to smell cancer, including early
stage cancer that might not be detected with other
means. In previous studies, dogs have been able to
distinguish the smell of bladder cancer, lung can-
cer, and breast cancer. Now, it appears that a dog
in Japan has been trained to smell bowel cancer.21

Researchers collected breath and stool samples
from patients with bowel cancer as well as from
healthy people. The dog was given five samples in
each test, one from a patient with cancer and four
from healthy volunteers. The dog correctly selected
the cancer sample in 33 out of 36 breath tests and in
37 out of 38 stool tests.
20Thompson, D., “What’s More Expensive than College? Not
Going to College,” The Atlantic, March 27, 2012.
21“DogDetects Bowel Cancer,” CNNHealthOnline, January 31,
2011.

(a) The cases in this study are the individual tests.
What are the variables?

(b) Make a two-way table displaying the results of
the study. Include the totals.

(c) What proportion of the breath samples did the
dog get correct? What proportion of the stool
samples did the dog get correct?

(d) Of all the tests the dog got correct, what propor-
tion were stool tests?

2.29 Is There a Genetic Marker for Dyslexia? A
disruption of a gene calledDYXC1 on chromosome
15 for humans may be related to an increased risk
of developing dyslexia. Researchers22 studied the
gene in 109 people diagnosed with dyslexia and in
a control group of 195 others who had no learning
disorder. TheDYXC1 break occurred in 10 of those
with dyslexia and in 5 of those in the control group.

(a) Is this an experiment or an observational study?
What are the variables?

(b) Howmany rows and howmany columns will the
data table have? Assume rows are the cases and
columns are the variables. (There might be an
extra column for identification purposes; do not
count this column in your total.)

(c) Display the results of the study in a two-way
table.

(d) To see if there appears to be a substantial differ-
ence between the group with dyslexia and the
control group, compare the proportion of each
group who have the break on the DYXC1 gene.

(e) Does there appear to be an association between
this genetic marker and dyslexia for the peo-
ple in this sample? (We will see in Chapter 4
whether we can generalize this result to the
entire population.)

(f) If the association appears to be strong, can
we assume that the gene disruption causes
dyslexia? Why or why not?

2.30 Help for Insomniacs In Exercise 1.29, we
learned of a study to determine whether just one
session of cognitive behavioral therapy can help
people with insomnia. In the study, forty people
who had been diagnosed with insomnia were ran-
domly divided into two groups of 20 each. People
in one group received a one-hour cognitive behav-
ioral therapy session while those in the other group
received no treatment. Three months later, 14 of
those in the therapy group reported sleep improve-
ments while only 3 people in the other group
reported improvements.

22Science News, August 30, 2003, p. 131.
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(a) Create a two-way table of the data. Include
totals across and down.

(b) How many of the 40 people in the study
reported sleep improvement?

(c) Of the people receiving the therapy session,
what proportion reported sleep improvements?

(d) What proportion of people who did not receive
therapy reported sleep improvements?

(e) If we use p̂T to denote the proportion from
part (c) and use p̂N to denote the proportion
from part (d), calculate the difference in pro-
portion reporting sleep improvements, p̂T − p̂N ,
between those getting therapy and those not
getting therapy.

2.31 Electrical Stimulation for Fresh Insight? If we
have learned to solve problems by one method, we
often have difficulty bringing new insight to simi-
lar problems. However, electrical stimulation of the
brain appears to help subjects come up with fresh
insight. In a recent experiment23 conducted at the
University of Sydney in Australia, 40 participants
were trained to solve problems in a certain way
and then asked to solve an unfamiliar problem that
required fresh insight. Half of the participants were
randomly assigned to receive non-invasive electrical
stimulation of the brain while the other half (con-
trol group) received sham stimulation as a placebo.
The participants did not know which group they
were in. In the control group, 20% of the partic-
ipants successfully solved the problem while 60%
of the participants who received brain stimulation
solved the problem.

(a) Is this an experiment or an observational study?
Explain.

(b) From the description, does it appear that the
study is double-blind, single-blind, or not blind?

(c) What are the variables? Indicate whether each
is categorical or quantitative.

(d) Make a two-way table of the data.

(e) What percent of the people who correctly
solved the problem had the electrical stimu-
lation?

(f) Give values for p̂E, the proportion of peo-
ple in the electrical stimulation group to
solve the problem, and p̂S, the proportion
of people in the sham stimulation group to

23Chi, R. and Snyder, A., “Facilitate Insight by Non-Invasive
Brain Stimulation,” PLoS ONE, 2011; 6(2).

solve the problem. What is the difference in
proportions p̂E − p̂S?

(g) Does electrical stimulation of the brain appear
to help insight?

NATIONAL COLLEGE HEALTH ASSESS-
MENT SURVEY
Exercises 2.32 to 2.35 use data on college stu-
dents collected from the American College Health
Association–National College Health Assessment
survey24 conducted in Fall 2011. The survey was
administered at 44 colleges and universities rep-
resenting a broad assortment of types of schools
and representing all major regions of the coun-
try. At each school, the survey was administered to
either all students or a random sample of students,
and more than 27,000 students participated in the
survey.

2.32 Emotionally Abusive Relationships Students
in the ACHA–NCHA survey were asked, “Within
the last 12 months, have you been in a relationship
(meaning an intimate/coupled/partnered relation-
ship) that was emotionally abusive?” The results are
given in Table 2.16.

(a) What percent of all respondents have been in an
emotionally abusive relationship?

(b) What percent of the people who have been in
an emotionally abusive relationship are male?

(c) What percent of males have been in an emo-
tionally abusive relationship?

(d) What percent of females have been in an emo-
tionally abusive relationship?

Table 2.16 Have you been in an emotionally
abusive relationship?

Male Female Total

No 8352 16,276 24,628
Yes 593 2034 2627

Total 8945 18,310 27,255

2.33 Binge Drinking Students in the ACHA–
NCHA survey were asked, “Within the last two
weeks, how many times have you had five or more
drinks of alcohol at a sitting?” The results are given
in Table 2.17.

24http://www.acha-ncha.org/docs/ACHA-NCHA-II_Reference
Group_DataReport_Fall2011.pdf.
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Table 2.17 In the last two weeks, how many
times have you had five or more drinks of alcohol?

Male Female Total

0 5402 13,310 18,712
1–2 2147 3678 5825
3–4 912 966 1878
5 + 495 358 853

Total 8956 18,312 27,268

(a) What percent of all respondents answered zero?

(b) Of the students who answered five or more
days, what percent are male?

(c) What percent of males report having five or
more drinks at a sitting on three or more days
in the last two weeks?

(d) What percent of females report having five or
more drinks at a sitting on three or more days
in the last two weeks?

2.34 How Accurate Are Student Perceptions?
Students in the ACHA–NCHA survey were
asked two questions about alcohol use, one
about their own personal consumption of alco-
hol and one about their perception of other stu-
dents’ consumption of alcohol. Figure 2.3(a) shows
side-by-side bar charts for responses to the question
“The last time you ‘partied’/socialized, how many
drinks of alcohol did you have?” while Figure 2.3(b)
shows side-by-side bar charts for responses to the
question “Howmany drinks of alcohol do you think
the typical student at your school had the last time
he/she ‘partied’/socialized?”
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Figure 2.3 How many drinks of alcohol?

(a) What is the most likely response for both males
and females when asked about their own per-
sonal alcohol use?

(b) What is the most likely response for both males
and females when asked about alcohol use of a
“typical student”?

(c) Do students’ perceptions of “typical” alcohol
use match reality? (This phenomenon extends
what we learned about the inability of students
to select unbiased samples in Chapter 1. In this
case, students tend to notice heavy drinkers dis-
proportionately.)

2.35 Does Stress Affect Academic Performance?
Students in the ACHA–NCHA survey were asked,
“Within the last 12 months, has stress negatively
affected your academics?” Figure 2.4(a) shows a
segmented bar chart for response frequencies, while
Figure 2.4(b) shows a segmented bar chart for
response relative frequencies as percents. Possible
responses were “I haven’t had any stress,” shown in
red, “I’ve had stress but it hasn’t hurt my grades,”
shown in green, or “I’ve had stress and it has hurt
my grades,” shown in blue.

(a) Did more males or more females answer the
survey or did approximately equal numbers of
males and females participate? Is graph (a) or
(b) more helpful to answer this question?

(b) Did a greater number of males or females say
they had no stress or is it approximately equal
between males and females? Is graph (a) or (b)
more helpful to answer this question?
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Figure 2.4 Has stress hurt your grades?

(c) Did a greater percent of males or females say
they had no stress or is it approximately equal
between males and females? Is graph (a) or (b)
more helpful to answer this question?

(d) Did a greater percent of males or females say
that stress affected their grades or is it approx-
imately equal between males and females? Is
graph (a) or (b) more helpful to answer this
question?

FINANCIAL INCENTIVES TO QUIT SMOK-
ING
Exercises 2.36 to 2.38 deal with an experiment to
study the effects of financial incentives to quit
smoking.25 Smokers at a company were invited to
participate in a smoking cessation program and
randomly assigned to one of two groups. Those
in the Reward group would get a cash award if
they stopped smoking for six months. Those in the
Deposit group were asked to deposit some money
which they would get back along with a substantial
bonus if they stopped smoking.

2.36 Success at Quitting SmokingAfter six months,
156 of the 914 smokers who accepted the invitation
to be in the reward-only program stopped smok-
ing, while 78 of the 146 smokers who paid a deposit
quit. Set up a two-way table and compare the suc-
cess rates between participants who entered the two
programs.

2.37 Agreeing to Participate The random assign-
ment at the start of the experiment put 1017
smokers in the Reward group and 914 of them

25Halpern, S., et al., “Randomized Trial of Four Financial-
Incentive Programs for Smoking Cessation”, New England
Journal of Medicine, 2015, 372:2108–2117

agreed to participate. However, only 146 of the 1053
smokers assigned to the Deposit group agreed to
participate (since they had to risk some of their own
money). Set up a two-way table and compare the
participation rates between subjects assigned to the
two treatment groups.

2.38 Accounting for Participation Rates Exer-
cises 2.36 and 2.37 show that smokers who agreed
to be in theDeposit group (having their own money
at risk) were much more likely to quit smoking
than those enrolled in the Reward group, but many
fewer of the original subjects assigned to that group
agreed to participate. The researchers also found
that 30 of the smokers originally in the Deposit
group, who declined to participate, ended up stop-
ping smoking on their own, while only 3 of the
decliners in the Reward group stopped. Use this
information and the data in the two exercises to find
and compare the proportion of the subjects origi-
nally assigned to each group who were successful
in quitting smoking for six months. For reference,
another group of subjects at this company who got
no financial incentive had about a 6.0% success rate
in quitting.

2.39 Association or Not? Two different datasets (A
and B) are examining an association between two
categorical variables. One of the variables divides
cases into Group 1 and Group 2 and the other gives
a Yes/No result for each case. The two-way tables
for Datasets A and B are in Tables 2.18 and 2.19,
respectively. Which of the datasets (A orB) appears
to show:

(a) A clear association between the two variables?

(b) No association between the two variables?
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Table 2.18 Dataset A

Yes No Total
Group 1 41 9 50
Group 2 42 8 50
Total 83 17 100

Table 2.19 Dataset B

Yes No Total
Group 1 37 13 50
Group 2 15 35 50
Total 52 48 100

2.40 Association or No Association? Suppose an
experiment will randomly divide 40 cases between
two possible treatments, A and B, and will then
record two possible outcomes, Successful or Not
successful. The outline of a two-way table is shown
in Table 2.20. In each case below, fill in the table
with possible values to show:

(a) A clear association between treatment and
outcome.

(b) No association at all between treatment and
outcome.

Table 2.20 Fill in the blanks to show
(a) Association or (b) No association

Successful Not successful Total

Treatment A 20

Treatment B 20

Total 40

2.41 Vaccine for Malaria In order for a vaccine to
be effective, it should reduce a person’s chance of
acquiring a disease. Consider a hypothetical vaccine
for malaria—a tropical disease that kills between
1.5 and 2.7 million people every year.26 Suppose the
vaccine is tested with 500 volunteers in a village who
are malaria free at the beginning of the trial. Two
hundred of the volunteers will get the experimental
vaccine and the rest will not be vaccinated. Suppose
that the chance of contracting malaria is 10% for
those who are not vaccinated. Construct a two-way
table to show the results of the experiment if:

(a) The vaccine has no effect.

(b) The vaccine cuts the risk of contracting malaria
in half.

26World Health Organization.

2.42 Pick a Superpower As part of the Census at
Schools project, high school seniors were asked to
pick a superpower they would like to have from
among the ability to fly, freeze time, be invisible,
have super strength, or use telepathy. Results for a
sample of students in Pennsylvania are stored in the
Superpower variable in PASeniors. Which super-
power was the most common choice for these stu-
dents? Which was the least popular?

2.43 Class Year in Statistics The StudentSurvey
data file contains information from a survey done
the first day of an introductory statistics course.
The Year variable shows the class year (FirstYear,
Sophomore, Junior, or Senior) for each student.

(a) Use technology to construct a frequency table
showing the number of students in each class
year. Ignore any cases where the year is
missing.

(b) Find the relative frequency for the class year
with the largest number of students taking this
course.

2.44 Bistro Servers The RestaurantTips data file
comes from a sample of 157 bills at a small
bistro/wine bar. Three different servers (labeled A,
B, and C) worked on the nights the bills were
collected. Use technology to find the relative fre-
quency for the server who had the most bills.

2.45 Class Year by Sex Exercise 2.43 deals with
the distribution of class Year for students in an
introductory statistics course. The StudentSurvey
data also has information on the Sex for each
student. Use technology to produce a two-way
table showing the sex distribution within each class
year. Comment on any interesting features in the
relationship.

2.46 Credit Card by Server The RestaurantTips
data in Exercise 2.44 also has information on
whether each bill was paid with a credit card or cash
(Credit = y or n). Use technology to produce a two-
way table showing the credit/cash distribution for
each server. Comment on any interesting features
in the relationship.

2.47 Graph Class Year by Sex Use technology and
the data in StudentSurvey to construct a graph of
the relationship between class Year and Sex for the
situation in Exercise 2.45.

2.48 Graph Credit Card by Server Use technology
and the data in RestaurantTips to construct a graph
of the relationship between Server and Credit for
the situation in Exercise 2.46.
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COLLEGE DEGREES AND CONTROL
Exercises 2.49 to 2.52 use the data on US post-
secondary schools from the Department of Educa-
tion’s College Scorecard introduced in Exercise 1.25
on page 16. Information for all 6,141 schools is
stored in CollegeScores. Among the variables, Con-
trol codes whether a school is Public, Private, or
for Profit. The variableMainDegree contains a code
for the most frequent level of degree awarded
(0=no degree, 1=certificate, 2=associate, 3=bache-
lor, 4=graduate).

2.49 US Colleges: Type of Control Find the distri-
bution (as counts and percentages) of the type of
Control for all US post-secondary schools. Which
type of control is found most often?

2.50 US Colleges: Type of Degree Find the dis-
tribution (as counts and percentages) of the type
of MainDegree for all US post-secondary schools.
Which type of primary degree is found most
often?
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Figure 2.5 Views of the same two-way table—with one error

2.51 US Colleges: Main Degree within Each Type
of Control Within each of the three types of Con-
trol, which type of MainDegree is most common?
Also give the relative percentage of the most fre-
quent degree for each control type.

2.52 US Colleges: Type of Control within Main
Degree Within each of the five types of MainDe-
gree, which type of Control is most common? Also
give the relative percentage of the most frequent
control type for each degree.

2.53 Which of These Things Is Not Like the Other?
Four students were working together on a project
and one of the parts involved making a graph to
display the relationship in a two-way table of data
with two categorical variables: college accept/reject
decision and type of high school (public, private,
parochial). The graphs submitted by each student
are shown in Figure 2.5. Three are from the same
data, but one is inconsistent with the other three.
Which is the bogus graph? Explain.
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2.2ONE QUANTITATIVE VARIABLE: SHAPE AND CENTER

In Section 2.1, we see how to describe categorical variables. In this section, we begin
to investigate quantitative variables. In describing a single quantitative variable, we
generally consider the following three questions:

• What is the general shape of the data?

• Where are the data values centered?

• How do the data vary?

These are all aspects of what we call the distribution of the data. In this section,
we focus on the first two questions and leave the third question, on variability, to
Section 2.3.

The Shape of a Distribution
We begin by looking at graphical displays as a way of understanding the shape of a
distribution.

Dotplots
A common way to visualize the shape of a moderately sized dataset is a dotplot.

We create a dotplot by using an axis with a scale appropriate for the numbers in
the dataset and placing a dot over the axis for each case in the dataset. If there are
multiple data values that are the same, we stack the dots vertically. To illustrate a
dotplot, we look at some data on the typical lifespan for several mammals.

istock.com/brittak

How long does an elephant live?

D A T A 2 . 2 Longevity of Mammals
The dataset MammalLongevity includes information on longevity (typical
lifespan), in years, for 40 species of mammals as well as information on length
of gestation for these same mammals.27 The longevity data are given in
Table 2.21. ◼

A dotplot of the longevity data is shown in Figure 2.6. We see a horizontal scale
from 0 to 40 to accommodate the range of lifespans. Quite a few mammals have
lifespans of 12, 15, and 20 years. All but one typically live between 1 and 25 years,
while the elephant’s lifespan of 40 years is much higher than the rest. The value of
40 years appears to be an outlier for longevity in this group of mammals.

272010 World Almanac, p. 292.
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Table 2.21 Longevity of mammals

Species Longevity Species Longevity Species Longevity
Baboon 20 Elephant 40 Mouse 3
Black bear 18 Elk 15 Opossum 1
Grizzly bear 25 Fox 7 Pig 10
Polar bear 20 Giraffe 10 Puma 12
Beaver 5 Goat 8 Rabbit 5
Buffalo 15 Gorilla 20 Rhinoceros 15
Camel 12 Guinea pig 4 Sea lion 12
Cat 12 Hippopotamus 25 Sheep 12
Chimpanzee 20 Horse 20 Squirrel 10
Chipmunk 6 Kangaroo 7 Tiger 16
Cow 15 Leopard 12 Wolf 5
Deer 8 Lion 15 Zebra 15
Dog 12 Monkey 15
Donkey 12 Moose 12

Figure 2.6 Dotplot of
longevity of mammals
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Outliers

An outlier is an observed value that is notably distinct from the other
values in a dataset. Usually, an outlier is much larger or much smaller
than the rest of the data values.

Histograms
An alternative graph for displaying a distribution of data is a histogram. If we

group the longevity data into five-year intervals (1–5 years, 6–10 years, and so on),
we obtain the frequency table in Table 2.22. We see that, for example, six of the
mammals in the sample have longevity between 1 and 5 years.

The histogram for this dataset is shown in Figure 2.7. The frequency count of 6
for values between 1 and 5 in Table 2.22 corresponds to a vertical bar of height 6

Table 2.22 Frequency counts for
longevity of mammals

Longevity (years) Frequency Count

1–5 6
6–10 8
11–15 16
16–20 7
21–25 2
26–30 0
31–35 0
36–40 1

Total 40
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Figure 2.7 Histogram of
longevity of mammals
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over the interval from 1 to 5 in Figure 2.7. Similarly, we draw vertical bars of heights
corresponding to all the frequencies in Table 2.22. Histograms are similar to bar
charts for a categorical variable, except that a histogram always has a numerical scale
on the horizontal axis. The histogram of mammal longevities in Figure 2.7 shows the
relatively symmetric nature of most of the data, with an outlier (the elephant) in
the class from 36 to 40.

Symmetric and Skewed Distributions
We are often interested in the general “big picture” shape of a distribution. A

distribution is considered symmetric if we can fold the plot (either a histogram or
dotplot) over a vertical center line and the two sides match closely. When we con-
sider the shape of a dataset, we ask: Is it approximately symmetric? If not, is the data
piled up on one side? If so, which side? Are there outliers? These are all questions
that a histogram or dotplot can help us answer.

Example 2.9
The StudentSurvey dataset introduced in Data 1.1 on page 4 contains results for 362
students and many variables. Figure 2.8 shows histograms for three of the quantita-
tive variables: Pulse (pulse rate in number of beats per minute), Exercise (number
of hours of exercise per week), and Piercings (number of body piercings). Describe
each histogram.

Solution (a) In the histogram for Pulse, we see that almost all pulse rates are between about
35 beats per minute and about 100 beats per minute, with two possible outliers
at about 120 and 130. Other than the outliers, this histogram is quite symmetric.

(b) In the histogram for Exercise, the number of hours spent exercising appears to
range from about 0 hours per week to about 30 hours per week, with a possible
outlier at 40. This histogram is not very symmetric, since the data stretch out
more to the right than to the left.

(c) The histogram for Piercings is even more asymmetric than the one for Exercise.
It does not stretch out at all to the left and stretches out quite a bit to the right.
Notice the peak at 0, for all the people with no piercings, and the peak at 2, likely
due to students who have pierced ears and no other piercings.
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Figure 2.8 Three histograms for the student survey data

The histogram in Figure 2.8(a) is called symmetric and bell-shaped. The sort of
non-symmetric distributions we see in Figures 2.8(b) and (c) are called skewed. The
direction of skewness is determined by the longer tail. In both cases, we see that the
right tail of the distribution is longer than the left tail, so we say that these distribu-
tions are skewed to the right.

Using a Curve to Represent the Shape of a Histogram
We often draw smooth curves to illustrate the general shape of a distribution.

Smoothing a histogram into a curve helps us to see the shape of the distribution with
less jagged edges at the corners. When we describe a histogram with a smooth curve,
we don’t try to match every bump and dip seen in a particular sample. Rather we find
a relatively simple curve that follows the general pattern in the data. Figure 2.9 gives
examples of curves showing several common shapes for distributions.

(a) Skewed to the right (b) Skewed to the left (c) Symmetric and bell-shaped

50 60 70 80 90 100 5 10 15 20 25 30 35

(d) Symmetric but not bell-shaped

2 4 6 8 10 12 20 40 60 80 100

Figure 2.9 Common shapes for distributions

Common Shapes for Distributions

A distribution shown in a histogram or dotplot is called:

• Symmetric if the two sides approximately match when folded on a
vertical center line

• Skewed to the right if the data are piled up on the left and the tail
extends relatively far out to the right

• Skewed to the left if the data are piled up on the right and the tail
extends relatively far out to the left

• Bell-shaped if the data are symmetric and, in addition, have the
shape shown in Figure 2.9(c)

Of course, many other shapes are also possible.



76 CHA P T E R 2 Describing Data

The Center of a Distribution
A graph is useful to help us visualize the shape of a distribution. We can also sum-
marize important features of a distribution numerically. Two summary statistics that
describe the center or location of a distribution for a single quantitative variable are
the mean and themedian.

Mean
The mean for a single quantitative variable is the numerical average of the data

values:
Mean = Sum of all data values

Number of data values

To express the calculation of the mean in a mathematical formula, we let n rep-
resent the number of data cases in a dataset and x1, x2,… , xn represent the numerical
values for the quantitative variable of interest.

Mean

The mean of the data values for a single quantitative variable is
given by

Mean =
x1 + x2 + · · · + xn

n
= Σx

n

The Greek letter Σ is used as a shorthand for adding all of the x values. For
example, the longevity data in Table 2.21 yield a sum of Σx = 526 years and thus the
mean longevity for this sample of 40 mammals is 526

40
= 13.15 years.

Notation for a Mean
As with a proportion, we use different notation to indicate whether a mean

summarizes the data from a sample or a population.

Notation for a Mean

The mean of a sample is denoted x and read “x-bar.”

Themean of a population is denoted 𝜇, which is theGreek letter “mu.”

Example 2.10
Give the notation for the mean in each case.

(a) For a random sample of 50 seniors from a large high school, the average SAT
(Scholastic Aptitude Test) score was 582 on the Math portion of the test.

(b) About 1.67 million students in the class of 2014 took the SAT,28 and the average
score overall on the Math portion was 513.

Solution (a) The mean of 582 represents the mean of a sample, so we use the notation x for
the mean, and we have x = 582.

(b) The mean of 513 represents the mean for everyone who took the exam in the
class of 2014, so we use the notation 𝜇 for the population mean, and we have
𝜇 = 513.

28http://www.sat.collegeboard.org/scores.
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Median
Themedian is another statistic used to summarize the center of a set of numbers.

If the numbers in a dataset are arranged in order from smallest to largest, the median
is the middle value in the list. If there are an even number of values in the dataset,
then there is not a unique middle value and we use the average of the two middle
values.

Median

The median of a set of data values for a single quantitative variable,
denoted m, is

• the middle entry if an ordered list of the data values contains an odd
number of entries, or

• the average of the middle two values if an ordered list contains an
even number of entries.

The median splits the data in half.29

For example, the middle two values of the 40 mammal lifespans are both 12,
so the median lifespan is 12 years. Notice that the dotplot in Figure 2.6 shows that
roughly half of the species live less than 12 years, and the other half live more.

Martin Barraud/OJO Images/Getty Images

An intensive care unit

D A T A 2 . 3 Admissions to an Intensive Care Unit

The dataset ICUAdmissions30 includes information on 200 patients admitted to
the Intensive Care Unit at a hospital. Twenty variables are given for the patients
being admitted, including age, sex, race, heart rate, systolic blood pressure,
whether or not CPR was administered, and whether or not the patient lived or
died. ◼

29If there are duplicate values at the median, we may not have exactly half on either side.
30DASL dataset downloaded from http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html.
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Example 2.11
Find the median and the mean for the heart rates, in beats per minute, of 20-year-old
patients and 55-year-old patients from the ICUAdmissions study.

(a) 20-year-old patients: 108, 68, 80, 83, 72

(b) 55-year-old patients: 86, 86, 92, 100, 112, 116, 136, 140

Solution (a) To find the median for the 20-year-old patients, we put the heart rates in order
from smallest to largest:

68 72 80 83 108

The middle number is the third largest value, so the median heart rate for these
patients is 80 beats per minute.

There are five numbers in the dataset for the 20-year-old patients, so the
mean is the sum of the values divided by 5. These values are from a sample, so
we use the notation x and we have

Mean = x = 108 + 68 + 80 + 83 + 72
5

= 411
5

= 82.2 beats per minute

For this dataset the mean and the median are close but not the same.

(b) For the 55-year-old patients, note that the data are already listed in numerical
order. Since there are an even number (n = 8) of values in this dataset, there is
no single number in the middle. The median is the average of the two middle
numbers:

m = 100 + 112
2

= 106 beats per minute

The mean of the heart rates for the 55-year-old patients is

x = 868
8

= 108.5 beats per minute

In this case, also, the mean and median are relatively close but not equal.

Resistance
The term resistance is related to the impact of outliers on a statistic. We examine the
effect of an outlier on the mean and the median.

Example 2.12
In Example 2.11(a), we saw that the mean and the median heart rate for n = 5 ICU
patients in their twenties are given by

x = 82.2 bpm and m = 80 bpm

Suppose that the patient with a heart rate of 108 bpm instead had an extremely high
heart rate of 200 bpm. How does this change affect the mean and median?

Solution The median doesn’t change at all, since 80 is still the middle value. The effect on the
mean is substantial: We see that with the change the mean increases to x = 100.6
beats per minute. The extreme value of 200 has a large effect on the mean but little
effect on the median.
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Resistance

In general, we say that a statistic is resistant if it is relatively unaffected
by extreme values. The median is resistant, while the mean is not.

The mean and the median both provide valuable measures of the center of a
dataset. Knowing that outliers have a substantial effect on the mean but not the
median can help determine which is more meaningful in different situations.

Example 2.13
As in most professional sports, some star players in the National Football League
(NFL) in the US are paid much more than most other players. In particular,
five players (all quarterbacks) were paid salaries greater than $30 million in 2019.
Two measures of the center of the player salary distribution for the 2019 NFL
season are

$930,000 and $3.075 million

(a) One of the two values is the mean and the other is the median. Which is which?
Explain your reasoning.

(b) In salary negotiations, which measure (the mean or the median) are the owners
more likely to find relevant? Which are the players more likely to find relevant?
Explain.

Solution (a) There are some high outliers in the data, representing the players who make a
very high salary. These high outliers will pull the mean up above the median.
The mean is $3.075 million and the median is $930,000.

(b) The owners will find the mean more relevant, since they are concerned about
the total payroll, which is the mean times the number of players. The players
are likely to find the median more relevant, since half of the players make less
than the median and half make more. The high outliers influence the mean but
are irrelevant to the salaries of most players. Both measures give an appropriate
measure of center for the distribution of player salaries, but they give signifi-
cantly different values. This is one of the reasons that salary negotiations can
often be so difficult.

Visualizing the Mean and the Median on a Graph
The mean is the “balancing point” of a dotplot or histogram in the sense that it

is the point on the horizontal axis that balances the graph. In contrast, the median
splits the dots of a dotplot, or area in the boxes of a histogram, into two equal halves.

Dennis Hallinan/Alamy Stock Photo

Fishing in a Florida lake
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D A T A 2 . 4 Florida Lakes

The FloridaLakes dataset31 describes characteristics of water samples taken at
n = 53 Florida lakes. Alkalinity (concentration of calcium carbonate in mg/L) and
acidity (pH) are given for each lake. In addition, the average mercury level is
recorded for a sample of fish (largemouth bass) from each lake. A standardized
mercury level is obtained by adjusting the mercury averages to account for the
age of the fish in each sample. Notice that the cases are the 53 lakes and that all
four variables are quantitative. ◼

Example 2.14
Using the Alkalinity values for the n = 53 lakes in the FloridaLakes dataset:

(a) Use technology to create a histogram of the alkalinity values. What is the shape
of the histogram?

(b) Which do you expect to be larger for this sample of alkalinity values, the mean
or the median? Why?

(c) Use technology to compute the mean and the median alkalinity for this sample.

(d) Locate the mean and the median on the histogram.

Solution (a) We use technology to create the histogram of alkalinity values shown in
Figure 2.10(a). There are many alkalinity values between 0 and 40, with a few
large values extending out as far as 130 or so. The data are clearly skewed to the
right.

(b) The few very large values on the right will pull up the mean and won’t affect the
median very much, so we expect the mean to be larger than the median.

(c) Using technology, we compute the mean to be x = 37.5 mg/L and the median to
be m = 19.6 mg/L. The median splits the data in half: There are 26 values above
the median and 26 values below it.

(a)
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Figure 2.10 Alkalinity in Florida lakes

31Lange, T., Royals, H., and Connor, L., “Mercury accumulation in largemouth bass (Micropterus
salmoides) in a Florida Lake,” Archives of Environmental Contamination and Toxicology, 2004; 27(4):
466–471.
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(d) See Figure 2.10(b). The mean is the balance point for the histogram, and the
median splits the data in half. The mean is substantially larger than the median,
and almost two-thirds of the lakes (35 out of 53) have alkalinity levels below the
mean. The data are skewed to the right, and the values out in the extended right
tail pull the mean up quite a bit.

Since the median cuts a histogram in half, if a histogram is symmetric, the
median is right in the middle and approximately equal to the mean. If the data are
skewed to the right, as we see in Figure 2.10, the values in the extended right tail
pull the mean up but have little effect on the median. In this case, the mean is bigger
than the median. Similarly, if data are skewed to the left, the mean is less than the
median. See Figure 2.11.

(a) Mean < Median (b) Mean = Median (c) Mean > Median

m
x

mm = x
x

Figure 2.11 Mean and median for different shaped distributions

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a dotplot or histogram to describe the shape of a distribution

• Find the mean and the median for a set of data values, with appropriate
notation

• Identify the approximate locations of the mean and the median on a
dotplot or histogram

• Explain how outliers and skewness affect the values for the mean and
median

Exercises for Section 2.2

SKILL BUILDER 1
Exercises 2.54 to 2.60 refer to histograms A through
H in Figure 2.12.

2.54 Which histograms are skewed to the left?

2.55 Which histograms are skewed to the right?

2.56 Which histograms are approximately sym-
metric?

2.57 Which histograms are approximately symmet-
ric and bell-shaped?

2.58 For each of the four histograms A, B, C, and D,
state whether themean is likely to be larger than the
median, smaller than the median, or approximately
equal to the median.

2.59 For each of the four histograms E, F, G, and
H, state whether the mean is likely to be larger
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Figure 2.12 Eight histograms

than the median, smaller than the median, or
approximately equal to the median.

2.60 Which of the distributions is likely to have the
largest mean? The smallest mean?

SKILL BUILDER 2
In Exercises 2.61 to 2.64, draw any dotplot to show
a dataset that is

2.61 Clearly skewed to the left.

2.62 Approximately symmetric and bell-shaped.

2.63 Approximately symmetric but not bell-
shaped.

2.64 Clearly skewed to the right.

SKILL BUILDER 3
For each set of data in Exercises 2.65 to 2.68:

(a) Find the mean x.

(b) Find the median m.

(c) Indicate whether there appear to be any out-
liers. If so, what are they?

2.65 8, 12, 3, 18, 15

2.66 41, 53, 38, 32, 115, 47, 50

2.67 15, 22, 12, 28, 58, 18, 25, 18

2.68 110, 112, 118, 119, 122, 125, 129,
135, 138, 140

SKILL BUILDER 4
In Exercises 2.69 to 2.72, give the correct notation
for the mean.

2.69 The average number of calories eaten in one
day is 2386 calories for a sample of 100 participants.

2.70 The average number of text messages sent in
a day was 67, in a sample of US smartphone users
ages 18–24, according to a survey conducted by
Experian.32

2.71 The average number of yards per punt for
all punts in the National Football League is 41.5
yards.33

2.72 The average number of television sets owned
per household for all households in the US is 2.6.34

2.73 Arsenic in ToenailsArsenic is toxic to humans,
and people can be exposed to it through contam-
inated drinking water, food, dust, and soil. Sci-
entists have devised an interesting new way to
measure a person’s level of arsenic poisoning: by

32Cocotas, A., “Chart of the Day: Kids Send a Mind Boggling
Number of Texts Every Month,” Business Insider, March 22,
2013.
33Moskowitz, T. and Wertheim, L., Scorecasting, Crown
Archetype, New York, 2011, p. 119.
34http://www.census.gov.
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examining toenail clippings. In a recent study,35 sci-
entists measured the level of arsenic (in mg/kg) in
toenail clippings of eight people who lived near a
former arsenic mine in Great Britain. The following
levels were recorded:

0.8 1.9 2.7 3.4 3.9 7.1 11.9 26.0

(a) Do you expect the mean or the median of these
toenail arsenic levels to be larger? Why?

(b) Calculate the mean and the median.

2.74 Fiber in the Diet The number of grams of fiber
eaten in one day for a sample of ten people are

10 11 11 14 15 17 21 24 28 115

(a) Find the mean and the median for these data.

(b) The value of 115 appears to be an obvious out-
lier. Compute the mean and the median for the
nine numbers with the outlier excluded.

(c) Comment on the effect of the outlier on the
mean and on the median.

2.75 Online Cat Videos In Exercise 1.69 on
page 30, we introduced a study looking at the effect
of watching cat videos on mood and energy. The
authors asked participants how many cats they cur-
rently own and report 2.39 as the measure of center
for this right-skewed distribution.

(a) Is this measure of center the mean number of
cats or the median number of cats? (Hint: Think
about how the two numbers are calculated.)

(b) Would we expect the mean number of cats to
be greater than or less than the median?

2.76 Insect Weights Consider a dataset giving the
adult weight of species of insects. Most species of
insects weigh less than 5 grams, but there are a few
species that weigh a great deal, including the largest
insect known: the rare and endangered Giant Weta
from New Zealand, which can weigh as much as
71 grams. Describe the shape of the distribution
of weights of insects. Is it symmetric or skewed?
If it is skewed, is it skewed to the left or skewed
to the right? Which will be larger, the mean or the
median?

2.77 Population of States in the US The dataset
USStates has a great deal of information about the
50 states, including population. Figure 2.13 shows a
histogram of the population, in millions, of the 50
states in the US.
35Button, M., Jenkin, G., Harrington, C., andWatts, M., “Human
toenails as a biomarker of exposure to elevated environment
arsenic,” Journal of Environmental Monitoring, 2009; 11(3):
610–617. Data are reproduced from summary statistics and are
approximate.
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Figure 2.13 Population, in millions, of the 50 states

(a) Do these values represent a population or a
sample?

(b) Describe the shape of the distribution: Is it
approximately symmetric, skewed to the right,
skewed to the left, or none of these? Are there
any outliers?

(c) Estimate the median population.

(d) Estimate the mean population.

2.78 Is Language Biased toward Happiness? “Are
natural languages neutrally, positively, or negatively
biased?” That is the question a recent study36 set
out to answer. They found the top 5000 words used
in English in each of four different places: Twitter,
books on the Google Book Project, The New York
Times, and music lyrics. The resulting complete list
was 10,222 unique words in the English language.
Each word was then evaluated independently by 50
different people, each giving a rating on how the
word made them feel on a 1 to 9 scale, where 1 =
least happy, 5 = neutral, and 9 = most happy. (The
highest rated word was “laughter,” while the lowest
was “terrorist.”) The distributions of the ratings for
all 10,222 words for each of the four media sources
were surprisingly similar, and all had approximately
the shape shown in Figure 2.14.

(a) Describe the shape of the distribution.

(b) Which of the following values is closest to the
median of the distribution:

3.5 5 6.5 7 7.5 8

(c) Will the mean be smaller or larger than the
value you gave for the median in part (b)?

2.79 Life Expectancy Life expectancy for all the
different countries in the world ranges from a low

36Kloumann, I., Danforth, C., Harris, K., Bliss, C., and Dodds, P.,
“Positivity of the English Language,” PLoS ONE, 2012; 7(1).
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1 3 5

Positivity Score
7 9

Figure 2.14 Distribution of ratings of words where
9 = most positive

of only 52.2 years (in Sierra Leone) to a high of
84.7 years (in Hong Kong). Life expectancies are
clustered at the high end, with about half of all the
countries having a life expectancy between about 74
and the maximum of 84.7. A few countries, such as
Sierra Leone, have a very low life expectancy. The
full dataset is inAllCountries.

(a) What is the shape of the distribution of life
expectancies for all countries?

(b) From the information given, estimate the
median of the life expectancies.

(c) Will the mean be larger or smaller than the
median?

2.80 Making Friends OnlineA survey conducted in
March 2015 asked 1060 teens to estimate, on aver-
age, the number of friends they had made online.
While 43% had not made any friends online, a small
number of the teens had made many friends online.

(a) Do you expect the distribution of number of
friends made online to be symmetric, skewed to
the right, or skewed to the left?
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Figure 2.15 Homing pigeons race speed and distance

(b) Two measures of center for this distribution are
1 friend and 5.3 friends.37 Which is most likely
to be the mean and which is most likely to be
the median? Explain your reasoning.

2.81 How Far and How Fast Do Homing Pigeons
Fly? Exercise 1.21 discusses the speed (in yards per
minute) that homing pigeons flew when competing
in the 2019 Midwest Classic homing pigeon race.
We also have data on the distance (in miles) each of
the 1412 pigeons that finished the race covered from
the release point to their home loft. Figure 2.15
shows histograms for both of these variables. The
numbers 409, 429, 575, and 632 represent the means
and medians for these two variables. Match each
number with the variable (speed or distance) and
measure of center (mean or median).

2.82 Subtle Language Changes Impact Conflict
Resolution A study38 conducted in Israel exam-
ined whether subtle changes in language might help
to reduce anger in conflict situations. In particu-
lar, they wondered whether phrasing statements
in noun form (such as “I support the division of
Jerusalem”) rather than verb form (such as “I sup-
port dividing Jerusalem”) might reduce the level
of anger and emotion resulting from the state-
ments. In the study, 129 Jewish Israeli college stu-
dents were randomly assigned to hear statements
in either noun or verb form. Participants then indi-
cated on a 1–6 scale how much anger they felt at
hearing the statement, with higher numbers indicat-
ing more anger. The mean score for those hearing
the statement in noun form was 3.21 while the mean
score for those hearing it in verb form was 3.67.

37Lenhart, A., “Teens, Technology, and Friendships,” Pew
Research Center, http://www.pewresearch.org, August 6, 2015.
Value for the mean is estimated from information given.
38Idan O, et al., “A Rose by Any Other Name? A Subtle Lin-
guistic Cue Impacts Anger and Corresponding Policy Support in
Intractable Conflict,” Psychological Science”, 29(6), 2018.
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(a) Give notation for the two mean prices given,
using subscripts to distinguish them.

(b) Find the difference in means, and give notation
for the result. (Subtract in this order: mean for
noun phrasing minus mean for verb phrasing.)

(c) Is this an experiment or an observational study?

2.83 Donating Blood to Grandma? Can young
blood help old brains? Several studies39 in
mice indicate that it might. In the studies, old mice
(equivalent to about a 70-year-old person) were
randomly assigned to receive blood plasma either
from a young mouse (equivalent to about a 25-
year-old person) or another old mouse. The mice
receiving the young blood showed multiple signs of
a reversal of brain aging. One of the studies40 mea-
sured exercise endurance using maximum treadmill
runtime in a 90-minute window. The number of
minutes of runtime are given in Table 2.23 for the
17 mice receiving plasma from young mice and the
13 mice receiving plasma from old mice. The data
are also available in YoungBlood.

Table 2.23 Number of minutes on a treadmill

Young 27 28 31 35 39 40 45
46 55 56 59 68 76 90
90 90 90

Old 19 21 22 25 28 29 29
31 36 42 50 51 68

(a) Calculate xY , the mean number of minutes on
the treadmill for those mice receiving young
blood.

(b) Calculate xO, the mean number of minutes on
the treadmill for those mice receiving old blood.

(c) To measure the effect size of the young blood,
we are interested in the difference in means
xY − xO. What is this difference? Interpret the
result in terms of minutes on a treadmill.

(d) Does this data come from an experiment or an
observational study?

(e) If the difference is found to be significant,
can we conclude that young blood increases
exercise endurance in old mice? (Researchers
are just beginning to start similar studies on
humans.)

39Sanders, L., “Young blood proven good for old brain,” Science
News, 185(11), May 31, 2014.
40Manisha, S., et al., “Restoring systemic GDF11 Levels
Reverses Age-Related Dysfunction in Mouse Skeletal Muscle,”
Science, May 9, 2014. Values are estimated from summary statis-
tics and graphs.

2.84 Price Differentiating E-commerce websites
“alter results depending on whether consumers
use smartphones or particular web browsers,”41

reports a new study. The researchers created clean
accounts without cookies or browser history and
then searched for specific items at different web-
sites using different devices and browsers. On one
travel site, for example, prices given for hotels were
cheaper when using Safari on an iPhone than when
using Chrome on an Android. At Home Depot, the
average price of 20 items when searching from a
smartphone was $230, while the average price when
searching from a desktop was $120. For the Home
Depot data:

(a) Give notation for the two mean prices given,
using subscripts to distinguish them.

(b) Find the difference in means, and give notation
for the result.

2.85 Does It Pay to Get a College Degree? In
Exercise 2.27 on page 66, we saw that those with
a college degree were much more likely to be
employed. The same article also gives statistics on
earnings in the US in 2009 by education level. The
median weekly earnings for high school graduates
with no college degree was $626, while the median
weekly earnings for college graduates with a bach-
elor’s degree was $1025. Give correct notation for
and find the difference in medians, using the nota-
tion for a median, subscripts to identify the two
groups, and a minus sign.

2.86 What Is the Average Household Size in
Canada?Canada conducts a census every five years.
The 2016 Canadian Census shows that, in 2016,
the average household size in Canada is 2.4 people
per household.42 Give the correct notation for this
value.

2.87 Create a Dataset Give any set of five numbers
satisfying the condition that:

(a) The mean of the numbers is substantially less
than the median.

(b) The mean of the numbers is substantially more
than the median.

(c) The mean and the median are equal.

2.88 Describe a Variable Describe one quantita-
tive variable that you believe will give data that are
skewed to the right, and explain your reasoning. Do
not use a variable that has already been discussed.

41Ehrenberg, R., “E-commerce sites personalize search results
to maximize profits,” Science News, November 29, 2014.
42https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/index.cfm?Lang=E. Accessed January 2020.
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2.89 Distribution of Birth Rate The BirthRate vari-
able in theAllCountries dataset gives the birth rate
per 1000 people for all the countries in the world.
Use technology to create a histogram for this vari-
able, and describe the shape of the distribution: is
it relatively symmetric, mildly skewed to the left or
right, or strongly skewed to the left or right?

2.90 Distribution of Death Rate The DeathRate
variable in theAllCountries dataset gives the death
rate per 1000 people for all the countries in the
world. Use technology to create a histogram for this
variable, and describe the shape of the distribution:
is it relatively symmetric, mildly skewed to the left
or right, or strongly skewed to the left or right?

2.91 Enrollments at Two-year Colleges The dataset
CollegeScores2yr has information on the number of
students enrolled at each US college where the pri-
mary degree is an Associate’s degree.

(a) Use technology to create a plot of the Enroll-
ment variable for two-year colleges. What is the
most striking feature of the shape of this plot?

(b) Find the mean and median of the Enrollment
variable.

(c) Explain a connection between your answers to
parts (a) and (b).

2.92 Enrollments at Four-year Colleges Repeat
Exercise 2.91 using the Enrollment variable in the
CollegeScores4yr dataset for four-year colleges
(where the primary degree is a Bachelor’s degree).

2.93 Number of Children Table 2.24 shows the
number of women (per 1000) between 15 and 50
years of age who have been married grouped by the
number of children they have had. Table 2.25 gives

the same information for women who have never
been married.43

(a) Without doing any calculations, which of the
two samples appears to have the highest mean
number of children? Which of the distributions
appears to have the mean most different from
the median? Why?

(b) Find the median for each dataset.

Table 2.24 Women who have been married

Number of Children Women per 1000

0 162
1 213
2 344
3 182
4 69
5+ 32

Table 2.25 Women who have never been married

Number of Children Women per 1000

0 752
1 117
2 72
3 35
4 15
5+ 10

43http://www.census.gov/hhes/fertility/data/cps/2014.html, Table 1,
June 2014.

2.3ONE QUANTITATIVE VARIABLE: MEASURES OF SPREAD

So far, we have looked at two important summary statistics for a single quantita-
tive variable: the mean and the median. Although there are important differences
between them, both of these measurements tell us something about the “middle” or
“center” of a dataset. When we give a statistical summary of the values in a dataset,
we are interested in not just the center of the data but also how spread out the data
are. Knowing that the average high temperature in Des Moines, Iowa, in April is
62∘F is helpful, but it is also helpful to know that the historical range is between 8∘F
and 97∘F! In this section, we examine additional measures of location and measures
of spread.

Using Technology to Compute Summary Statistics
In practice, we generally use technology to compute the summary statistics for

a dataset. For assistance in using a wide variety of different types of technology and
software, see the available supplementary resources.
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Example 2.15
Des Moines vs San Francisco Temperatures

Average temperature on April 14th for the 25 years ending in 2019 is given in
Table 2.26 for Des Moines, Iowa, and San Francisco, California.44 Use technology
and the data in April14Temps to find the mean and the median temperature on
April 14th for each city.

Table 2.26 Temperature on April 14th

Des Moines 56.0 37.5 37.2 56.0 54.3 63.3 54.7 60.6
70.6 53.7 52.9 74.9 44.4 40.3 44.4 71.0
56.8 59.2 53.3 35.7 56.2 60.2 67.8 41.3 41.0

San Francisco 51.0 55.3 55.7 48.7 56.2 57.2 49.5 61.0
51.4 55.8 53.0 58.1 54.2 53.4 49.9 53.8
51.4 52.3 52.1 57.3 55.8 56.9 53.6 58.4 54.2

Solution Computer output from one statistics package for the Des Moines temperatures is
shown in Figure 2.16 and an image of the descriptive statistics as they appear on
a TI-83 graphing calculator or on StatKey is shown in Figure 2.17. We see from
any of these options that for Des Moines the mean temperature is 53.73∘F and the
median is 54.7∘F. Similar output shows that for San Francisco the mean temperature
is 54.25∘F and the median is 54.2∘F.

Figure 2.16 Output from
Minitab with summary
statistics

Variable
DesMoines

Mean
53.73

N
25

StDev
11.18

Minimum
35.70

Q1
42.85

Q3
60.40

Maximum
74.90

Median
54.70

SE Mean
2.24

Descriptive Statistics: DesMoines

Figure 2.17 Output from
TI-83 or StatKey

1-Var Stats

= 53.732

= 35.7

= 74.9

= 54.7

= 1343.3
= 75178.47

= 42.85

= 60.4

= 11.18085119
= 10.95495212
= 25

x

minX

maxX

Med

∑x
∑x 2

Q1

Q3

S ×
σ ×
↓ n

(a) TI-83 

Summary Statistics

Statistics

Sample Size 25

53.732

11.181

35.7

44.400

54.700

60.200

74.9

Mean

Standard Deviation

Minimum

Median

Maximum

Q1

Q3

Value

(b) StatKey

Standard Deviation
We see in Example 2.15 that the means andmedians for temperatures in DesMoines
and San Francisco are almost identical. However, the dotplots in Figure 2.18 show
that, while the centers may be similar, the distributions are very different. The tem-
peratures in San Francisco are clustered closely around the center, while the tem-
peratures in Des Moines are very spread out. We say that the temperatures in Des

44http://academic.udayton.edu/kissock/http/Weather/citylistUS.htm Accessed June 2015.
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Figure 2.18 Which city
has greater variability
in temperature?

DesMoines

SanFrancisco
36 42 48 54 60 66 72

Temperature

Moines have greater variability or greater spread. The standard deviation is a statistic
that measures how much variability there is in the data.

In a sample, the deviation of an individual data value x from the mean x is simply
the difference x − x. We see in Example 2.15 that the mean April 14th temperature
in Des Moines is x = 53.73, so the deviation for the first data value listed, 56.0, is
56.0 − 53.73 = 2.27. Since values can fall above and below themean, some deviations
are negative and some are positive. In fact, if you add up all of the deviations, the
sum will always be zero.

The standard deviation is computed by squaring each deviation (to make them
all positive), adding up these squared deviations, dividing by n − 1 (to take an
approximate average), and taking the square root of the result (to undo the earlier
squaring). It is not necessary to fully understand the details of this computation.45

However, interpreting the standard deviation correctly is essential: A larger
standard deviation means the data values are more spread out and have more
variability. (Another measure of variability is the square of the standard deviation,
called the variance.)

Definition of Standard Deviation

The standard deviation for a quantitative variable measures the
spread of the data in a sample:

Standard deviation =
√

Σ(x − x)2
n − 1

The standard deviation gives a rough estimate of the typical distance
of a data value from the mean. The larger the standard deviation,
the more variability there is in the data and the more spread out the
data are.

In practice, we generally compute the standard deviation using a calculator or
computer software. The units for the standard deviation are the same as the units
for the original data.

Notation for the Standard Deviation

The standard deviation of a sample is denoted s, and measures how
spread out the data are from the sample mean x.

The standard deviation of a population46 is denoted 𝜎, which is the
Greek letter “sigma,” and measures how spread out the data are from
the population mean 𝜇.

45Two natural questions here are (1) Why square everything and then take a square root? and (2) Why
divide by n − 1 instead of n (like a mean)? Both have justifications but are beyond the scope of this
textbook.
46The formula is modified slightly for a population.
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Example 2.16
Temperatures on April 14th in DesMoines and San Francisco are given in Table 2.26
and shown in Figure 2.18.

(a) Which dataset do we expect to have a larger standard deviation? Why?

(b) Use technology to find the standard deviation for each dataset and compare
your answers.

Solution (a) The Des Moines temperatures are more spread out, so we expect this dataset to
have a larger standard deviation.

(b) We use technology to find the standard deviation. In Figure 2.16, standard devi-
ation is denoted “StDev.” In Figure 2.17, the standard deviation is given by “S×”
for the TI-83, and is labeled as “Standard Deviation” in StatKey. In all three
cases, we see that the standard deviation for the sample of Des Moines temper-
atures is about s = 11.18∘F. Similar output for the San Francisco temperatures
shows that the standard deviation for those 25 values is s = 3.06∘F. As we expect,
the standard deviation is larger for the Des Moines temperatures than for the
San Francisco temperatures.

Interpreting the Standard Deviation
Since the standard deviation is computed using the deviations from the mean,

we get a rough sense of the magnitude of s by considering the typical distance of a
data value from the mean. The following rule of thumb is helpful for interpreting
the standard deviation for distributions that are symmetric and bell-shaped.

Using the Standard Deviation: The 95% Rule

If a distribution of data is approximately symmetric and bell-shaped,
about 95% of the data should fall within two standard deviations of
the mean. This means that about 95% of the data in a sample from a
bell-shaped distribution should fall in the interval from x − 2s to x +
2s. See Figure 2.19.

Figure 2.19 Most data
are within two standard
deviations of the mean x -3s

95%

x -2s x -s x+s x+2s x+3sx

Example 2.17
We see in Example 2.9 on page 74 that the distribution for pulse rates from the
StudentSurvey data is symmetric and approximately bell-shaped. Use the fact that
the mean of the pulse rates is x = 69.6 and the standard deviation is s = 12.2 to give
an interval that is likely to contain about 95% of the pulse rates for students.
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Solution To identify pulse rates within two standard deviations of the mean, we compute

x ± 2s
69.6 ± 2(12.2)
69.6 ± 24.4

69.6 − 24.4 = 45.2 and 69.6 + 24.4 = 94.0.

Roughly 95% of the pulse rates are between 45.2 and 94.0 beats per minute.

neil denham/Alamy Stock Photo

How fast can a car travel a quarter-mile?

D A T A 2 . 5 2020 New Car Models

The dataset Cars2020 contains information for a sample of 110 new car models47

in 2020. There are many variables given for these cars, including model, price,
miles per gallon, and weight. One of the variables, QtrMile, shows the time (in
seconds) needed for a car to travel one-quarter mile from a standing start. ◼

Example 2.18
A histogram of the quarter-mile times is shown in Figure 2.20. Is the distribution
approximately symmetric and bell-shaped? Use the histogram to give a rough esti-
mate of the mean and standard deviation of quarter-mile times.

Figure 2.20 Estimate the
mean and the standard
deviation
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47Data on new car models in 2020 accessed from Consumer Reports website (January 2020).
https://www.consumerreports.org/cars/.
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Solution The histogram is relatively symmetric and bell-shaped. The mean appears to be
approximately 16 seconds. To estimate the standard deviation, we estimate an inter-
val centered at 16 that contains approximately 95% of the data. The interval from
13 to 19 appears to contain almost all the data. Since 13 is 3 units below the mean
of 16 and 19 is 3 units above the mean, by the 95% rule we estimate that 2 times
the standard deviation is 3, so the standard deviation appears to be approximately
1.5 seconds. Note that we can only get a rough approximation from the histogram.
To find the exact values of the mean and standard deviation, we would use tech-
nology and all the values in the dataset. For the QtrMile variable in this example,
we find x̄ = 16.04 seconds and s = 1.30 seconds, so the rough approximation worked
reasonably well.

Understanding z-Scores
A doctor finds that a patient has a a systolic blood pressure of 200 mmHg. Just

how unusual is this? Sometimes a single data value is meaningless without knowing
the center and spread of a distribution. A common way to determine how unusual
a single data value is, that is independent of the units used, is to count how many
standard deviations it is away from the mean. This quantity is known as the z-score.

Number of Standard Deviations from the Mean: z-Scores

The z-score for a data value, x, from a sample with mean x and stan-
dard deviation s is defined to be

z-score = x − x
s

For a population, x is replaced with 𝜇 and s is replaced with 𝜎.

The z-score tells how many standard deviations the value is from the
mean, and is independent of the unit of measurement.

If the data have a distribution that is symmetric and bell-shaped, we know from
the 95% rule that about 95% of the data will fall within two standard deviations
of the mean. This means that only about 5% of the data values will have z-scores
beyond ±2.

Example 2.19
One of the patients (ID#772) in the ICU study (Data 2.3 on page 77) had a high
systolic blood pressure of 204 mmHg and a low pulse rate of 52 bpm. Which of these
values is more unusual relative to the other patients in the sample? The summary
statistics for systolic blood pressure show a mean of 132.3 and standard deviation of
32.95, while the heart rates have a mean of 98.9 and standard deviation of 26.83.

Solution We compute the z-scores for this patient’s blood pressure and heart rate:

Blood pressure: z = x − x
s

= 204 − 132.3
32.95

= 2.18

This patient’s blood pressure is slightly more than two standard deviations above
the sample mean.

Heart rate: z = x − x
s

= 52 − 98.9
26.83

= −1.75
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This patient’s heart rate is less than two standard deviations below the sample mean
heart rate. The high blood pressure is somewhat more unusual than the low heart
rate.

Percentiles
We turn now to an alternate way to give information about a distribution. The
Scholastic Aptitude Test (SAT) is given several times a year to secondary school
students and is often used in admissions decisions by colleges and universities. The
SAT has three parts: Critical Reading, Mathematics, and Writing. Each is scored on
a scale of 200 to 800. The SAT aims to have the average score close to 500 in each
part. For students in the graduating class of 2014, the averages were as follows:

Critical Reading: 497 Mathematics: 513 Writing: 487

When students receive their score reports, they see their score as well as their per-
centile. For example, for the class of 2014, a score of 620 in Critical Reading is the
84th percentile. This means that 84% of the students in the class of 2014 who took
the exam scored less than or equal to 620. The 30th percentile in Mathematics is a
score of 450, which means that 30% of the students scored less than 450.

Percentiles

The Pth percentile is the value of a quantitative variable which is
greater than P percent of the data.48

Example 2.20
Standard & Poor’s maintains one of the most widely followed indices of large-cap
American stocks: the S&P 500. The index includes stocks of 500 companies in indus-
tries in the US economy. A histogram of the daily volume (in millions of shares) for
the S&P 500 stock index for every trading day in 2018 is shown in Figure 2.21. The
data are stored in SandP500. Use the histogram to roughly estimate and interpret
the 25th percentile and the 90th percentile.

Figure 2.21 Daily
volume for the S&P 500
index in 2018 Volume (in millions of shares)
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48Different software packages may give slightly different answers for percentiles. Some sources, for
example, define the Pth percentile as the value which is greater than or equal to P percent of the values.
For large datasets, however, the numbers will generally be very similar.



2.3 One Quantitative Variable: Measures of Spread 93

Solution The 25th percentile is the value with a quarter of the values below or equal to it
(or about 63 of the 251 cases in this dataset). This is the value where 25% of the
area of the histogram lies to the left. This appears to be somewhere in the tallest
bar, perhaps around 3200 million. We do not expect you to compute this exactly, but
simply be able to give an estimate. A volume of about 4500 million has roughly 10%
(or about 25) of the data values above it (and 90% below), so the 90th percentile is
about 4500 million.

Five Number Summary
The minimum and maximum in a dataset identify the extremes of the distribution:
the smallest and largest values, respectively. The median is the 50th percentile, since
it divides the data into two equal halves. If we divide each of those halves again,
we obtain two additional statistics known as the first (Q1) and third (Q3) quartiles,
which are the 25th and 75th percentiles. Together these five numbers provide a good
summary of important characteristics of the distribution and are known as the five
number summary.

Five Number Summary

We define

Five Number Summary= (minimum, Q1, median, Q3, maximum)

where

Q1 = First quartile = 25th percentile

Q3 = Third quartile = 75th percentile

The five number summary divides the dataset into fourths: about 25%
of the data fall between any two consecutive numbers in the five num-
ber summary.

istock.com/kristian sekulic

How many hours a week do students exercise?

Example 2.21
The five number summary for the number of hours spent exercising a week for the
StudentSurvey sample is (0, 5, 8, 12, 40). Explain what this tells us about the amount
of exercise for this group of students.



94 CHA P T E R 2 Describing Data

Solution All of the students exercise between 0 and 40 hours per week. The 25% of students
who exercise the least exercise between 0 and 5 hours a week, and the 25% of stu-
dents who exercise the most exercise between 12 and 40 hours a week. The middle
50% of students exercise between 5 and 12 hours a week, with half exercising less
than 8 hours per week and half exercising more than 8 hours per week.

Range and Interquartile Range
The five number summary provides two additional opportunities for summariz-

ing the amount of spread in the data, the range and the interquartile range.

Range and Interquartile Range

From the five number summary, we can compute the following two
statistics:

Range = Maximum − Minimum

Interquartile range (IQR) = Q3 −Q1

Example 2.22
The five number summary for the mammal longevity data in Table 2.21 on page 73
is (1, 8, 12, 16, 40). Find the range and interquartile range for this dataset.

Solution From the five number summary (1, 8, 12, 16, 40), we see that the minimum longevity
is 1 and the maximum is 40, so the range is 40 − 1 = 39 years. The first quartile is 8
and the third quartile is 16, so the interquartile range is IQR = 16 − 8 = 8 years.

Note that the range and interquartile range calculated in Example 2.22 (39 and
8, respectively) are numerical values not intervals. Also notice that if the elephant
(longevity = 40) were omitted from the sample, the range would be reduced to
25 − 1 = 24 years while the IQR would go down by just one year, 15 − 8 = 7. In
general, although the range is a very easy statistic to compute, the IQR is a more
resistant measure of spread.

Example 2.23
Using the temperature data for Des Moines and San Francisco given in Table 2.26,
find the five number summary for the temperatures in each city. Find the range and
the IQR for each dataset and compare the results for the two cities.

Solution We use technology to find the five number summaries. From the output in
Figure 2.16 or Figure 2.17 on page 87, we see that the five number summary for Des
Moines temperatures is (35.7, 44.4, 54.7, 60.2, 74.9). (Notice that the quartile values
are slightly different between the three outputs. You may get slightly different
values for the quartiles depending on which technology you use.) The five number
summary for San Francisco temperatures is (48.7, 52.1, 54.2, 56.2, 61.0). We have

Range for Des Moines = 74.9 − 35.7 = 39.2∘F
Range for San Francisco = 61.0 − 48.7 = 12.3∘F
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IQR for Des Moines = 60.2 − 44.4 = 15.8∘F
IQR for San Francisco = 56.2 − 52.1 = 4.1∘F

The range and IQR are much larger for the DesMoines data than the San Francisco
data. Temperatures are much more variable in central Iowa than they are on the
California coast!

Choosing Measures of Center and Spread
Because the standard deviation measures how much the data values deviate from
the mean, it makes sense to use the standard deviation as a measure of variability
when the mean is used as a measure of center. Both the mean and standard devi-
ation have the advantage that they use all of the data values. However, they are
not resistant to outliers. The median and IQR are resistant to outliers. Furthermore,
if there are outliers or the data are heavily skewed, the five number summary can
give more information (such as direction of skewness) than the mean and standard
deviation.

Example 2.24
Example 2.13 on page 79 describes salaries in the US National Football League,
in which some star players are paid much more than most other players.

(a) We see in that example that players prefer to use the median ($930,000 in 2019)
as a measure of center since they don’t want the results heavily influenced by a
few huge outlier salaries. What should they use as a measure of spread?

(b) We also see that the owners of the teams prefer to use the mean ($3.075 million
in 2019) as a measure of center since they want to use a measure that includes
all the salaries. What should they use as a measure of spread?

Solution (a) The interquartile range (IQR) should be used with the median as a measure of
spread. Both come from the five number summary, and both the median and the
IQR are resistant to outliers.

(b) The standard deviation should be used with the mean as a measure of spread.
Both the mean and the standard deviation use all the data values in their
computation.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use technology to compute summary statistics for a quantitative
variable

• Recognize the uses and meaning of the standard deviation

• Compute and interpret a z-score
• Interpret a five number summary or percentiles

• Use the range, the interquartile range, and the standard deviation as
measures of spread

• Describe the advantages and disadvantages of the different measures
of center and spread
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Exercises for Section 2.3

SKILL BUILDER 1
For the datasets in Exercises 2.94 to 2.99, use tech-
nology to find the following values:

(a) The mean and the standard deviation.

(b) The five number summary.

2.94 10, 11, 13, 14, 14, 17, 18, 20, 21, 25, 28

2.95 1, 3, 4, 5, 7, 10, 18, 20, 25, 31, 42

2.96 4, 5, 8, 4, 11, 8, 18, 12, 5, 15, 22, 7, 14, 11,
12

2.97 25, 72, 77, 31, 80, 80, 64, 39, 75, 58, 43, 67,
54, 71, 60

2.98 The variable Exercise, number of hours spent
exercising per week, in the StudentSurvey dataset.

2.99 The variable TV, number of hours spent
watching television per week, in the StudentSurvey
dataset.

(a) Histogram A

–5 0 5 10 15 20 25

(c) Histogram C

–5 0 5 10 15 20 25

(b) Histogram B

–5 0 5 10 15 20 25

Figure 2.22 Three histograms for Exercise 2.100
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Figure 2.23 Histograms for Exercises 2.101 and 2.102

SKILL BUILDER 2
In Exercises 2.100 and 2.101, match the standard
deviations with the histograms.

2.100 Match the three standard deviations s = 1, s =
3, and s = 5 with the three histograms in Figure 2.22.

2.101 Match each standard deviation with one of
the histograms in Figure 2.23.

(a) s = 0.5

(b) s = 10

(c) s = 50

(d) s = 1

(e) s = 1000

(f) s = 0.29

SKILL BUILDER 3
In Exercises 2.102 and 2.103, match each five num-
ber summary with the corresponding histogram.
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2.102 Match each five number summary with one
of the histograms in Figure 2.23.

(a) (0, 0.25, 0.5, 0.75, 1)
(b) (−1.08, −0.30, 0.01, 0.35, 1.27)
(c) (0.64, 27.25, 53.16, 100, 275.7)
(d) (−3.5, −0.63, −0.11, 0.59, 2.66)
(e) (71.45, 92.77, 99.41, 106.60, 129.70)
(f) (−1296, −1005, −705, 998, 1312)
2.103 Match each five number summary with one
of the histograms in Figure 2.24. The scale is the
same on all four histograms.

(a) (1, 3, 5, 7, 9)
(b) (1, 4, 5, 6, 9)
(c) (1, 5, 7, 8, 9)
(d) (1, 1, 2, 4, 9)

X Y

W

2 4 6 82

Z

4 6 8

Figure 2.24 Match five number summaries in
Exercise 2.103

SKILL BUILDER 4
In Exercises 2.104 to 2.109, estimate the sum-
mary statistics requested, using the histogram in
Figure 2.25 for Exercises 2.104 to 2.106 and the
dotplot in Figure 2.26 for Exercises 2.107 to 2.109.
There are n = 100 data points included in the dot-
plot.

2.104 Estimate the mean and the standard devia-
tion for the data in the histogram in Figure 2.25.

2.105 Estimate values at the 10th percentile and the
90th percentile for the data in Figure 2.25.

2.106 Estimate the five number summary for the
data in Figure 2.25.

2.107 Estimate the mean and the standard devia-
tion for the data in the dotplot in Figure 2.26.

2.108 Estimate values at the 10th percentile and the
90th percentile for the data in Figure 2.26.

2.109 Estimate the five number summary for the
data in Figure 2.26.
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Figure 2.25 Histogram for Exercises 2.104 to 2.106
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Figure 2.26 Dotplot with n = 100 for Exercises 2.107
to 2.109

SKILL BUILDER 5
In Exercises 2.110 to 2.113, indicate whether the
five number summary corresponds most likely to a
distribution that is skewed to the left, skewed to the
right, or symmetric.

2.110 (15, 25, 30, 35, 45)

2.111 (100, 110, 115, 160, 220)

2.112 (0, 15, 22, 24, 27)

2.113 (22.4, 30.1, 36.3, 42.5, 50.7)

SKILL BUILDER 6: Z-SCORES
In Exercises 2.114 to 2.117, find and interpret the
z-score for the data value given.

2.114 The value 243 in a dataset with mean 200 and
standard deviation 25.

2.115 The value 88 in a dataset with mean 96 and
standard deviation 10.

2.116 The value 5.2 in a dataset with mean 12 and
standard deviation 2.3.

2.117 The value 8.1 in a dataset with mean 5 and
standard deviation 2.
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SKILL BUILDER 7: THE 95% RULE
In Exercises 2.118 to 2.121, use the 95% rule and
the fact that the summary statistics come from a dis-
tribution that is symmetric and bell-shaped to find
an interval that is expected to contain about 95% of
the data values.

2.118 A bell-shaped distribution with mean 200
and standard deviation 25.

2.119 A bell-shaped distribution with mean 10 and
standard deviation 3.

2.120 A bell-shaped distribution with mean 1000
and standard deviation 10.

2.121 A bell-shaped distribution with mean 1500
and standard deviation 300.

2.122 Estimating Summary Statistics For the data-
set

45, 46, 48, 49, 49, 50, 50, 52, 52, 54, 57, 57, 58, 58, 60, 61

(a) Without doing any calculations, estimate which
of the following numbers is closest to the
mean:

60, 53, 47, 58

(b) Without doing any calculations, estimate which
of the following numbers is closest to the stan-
dard deviation:

52, 5, 1, 10, 55

(c) Use technology to find the mean and the stan-
dard deviation for this dataset.

WHAT IS YOUR ARMSPAN?
In Exercises 2.123 and 2.124, use the computer out-
put given below showing descriptive statistics for
armspan, in cm, for a sample of high school seniors
in the PASeniors dataset.

Descriptive Statistics: Armspan
Variable N N* Mean StDev
Armspan 415 42 170.76 13.46

Minimum Q1 Median Q3 Maximum
119 162 171 180 210

2.123 Five Number Summary for Armspan Using
the given computer output for armspan,

(a) What is the five number summary?

(b) Give the range and the IQR.

Variable
Obese

Mean
31.43

N
50

StDev
3.82

Minimum
23.0

Q1
28.6

Q3
34.4

Maximum
39.5

Median
30.9

Statistics

Figure 2.27 Percent of the population that is obese by state

(c) Use the five number summary to give the small-
est interval that we know contains the 30th per-
centile. The 80th percentile.

2.124 Z-scores for Armspan Using the given com-
puter output for armspan,

(a) What are the mean and the standard devia-
tion? Include appropriate notation with your
answers.

(b) Calculate the z-score for the largest value and
interpret it in terms of standard deviations. Do
the same for the smallest value.

(c) This distribution is relatively symmetric and
bell-shaped. Give an interval that is likely to
contain about 95% of the data values.

2.125 Percent Obese by StateComputer output giv-
ing descriptive statistics for the percent of the popu-
lation that is obese for each of the 50US states, from
the USStates dataset, is given in Figure 2.27. Since
all 50 US states are included, this is a population not
a sample.

(a) What are the mean and the standard devia-
tion? Include appropriate notation with your
answers.

(b) Calculate the z-score for the largest value and
interpret it in terms of standard deviations. Do
the same for the smallest value.

(c) This distribution is relatively symmetric and
bell-shaped. Give an interval that is likely to
contain about 95% of the data values.

2.126 Five Number Summary for Percent Obese by
State Computer output giving descriptive statistics
for the percent of the population that is obese for
each of the 50 US states, from theUSStates dataset,
is given in Figure 2.27.

(a) What is the five number summary?

(b) Give the range and the IQR.

(c) What can we conclude from the five number
summary about the location of the 15th per-
centile? The 60th percentile?

2.127 Public Expenditure on Education Figure 2.28
shows the public expenditure on education as per-
centage of Gross Domestic Product (GDP) for
all countries.49 The mean expenditure is 𝜇 = 4.8%

49Data from The World Bank, the most recent data available
for each country as of July 2015 obtained from http://www
.knoema.com.
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1.6 3.2 4.8 6.4 8.0 9.6 11.2
Education

Figure 2.28 Public expenditure on education as percentage of GDP

and the standard deviation of the expendi-
tures is 𝜎 = 1.66%. The data are stored in
EducationLiteracy.

(a) Brazil spends 6.24% of its GDP on education.
Without doing any calculations yet, will the z-
score for Brazil be positive, negative, or zero?
Why?

(b) Calculate the z-score for Brazil.

(c) There are two high outliers; Micronesia spends
12.46% of it’s GDP on education and Grenada
spends 10.24%. Monaco spends the lowest per-
centage on education at only 1.46%. Calculate
the range.

(d) The five number summary for this data set is
(1.46, 3.76, 4.87, 5.61, 12.46). Calculate the IQR.

2.128 How Many Hot Dogs Can You Eat in Ten
Minutes? Every Fourth of July, Nathan’s Famous
in New York City holds a hot dog eating contest,
in which contestants try to eat as many hot dogs
as possible in 10 minutes.50 In 2019, thousands of
people watched the event live on Coney Island, and
it was broadcast live to many more on ESPN. The
winning number of hot dogs along with the year is
shown in Table 2.27 and is available in the dataset
HotDogs2019.

(a) Use technology to find the mean and the stan-
dard deviation of the 18 numbers.

(b) Howmany of the 18 values are above the mean?
How many are above the mean for the nine val-
ues in the earlier nine years (2002–2010)? How
many are above the mean for the remaining
nine values (2011–2019)?

2.129 The Hot Dog Eating Rivalry: Matched Pairs
In Exercise 2.128, we introduce Nathan’s Famous
Hot Dog Eating Contest. Every year from 2002 to
2014, either Joey Chestnut of California or Takeru
Kobayashi of Japan won the contest. In five of
those years, both men competed and the results
of the rivalry are shown in Table 2.28. (After the
tie in 2008, Joey Chestnut won in an overtime.)
Because the conditions of the year matter, this is

50nathansfamous.com.

Table 2.27 Winning number of hot
dogs in the hot dog eating contest

Year Hot Dogs

2002 50
2003 45
2004 54
2005 49
2006 54
2007 66
2008 59
2009 68
2010 54
2011 62
2012 68
2013 69
2014 61
2015 62
2016 70
2017 72
2018 74
2019 71

a matched pairs situation, with the two men going
against each other each year. In a matched-pairs
situation, we use the summary statistics of the dif-
ferences between the pairs of values.

(a) For each of the five years, find the difference
in number of hot dogs eaten between Joey and
Takeru. For example, in 2009, the difference is
68 − 64 = 4. Since it is important to always sub-
tract the same way (in this case, Joey’s value
minus Takeru’s value), some of the differences
will be negative.

(b) Use technology to find the mean and the stan-
dard deviation of the differences.

Table 2.28 Hot dog eating rivalry

Year Joey Chestnut Takeru Kobayashi

2009 68 64
2008 59 59
2007 66 63
2006 52 54
2005 32 49
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2.130 Grade Point Averages A histogram of the
n = 345 grade point averages reported by stu-
dents in the StudentSurvey dataset is shown in
Figure 2.29.

(a) Estimate and interpret the 10th percentile and
the 75th percentile.

(b) Estimate the range.
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Figure 2.29 Estimate the 10th percentile and 75th

percentile

2.131 Laptop Computers and Sperm Count
Studies have shown that heating the scrotum by
just 1∘C can reduce sperm count and sperm qual-
ity, so men concerned about fertility are cautioned
to avoid too much time in the hot tub or sauna. A
new study51 suggests that men also keep their lap-
top computers off their laps. The study measured
scrotal temperature in 29 healthy male volunteers
as they sat with legs together and a laptop computer
on the lap. Temperature increase in the left scrotum
over a 60-minute session is given as 2.31 ± 0.96 and
a note tells us that “Temperatures are given as ∘C;
values are shown as mean ± SD.” The abbrevia-
tion SD stands for standard deviation. (Men who sit
with their legs together without a laptop computer
do not show an increase in temperature.)

(a) If we assume that the distribution of the tem-
perature increases for the 29 men is symmet-
ric and bell-shaped, find an interval that we
expect to contain about 95% of the temperature
increases.

(b) Find and interpret the z-score for one of the
men, who had a temperature increase of 4.9∘.

2.132 EstimatingMonthly Retail SalesAhistogram
of total USmonthly retail sales, in billions of dollars,

51Sheynkin, Y., et al., “Protection from scrotal hyperthermia in
laptop computer users,” Fertility and Sterility, February 2011;
92(2): 647–651.

for the 129 months starting with January 2009 is
shown in Figure 2.30. Is the distribution approxi-
mately symmetric and bell-shaped? Use the his-
togram to give a rough estimate of the mean and
standard deviation of monthly US retail sales totals.
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Figure 2.30 Estimate the mean and the standard
deviation

2.133 Summarizing Monthly Retail Sales US
monthly retail sales, in billions of dollars, for the
129 months starting with January 2009 is given in
the RetailSales dataset, in the variable Sales, and
shown in Figure 2.30. Use technology to find the
mean and the standard deviation for this sample of
US monthly retail sales. Use the 95% Rule to com-
pute an interval that is likely to contain about 95%
of the data.

STATISTICS FOR NBA PLAYERS IN 2018–
2019 Exercises 2.134 to 2.136 refer to the dataset
NBAPlayers2019, which contains information on
many variables for players in the NBA (National
Basketball Association) during the 2018–2019 sea-
son. The dataset includes information for all players
who averaged more than 24 minutes per game, and
includes n = 193 players and 25 variables.

2.134 Distribution of Three-Point Attempts in the
NBA In basketball, a basket is awarded three points
(rather than the usual two) if it is shot from far-
ther away. Some players attempt lots of three-point
shots and quite a few attempt none, as we see in
the distribution of number of three-point attempts
by players in the NBA in Figure 2.31. The data
are available inNBAPlayers2019 under the variable
name FG3Attempt. Is it appropriate to use the 95%
rule with this dataset? Why or why not?

2.135 Distribution of Blocked Shots in the NBA
The variableBlocks in the datasetNBAPlayers2019
includes information on the number of blocked
shots during the season for each of the 193 players
in the dataset.
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Figure 2.31 Number of three-point shot attempts in the
NBA, by player

(a) Use technology to find the mean and the stan-
dard deviation of the number of blocked shots.

(b) Use technology to find the five number sum-
mary for the same variable.

(c) Which set of summary statistics, those from
part (a) or part (b), is more resistant to outliers
and more appropriate if the data are heavily
skewed?

(d) Use technology to create a graph of the data in
Blocks and describe the shape of the distribu-
tion.

(e) Is it appropriate to use the 95% rule with these
data? Why or why not?

2.136 Which Accomplishment of James Harden Is
Most Impressive? Table 2.29 shows the means and
standard deviations for four of the variables in the
NBAPlayers2019 dataset. FGPct is the field goal
percentage, Points is total number of points scored
during the season, Assists is total number of assists
during the season, and Steals is total number of
steals during the season. James Harden of the Hous-
ton Rockets was selected to the All-NBA First
Team for his performance during this season. He
had a field goal percentage of 0.442, scored 2818
points, had 586 assists, and had 158 steals. Find the
z-score for each of Harden’s statistics. Use the z-
scores to determine, relative to the other players
in the NBA that season, which statistic of James
Harden’s is the most impressive. Which is the least
impressive?

Table 2.29 Summary statistics on NBA players

Variable Mean Standard Deviation

FGPct 0.463 0.057
Points 981 478
Assists 219 148
Steals 63.5 31.2

2.137 SAT Scores Stanley, a recent high school stu-
dent, took the SAT exam in 2018 and got a 600 in
both components (Reading andWriting, andMath).

He was interested in how well he did compared to
the rest of his peers. Table 2.30 shows the summary
statistics for all students in 2018.52

(a) Calculate z-scores for both of Stanley’s scores
using the summary statistics in Table 2.30.

(b) Which of Stanley’s scores is more unusual rela-
tive to his peers?

(c) In which component did Stanley perform best
relative to his peers?

Table 2.30 Summary statistics for SAT scores

Component Mean Standard Deviation

Reading and Writing 536 102
Math 531 114

2.138 Comparing Global Internet Connections
Researchers measured average internet download
speeds53 (in MB/sec) and average number of hours
spent online54 for internet users in a number of
countries in 2019. Table 2.31 shows the results for a
sample of nine countries. The data are also available
in the dataset GlobalInternet2019.

(a) Use technology to find the mean and standard
deviation of the nine values for Internet speeds.

(b) Use technology to find the mean and standard
deviation of the nine values for hours online.

(c) Does there seem to be a relationship between
the two variables? Explain. (We examine this
relationship further in Section 2.5.)

Table 2.31 Internet speed and hours online

Hours
Country Internet Speed Online

Swizerland 38.85 4.97
United States 32.89 6.52
Germany 24.64 4.62
Australia 16.36 5.07
United Kingdom 22.37 5.77
France 30.44 4.63
Spain 36.06 4.3
Italy 17.3 6.07
Brazil 4.84 9.29

52https://reports.collegeboard.org/pdf/2018-total-group-sat-suite-
assessments-annual-report.pdf
53Internet speeds for 2019 downloaded from https://www.cable.
co.uk/broadband/speed/worldwide-speed-league/
54Online hours for 2019 downloaded from https://datareportal.
com/library
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2.139 Daily Calorie Consumption The five num-
ber summary for daily calorie consumption for the
n = 315 participants in the NutritionStudy is (445,
1334, 1667, 2106, 6662).

(a) Give the range and the IQR.

(b) Which of the following numbers is most likely
to be the mean of this dataset? Explain.

1550 1667 1796 3605

(c) Which of the following numbers is most likely
to be the standard deviation of this dataset?
Explain.

5.72 158 680 1897 5315

2.140 Largest and Smallest Standard Deviation
Using only the whole numbers 1 through 9 as possi-
ble data values, create a dataset with n = 6 and x = 5
and with:

(a) Standard deviation as small as possible.

(b) Standard deviation as large as possible.

USING THE 95% RULE TO DRAW SMOOTH
BELL-SHAPED CURVES
In Exercises 2.141 to 2.144, sketch a curve show-
ing a distribution that is symmetric and bell-shaped
and has approximately the givenmean and standard
deviation. In each case, draw the curve on a hori-
zontal axis with scale 0 to 10.

2.141 Mean 3 and standard deviation 1.

2.142 Mean 7 and standard deviation 1.

2.143 Mean 5 and standard deviation 2.

2.144 Mean 5 and standard deviation 0.5.

2.145 Rotten Tomatoes Movie Ratings The vari-
able RottenTomatoes in the HollywoodMovies
dataset gives the critics’ rating on the Rotten Toma-
toes website of movies that came out of Hollywood
between 2012 and 2018. Use technology to find the
mean, the standard deviation, and the five number
summary for the data in this variable.

2.146 Audience Movie Ratings The variable Audi-
enceScore in the HollywoodMovies dataset gives
the audience rating on the Rotten Tomatoes web-
site of movies that came out of Hollywood between
2012 and 2018. Use technology to find themean, the
standard deviation, and the five number summary
for the data in this variable.

2.147 Summary Statistics for Homing Pigeon Dis-
tance Exercise 1.21 introduces a dataset containing
race results for a homing pigeon race. The data
are in HomingPigeons. Use StatKey or other tech-
nology to give the sample size, mean, standard

deviation, and five number summary for the dis-
tance this sample of homing pigeons traveled, in
miles. In addition, give notation for the sample size,
mean, and standard deviation.

2.148 Braking Distance Data 2.5 on page 90 intro-
duces the Cars2020 dataset with information on 110
new car models in 2020. The Braking variable mea-
sures the distance (in feet) it takes the car to stop
when travelling at 60 mph on dry pavement.

(a) Use technology to find the mean and standard
deviation of the braking distances for this sam-
ple of car models.

(b) Are there any braking distances that are more
than two standard deviations away from the
mean?

2.149 Highway vs City MPG Data 2.5 on page 90
introduces the Cars2020 dataset with information
on 110 new car models in 2020. The dataset contains
two measures of gas efficiency (in miles per gallon),
one for city driving (CityMPG) and one for high-
way driving (HwyMPG). We expect that highway
MPG will be greater than in the city, but how does
the variability of these two variables compare?

(a) Find the range, interquartile range, and stan-
dard deviation for both of the CityMPG and
HwyMPG variables.

(b) Use those statistics to compare variability of the
two mileage variables.

2.150 Homework Hours for Pennsylvania Seniors
The file PASeniors has results from a sample of
Pennsylvania high school seniors who participated
in a survey through the Census in Schools project.
One of the questions asked about the number
of hours spent doing homework each week. The
answers are stored in a variable called HWHours.

(a) Use technology to find the mean and standard
deviation for the homework hours.

(b) The largest homework value was a student who
claimed to spend 80 hours per week doing
homework. Does this sound reasonable? Find
the z-score for a homework hours value of 80.

2.151 Using the Five Number Summary to Visual-
ize Shape of a Distribution Draw a histogram or a
smooth curve illustrating the shape of a distribution
with the properties that:

(a) The range is 100 and the interquartile range
is 10.

(b) The range is 50 and the interquartile range is 40.

2.152 Rough Rule of Thumb for the Standard
Deviation According to the 95% rule, the largest
value in a sample from a distribution that is
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approximately symmetric and bell-shaped should
be between 2 and 3 standard deviations above the
mean, while the smallest value should be between
2 and 3 standard deviations below the mean. Thus
the range should be roughly 4 to 6 times the stan-
dard deviation. As a rough rule of thumb, we can
get a quick estimate of the standard deviation for
a bell-shaped distribution by dividing the range by
5. Check how well this quick estimate works in the
following situations.

(a) Pulse rates from the StudentSurvey dataset dis-
cussed in Example 2.17 on page 89. The five
number summary of pulse rates is (35, 62, 70,
78, 130) and the standard deviation is s = 12.2

bpm. Find the rough estimate using all the data,
and then excluding the two outliers at 120 and
130, which leaves the maximum at 96.

(b) Number of hours a week spent exercising
from the StudentSurvey dataset discussed in
Example 2.21 on page 93. The five number sum-
mary of this dataset is (0, 5, 8, 12, 40) and the
standard deviation is s = 5.741 hours.

(c) Longevity of mammals from the Mammal-
Longevity dataset discussed in Example 2.22
on page 94. The five number summary of the
longevity values is (1, 8, 12, 16, 40) and the stan-
dard deviation is s = 7.24 years.

2.4BOXPLOTS AND QUANTITATIVE/CATEGORICAL
RELATIONSHIPS

In this section, we examine a relationship between a quantitative variable and a cat-
egorical variable by examining both comparative summary statistics and graphical
displays. Before we get there, however, we look at one more graphical display for a
single quantitative variable that is particularly useful for comparing groups.

Boxplots
A boxplot is a graphical display of the five number summary for a single quantitative
variable. It shows the general shape of the distribution, identifies the middle 50% of
the data, and highlights any outliers.

Boxplots

A boxplot includes:

• A numerical scale appropriate for the data values.

• A box stretching fromQ1 toQ3.

• A line that divides the box drawn at the median.

• A line from each quartile to the most extreme data value that is not
an outlier.

• Each outlier plotted individually with a symbol such as an asterisk
or a dot.

Example 2.25
Draw a boxplot for the data in MammalLongevity, with five number summary
(1, 8, 12, 16, 40).

Solution The boxplot for mammal longevities is shown in Figure 2.32. The box covers the
interval from the first quartile of 8 years to the third quartile of 16 years and is
divided at the median of 12 years. The line to the left of the lower quartile goes all
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the way to the minimum longevity at 1 year, since there were no small outliers. The
line to the right stops at the largest data value (25, grizzly bear and hippopotamus)
that is not an outlier. The only clear outlier is the elephant longevity of 40 years, so
this value is plotted with an individual symbol at the maximum of 40 years.

Figure 2.32 Boxplot of
longevity of mammals

0

Minimum non-outlier Maximum non-outlier Outlier

Q1 Q3m

10 20

Longevity
30 40

∗

D A T A 2 . 6 US States
The dataset USStates includes many variables measured for each of the 50
states in the US. Some of the variables included for each state are average
household income, percent to graduate high school, health statistics such as
consumption of fruits and vegetables, percent obese, percent of smokers, and
some results from the 2016 US presidential election.55 ◼

Example 2.26
One of the quantitative variables in the USStates dataset is Vegetables, which gives
the percentage of the population that eats at least one serving of vegetables per day
for each of the states. Figure 2.33 shows a boxplot of the percent for all 50 states.

(a) Discuss what the boxplot tells us about the distribution of this variable.

(b) Estimate the five number summary.

Solution (a) The distribution of percentages is relatively symmetric, with one outlier in each
direction, and centered around 82. The percent of people who eat vegetables
appears to range from the low outlier around 76% (Louisiana) to the high out-
lier around 87.5% (Maine). The middle 50% of percentages is between about
80.5% and 83%, with a median value at about 82%.

(b) The five number summary appears to be approximately (76, 80.5, 82, 83, 87.5).

55Data from a variety of sources, mostly http://www.census.gov.
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Figure 2.33 Percent of
people who eat at least
one serving of vegetables
per day, by state
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Vegetables

urbanbuzz/Alamy Stock Photo

How much did it cost to make
this movie?

D A T A 2 . 7 Hollywood Movies
Almost 1300 movies came out of Hollywood between 2012 and 2018 and the
dataset HollywoodMovies contains lots of information on these movies, such as
studio, genre, budget, audience ratings, box office average opening weekend,
world gross, and others.56 ◼

Example 2.27
One of the quantitative variables in the HollywoodMovies dataset is Budget, which
gives the budget, in millions of dollars, to make each movie. Figure 2.34 shows the
boxplot for the budget of all Hollywood movies that came out in 2013.

(a) Discuss what the boxplot tells us about the distribution of this variable.

(b) What movie does the largest outlier correspond to?

(c) What was the budget to make Frozen? Is it an outlier?

56Movie data obtained from www.boxofficemojo.com, www.the-numbers.com/, and rottentomatoes.com
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Figure 2.34 Budget, in
millions of dollars, of
Hollywood movies in
2013
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Budget

Solution (a) Because the minimum, first quartile, and median are so close together, we see
that half the data values are packed in a small interval, then the other half extend
out quite far to the right. These data are skewed to the right, with many large
outliers.

(b) The largest outlier represents a movie with a budget of about 250 million dollars.
We see from the dataset HollywoodMovies that the movie is The Hobbit: The
Desolation of Smaug.

(c) We see from the dataset that the budget for Frozen was 150 million dollars. We
see in the boxplot that this is not quite an outlier. It is the value at the end of the
whisker.

Detection of Outliers
Consider again the data on mammal longevity in Data 2.2 on page 72. Our intu-

ition suggests that the longevity of 40 years for the elephant is an unusually high
value compared to the other lifespans in this sample. How do we determine objec-
tively when such a value is an outlier? The criteria should depend on some measure
of location for “typical” values and a measure of spread to help us judge when a data
point is “far” from those typical cases. One approach, typically used for identifying
outliers for boxplots, uses the quartiles and interquartile range. As a rule, most data
values will fall within about 1.5(IQR)’s of the quartiles.57

IQR Method for Detecting Outliers

For boxplots, we call a data value an outlier if it is

Smaller than Q1 − 1.5(IQR) or Larger than Q3 + 1.5(IQR)

Example 2.28
According to the IQR method, is the elephant an outlier for the mammal longevi-
ties in the dataset MammalLongevity? Are any other mammals outliers in that
dataset?

57In practice, determining outliers requires judgment and understanding of the context. We present a
specific method here, but no single method is universally used for determining outliers.
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Solution The five number summary for mammal longevities is (1, 8, 12, 16, 40). We have Q1 =
8 and Q3 = 16 so the interquartile range is IQR = 16 − 8 = 8. We compute

Q1 − 1.5(IQR) = 8 − 1.5(8) = 8 − 12 = −4

and
Q3 + 1.5(IQR) = 16 + 1.5(8) = 16 + 12 = 28

Clearly, there are no mammals with negative lifetimes, so there can be no outliers
below the lower value of −4. On the upper side, the elephant, as expected, is clearly
an outlier beyond the value of 28 years. No other mammal in this sample exceeds
that value, so the elephant is the only outlier in the longevity data.

One Quantitative and One Categorical Variable
Do men or women tend to watch more television? Is survival time for cancer
patients related to genetic variations? How do April temperatures in Des Moines
compare to those in San Francisco? These questions each involve a relationship
between a quantitative variable (amount of TV, survival time, temperature) and
a categorical variable (sex, type of gene, city). One of the best ways to visualize
such relationships is to use side-by-side graphs. Showing graphs with the same axis
facilitates the comparison of the distributions.

Visualizing a Relationship between Quantitative and
Categorical Variables

Side-by-side graphs are used to visualize the relationship between
a quantitative variable and a categorical variable. The side-by-side
graph includes a graph for the quantitative variable (such as a boxplot,
histogram, or dotplot) for each group in the categorical variable, all
using a common numeric axis.

Erik Von Weber/Getty Images

Who watches more TV, males or females?

Example 2.29
Who watches more TV, males or females? The data in StudentSurvey contains the
categorical variable Sex as well as the quantitative variable TV for the number of
hours spent watching television per week. For these students, is there an association
between sex and number of hours spent watching television? Use the side-by-side
graphs in Figure 2.35 showing the distribution of hours spent watching television for
males and females to discuss how the distributions compare.
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Figure 2.35 Who watches more TV, males or females?

Solution Both distributions are skewed to the right and have many outliers. There appears
to be an association: In this group of students, males tend to watch more televi-
sion. In fact, we see in Figure 2.35(a) that the females who watch about 15 hours
of TV a week are considered outliers, whereas males who watch the same amount
of television are not so unusual. The minimum, first quartile, and median are rela-
tively similar for the two sexes, but the third quartile for males is much higher than
the third quartile for females and the maximum for males is also much higher. While
the medians are similar, the distribution for males is more highly skewed to the right,
so the mean for males will be higher than the mean for females.

D A T A 2 . 8 Genetics and Cancer Survival
Genetic profiles may help oncologists predict the survival time for cancer
patients. In one study,58 scientists looked for variations in two genes that
encode proteins governing DNA repair in 103 advanced lung cancer patients.
Variations of both genes were found in 13 of the patients, variations on just one
of the genes were found in 64 of the patients, and 26 of the patients had neither
variation. The scientists compared the survival time on chemotherapy for the
patients in each of the three groups. (The study lasted 60 months.) ◼

Example 2.30
In Data 2.8, we are interested in whether the genetic differences can help us predict
survival time.

(a) What is the explanatory variable and what is the response variable? Indicate
whether each is categorical or quantitative.

(b) Figure 2.36 shows side-by-side boxplots for the three groups. Discuss what the
graph shows. What conjectures might we make about these genetic variations
and survival time?

(c) Can we conclude that having one or both of the gene variations reduces survival
time? Why or why not?

58Adapted from Gurubhagavatula, S., “XPD and XRCC1 Genetic Polymorphisms are Associated with
Overall Survival (OS) in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients Treated with Plat-
inum Chemotherapy,” Abstract 491, paper presented at the Annual Meeting of the American Society of
Clinical Oncology, June 2003.
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Figure 2.36 Lung cancer
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Solution (a) The explanatory variable is which of the three groups the patient is in, which is
categorical. The response variable is survival time, which is quantitative.

(b) The side-by-side boxplots show that survival time is substantially shorter for
patients with variations on both genes, and tends to be longest for patients
with neither variation. Based on this study, we might hypothesize that survival
time for patients undergoing chemotherapy for advanced lung cancer is reduced
when variations of either gene are present and more seriously shortened when
both variations are present.

(c) No. Although there appears to be a strong association between these two vari-
ables, the data come from an observational study and we cannot conclude that
there is a cause and effect relationship. As we learned in Chapter 1, only when
we have conducted a randomized experiment can we conclude that one variable
is causing another to change.

What about the added circles we see in the boxplots in Figure 2.36? Often, we
use circles such as these to indicate the means in each case. Notice in Figure 2.36 that
the mean survival time is highest for those with neither gene variation and lowest
for those with both variations. The large outliers for those with both gene variations
are so extreme that the mean is even larger than the third quartile.

Comparative Summary Statistics
Most statistical software packages will give summary statistics for a quantitative

variable by categorical groups. This gives us a numerical way to compare the two
variables in addition to the graphical way provided by side-by-side graphs.

Example 2.31
Use the computer output provided in Figure 2.37, based on the StudentSurvey
dataset, to compare the mean and standard deviation for number of hours spent
watching television per week broken down by sex. Find the difference in means,
using appropriate notation, and interpret it in terms of television viewing habits.

Solution The output in Figure 2.37 shows that there were 169 females who filled out the
survey, and these females watched TV for a mean of 5.237 hours per week with a
standard deviation of 4.1 hours per week. There were 192 males in the survey and
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Variable
TV

Descriptive Statistics: TV

Sex
F
M

N
169
192

Mean
5.237
7.620

SE Mean
0.315
0.464

StDev
4.100
6.427

Minimum
0.000
0.000

Q1
2.500
3.000

Median
4.000
5.000

Maximum
20.000
40.000

Q3
6.000

10.000

Figure 2.37 Output comparing TV watching by sex

these males had a mean of 7.620 hours spent watching TV per week with a standard
deviation of 6.427. Both the mean and the standard deviation are larger for the
males, which matches what we see in the graphs in Figure 2.35.

Using the notation xm for the male mean and xf for the female mean, the differ-
ence in means is

xm − xf = 7.620 − 5.237 = 2.383

In this sample, on average the males watched an additional 2.383 hours of television
per week.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify outliers in a dataset based on the IQR method

• Use a boxplot to describe data for a single quantitative variable

• Use a side-by-side graph to visualize a relationship between
quantitative and categorical variables

• Examine a relationship between quantitative and categorical variables
using comparative summary statistics

Exercises for Section 2.4

SKILL BUILDER 1
In Exercises 2.153 and 2.154, match the five number
summaries with the boxplots.

2.153 Match each five number summary with one
of the boxplots in Figure 2.38.

(a) (2, 12, 14, 17, 25)
(b) (5, 15, 18, 20, 23)
(c) (10, 12, 13, 18, 25)
(d) (12, 12, 15, 20, 24)
2.154 Match each five number summary with one
of the boxplots in Figure 2.39.

(a) (1, 18, 20, 22, 25)
(b) (1, 10, 15, 20, 25)
(c) (1, 3, 5, 10, 25)
(d) (1, 1, 10, 15, 25)

2520151050

Figure 2.38 Match five number summaries in
Exercise 2.153
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2520151050

Figure 2.39 Match five number summaries in
Exercise 2.154

SKILL BUILDER 2
Exercises 2.155 to 2.158 show a boxplot for a set of
data. In each case:

(a) Indicate whether the distribution of the data
appears to be skewed to the left, skewed to
the right, approximately symmetric, or none of
these.

(b) Are there any outliers? If so, how many and are
they high outliers or low outliers?

(c) Give a rough approximation for the mean of the
dataset.

2.155

600580560540520500

** *

2.156

14012010080604020

2.157

145140135130125

2.158

160015001200 1300 1400900 1000 1100800700

*** **

SKILL BUILDER 3
Exercises 2.159 to 2.162 each describe a sample. The
information given includes the five number sum-
mary, the sample size, and the largest and smallest
data values in the tails of the distribution. In each
case:

(a) Clearly identify any outliers, using the IQR
method.

(b) Draw a boxplot.

2.159 Five number summary: (210, 260, 270, 300,
320); n = 500.
Tails: 210, 215, 217, 221, 225, …, 318, 319, 319, 319,
320, 320.

2.160 Five number summary: (15, 42, 52, 56, 71);
n = 120.
Tails: 15, 20, 28, 30, 31, …, 64, 65, 65, 66, 71.

2.161 Five number summary: (42, 72, 78, 80, 99);
n = 120.
Tails: 42, 63, 65, 67, 68, …, 88, 89, 95, 96, 99.

2.162 Five number summary: (5, 10, 12, 16, 30);
n = 40.
Tails: 5, 5, 6, 6, 6, …, 22, 22, 23, 28, 30.
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2.163 Literacy Rate Figure 2.40 gives a boxplot
showing the literacy rate of the countries of the
world.59

20 30 40 50 60 70 80 90 100

Figure 2.40 Literacy rate for countries of the world

(a) Describe the shape of the distribution.

(b) The middle half of all literacy rates are between
approximately what two values?

(c) Approximate the five-number summary from
the boxplot.

(d) Some countries did not have data on literacy
rate available from the World Bank. Do you
suspect the true median is higher or lower than
that shown on the boxplot from the available
data? Why?

2.164 Young Blood Helps Old Brains Exercise 2.83
on page 85 introduces a study in which old mice
were randomly assigned to receive transfusions
of blood from either young mice or old mice.
Researchers then measured, among other things,
the number of minutes each mouse was able to run
on a treadmill. The results are given in the side-by-
side boxplots in Figure 2.41.

(a) Estimate the median runtime for the mice
receiving old blood.

10

Young

Old

20 30 40 50
Runtime

P
la

sm
a

60 70 80 90

Figure 2.41 Minutes on a treadmill after receiving
blood from old or young mice

59Data from Education Statistics (World Bank), May 2015. Most
recent data available obtained from http://www.knoema.com.

(b) Do we expect the mean runtime for the mice
receiving old blood to be larger than, smaller
than, or about the same as the median for these
mice?

(c) Which group of mice, those receiving old blood
or those receiving young blood, appear to be
able to run for more minutes?

(d) Does there appear to be an association between
runtime and whether or not the mouse received
young blood or old blood?

(e) Are there any outliers in either group? If so,
which one(s)?

2.165 Football and Brain Size A recent study60

examined the relationship of football and concus-
sions on hippocampus volume in the brain. The
study included three groups with n = 25 in each
group: heathy controls who had never played foot-
ball, football players with no history of concussions,
and football players with a history of concussions.
Figure 2.42 shows side-by-side boxplots for total
hippocampus volume, in 𝜇L, for the three groups.

(a) Is the explanatory variable categorical or quan-
titative? Is the response variable categorical or
quantitative?

(b) Which group has the largest hippocampal vol-
ume? Which group has the smallest?

(c) Are there any outliers in any of the groups? If
so, which one(s)?

(d) Estimate the third quartile for the football play-
ers without a history of concussion.
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Figure 2.42 Relationship of football and concussions
on brain hippocampus size

60Singh, R., et al., “Relationship of Collegiate Football Expe-
rience and Concussion with Hippocampal Volume and Cogni-
tive Outcomes,” JAMA, 311(18), 2014. Data values are estimated
from information in the paper.
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(e) Does there appear to be an association between
football experience and hippocampus size?

(f) Can we conclude that playing football decreases
hippocampus volume? Why or why not?

2.166 Ronda Rousey Fight Times Perhaps the most
popular fighter since the turn of the decade, Ronda
Rousey was famous for defeating her opponents
quickly. The five number summary for the times of
her first 12 UFC (Ultimate Fighting Championship)
fights, in seconds, is (14, 25, 44, 64, 289).

(a) Only three of her fights have lasted more than
a minute, at 289, 267, and 66 seconds, respec-
tively. Use the IQRmethod to see which, if any,
of these values are high outliers.

(b) Are there any low outliers in these data, accord-
ing to the IQRmethod?

(c) Draw the boxplot for Ronda Rousey’s fight
times.

(d) Based on the boxplot or five number summary,
would we expect Ronda’s mean fight time to be
greater than or less than her median?

2.167 Association or Not? Three different datasets
(A,B, andC) are examining an association between
a categorical variable (which divides cases into
group 1 and group 2) and a quantitative variable.
The side-by-side boxplots for each of the three
datasets are shown in Figure 2.43. Which of the
datasets (A, B, or C) appears to show:

(a) The strongest association between the two vari-
ables?

(b) No evidence of an association between the two
variables?

Figure 2.43 Which dataset shows a clear association between the variables?

2.168 Draw Side-by-Side Boxplots Side-by-side
boxplots are used to view a relationship between
a categorical variable and a quantitative variable.
Draw any side-by-side boxplots that show:

(a) A clear association between the two variables

(b) No association between the two variables

INVESTIGATING HOLLYWOOD MOVIES
In Exercises 2.169 to 2.172, we use data from Hol-
lywoodMovies introduced in Data 2.7 on page 105.
The dataset includes information on all movies to
come out of Hollywood between 2012 and 2018.

2.169 How Profitable Are Hollywood Movies?
One of the variables in the HollywoodMovies
dataset is Profitability, which measures the pro-
portion of the budget recovered in revenue from
the movie. A profitability less than 100 means the
movie did not make enough money to cover the
budget, while a profitability greater than 100 means
it made a profit. A boxplot of the profitability rat-
ings of all 1056 movies for which there are prof-
itability values is shown in Figure 2.44. (The largest
outlier is the movie The Devil Inside, which had
a very small budget and relatively high gross rev-
enue.)

(a) Describe the shape of the distribution.

(b) Estimate the range.

(c) Estimate the median. Interpret it in terms of
profitability of movies.

(d) Do we expect the mean to be greater than or
less than the median?
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Figure 2.44 Profitability of Hollywood movies

2.170 Audience Scores on Rotten Tomatoes The
variable AudienceScore in the dataset Hollywood-
Movies gives audience scores (on a scale from 0
to 100) from the Rotten Tomatoes website. The five
numbersummaryof thesescores is (10, 49, 64, 77, 99).
Are there any outliers in these scores, according to
the IQRmethod? How bad would an average audi-
ence score rating have to be on Rotten Tomatoes to
qualify as a low outlier?

2.171 Do Movie Budgets Differ Based on the
Genre of the Movie? The dataset Hollywood-
Movies includes a quantitative variable on the Bud-
get of the movie, in millions of dollars, as well
as a categorical variable classifying each movie by
its Genre. Figure 2.45 shows side-by-side boxplots
investigating a relationship between these two vari-
ables for movies made in 2018, using four of the
possible genres.

(a) Which genre appears to have the largest bud-
gets? Which appears to have the smallest?

(b) Which genre has the biggest spread in its bud-
gets? Which has the smallest spread?

(c) Does there appear to be an association between
genre of a movie and size of the budget?
Explain.

2.172 Do Audience Ratings Differ Based on the
Genre of the Movie? The dataset Hollywood-
Movies includes a quantitative variable on the

Variable Genre N Mean StDev Minimum Q1 Median Q3 Maximum

Audience Score Action 30 60.10 15.97 34 45.75 60.00 72.50 91
Comedy 22 55.64 19.98 25 39.50 54.00 73.25 91
Drama 52 69.42 15.94 35 56.75 75.00 81.00 97
Horror 16 43.56 18.81 18 29.00 38.50 62.50 83
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Figure 2.45 Movie budgets (in millions of dollars)
based on genre

AudienceScore of the movie as well as a categori-
cal variable classifying each movie by itsGenre. The
computer output below gives summary statistics for
audience ratings based on genre for movies made in
2018, using four of the possible genres.

(a) Which genre has the highest mean audience
score? The lowest mean audience score?

(b) Which genre has the highest median score? The
lowest median score?

(c) In which genre is the lowest score, and what is
that score? In which genre is the highest score,
and what is that score?

(d) Which genre has the largest number of movies
in that category?

(e) Calculate the difference in mean score between
comedies and horror movies, and give notation
with your answer, using xC for themean comedy
score and xH for the mean horror score.

2.173 Physical Activity by Region of the Country
in the US The variables in USStates include the
percent of the people in each state who say they
engage in at least 150 minutes of physical activ-
ity each week as well as the region of the country
in which the state is found (Midwest, Northeast,
South, or West). One of these variables is quanti-
tative and one is categorical, and Figure 2.46 allows
us to visualize the relationship between the two
variables.
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Figure 2.46 Physical activity in US states by region of
the country

(a) Which region tends to have the lowest level of
physical activity? Which region tends to have
the highest?

(b) Are there any outliers? If so, where?

(c) Does there appear to be an association between
amount of physical activity and region of the
country?

2.174 Hits in Baseball Major League Baseball is
split into two leagues, the National League (NL)
and the American League (AL). The main differ-
ence between the two leagues is that pitchers take at
bats in the National League but not in theAmerican
League. Are total team hits different between the
two leagues? Figure 2.47 shows side-by-side box-
plots for the two leagues. The data are stored in
BaseballHits2019.
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Figure 2.47 Side by side boxplots for hits by league

(a) Estimate the median number of hits for each
league. Does there appear to be much of a
difference in median hits between the two
leagues?

(b) Other than the medians, how do the distribu-
tions of hits compare between the two leagues?

2.175 Concentration of Retinol by Vitamin Use
Figure 2.48 displays the relationship between vita-
min use and the concentration of retinol (a micro-
nutrient) in the blood for a sample of n = 315
individuals. (The full dataset, with more variables,
is available in NutritionStudy.) Does there seem to
be an association between these two variables?
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Figure 2.48 Concentration of retinol by vitamin use

2.176 How Do Honeybees Communicate Qual-
ity? When honeybees are looking for a new
home, they send out scouts to explore options.
When a scout returns, she does a “waggle dance”
with multiple circuit repetitions to tell the swarm
about the option she found.61 The bees then
decide between the options and pick the best
one. Scientists wanted to find out how honey-
bees decide which is the best option, so they took
a swarm of honeybees to an island with only
two possible options for new homes: one of very
high honeybee quality and one of low quality.
They then kept track of the scouts who visited
each option and counted the number of waggle
dance circuits each scout bee did when describing
the option.62 Comparative dotplots of number of
circuits performed by the 41 bees that visited
the high-quality option and the 37 bees that visited
the low-quality option are shown in Figure 2.49. The
data are available in HoneybeeCircuits.

(a) Does there appear to be an association between
number of circuits in the waggle dance and the
quality of the site? If so, describe the associa-
tion.

(b) The five number summary for the number of cir-
cuits for those describing the high-quality site
is (0, 7.5, 80, 122.5, 440), while the five number

61Check out a honeybee waggle dance on YouTube!
62Seeley, T., Honeybee Democracy, Princeton University Press,
Princeton, NJ, 2010, p. 128.
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Figure 2.49 Number of circuits completed in the
honeybee waggle dance

summary for those describing the low-quality
site is (0, 0, 0, 42.5, 185). Use the IQR method to
identify any outliers in either group. Justify your
answer.

(c) The mean for the high-quality group is xH =
90.5 with a standard deviation of 94.6, while the
mean for the low-quality group is xL = 30.0 with
a standard deviation of 49.4. What is the differ-
ence in means, xH − xL?

(d) Find the z-score for the largest value in the high-
quality group and the z-score for the largest
value in the low-quality group. Which is larger
relative to its group?

(e) Is it appropriate to use the 95% rule with either
set of data?

2.177 Split the Bill? When the time comes for a
group of people eating together at a restaurant to
pay their bill, sometimes theymight agree to split the
costs equally and other times will pay individually.
If this decision was made in advance, would it affect
what they order? Some reseachers63 conducted an
experiment where 48 Israeli college students were
randomly assigned to eat in groups of six (three
females and three males). Before ordering, half of
the groups were told they would be responsible for
paying for meals individually and half were told to
split the cost equally among the six participants. The
number of items ordered (Items) and cost of each
person’s order (Cost) in new Israeli shekels (ILS)
was recorded and appears in the dataset SplitBill.

(a) Provide a numerical summary to compare costs
of orders between subjects paying individual
bills and those splitting the bill.

(b) Create and comment on a graphical display to
compare costs between these two groups.

2.178 Restaurant Bill by Sex Exercise 2.177 des-
cribes a study on the cost of meals when groups pay

63Gneezy, U., Haruvy, E., and Yafe, H. “The Inefficiency of Split-
ting the Bill,” The Economic Journal, 2004; 114, 265–280.

individually or split the bill. One of the variables in
SplitBill also records the Sex of each subject.

(a) Provide a numerical summary to compare costs
of orders between females and males.

(b) Create and comment on a graphical display to
compare costs by Sex.

2.179 Completion Rates at US Colleges – Graphi-
cal The data in CollegeScores contain information
from the US Department of Education’s College
Scorecard for 6141 post-secondary schools. One of
the variables (CompRate) records the percentage of
students that complete their program within 150%
of the expected time (e.g., 3 years for an associate’s
degree or 6 years for a bachelor’s degree). Cre-
ate a graphical display to compare the completion
rates between Private, Public, and for Profit schools
(as defined in the Control variable). Comment on
how the distributions differ in center, spread, and/or
shape.

2.180 Who Is Faster: Hens or Cocks? Exercise 1.21
introduces a dataset containing results for a homing
pigeon race. The data are in HomingPigeons, and
include the sex of the pigeons (H for hens and C
for cocks) and the speed of the pigeons (in yards
per minute). Use technology to create side-by-side
boxplots for the speed between the hens and cocks.

(a) Are there any outliers for the hens? If so, are
they on the low, high, or both sides of the distri-
bution?

(b) Are there any outliers for the cocks? If so, are
they on the low, high, or both sides of the distri-
bution?

(c) Does there appear to be an association between
speed and the sex of the pigeon? In other
words, does speed appear to be generally similar
between the two sexes, or does one sex appear
to be clearly faster than the other, in general?

2.181 Completion Rates at US Colleges – Numer-
ical Re-do Exercise 2.179 using numerical sum-
maries (rather than a graphical display) to compare
the distribution of CompRate between the three
types of Control.

DRAW THESE SIDE-BY-SIDE BOXPLOTS
Exercises 2.182 and 2.183 examine issues of location
and spread for boxplots. In each case, draw side-
by-side boxplots of the datasets on the same scale.
There are many possible answers.

2.182 One dataset has median 25, interquartile
range 20, and range 30. The other dataset has
median 75, interquartile range 20, and range 30.
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2.183 One dataset has median 50, interquartile
range 20, and range 40. A second dataset has
median 50, interquartile range 50, and range 100.
A third dataset has median 50, interquartile range
50, and range 60.

2.184 Examine a Relationship in StudentSurvey
From the StudentSurvey dataset, select any cate-
gorical variable and select any quantitative variable.
Use technology to create side-by-side boxplots
to examine the relationship between the vari-
ables. State which two variables you are using and
describe what you see in the boxplots. In addition,
use technology to compute comparative summary
statistics and compare means and standard devia-
tions for the different groups.

2.185 Examine a Relationship in USStates
Exercise 2.173 examines the relationship between
region of the country and level of physical activity
of the population of US states. From the USStates
dataset, examine a different relationship between
a categorical variable and a quantitative variable.
Select one of each type of variable and use technol-
ogy to create side-by-side boxplots to examine the
relationship between the variables. State which two
variables you are using and describe what you see
in the boxplots. In addition, use technology to com-
pute comparative summary statistics and compare
means and standard deviations for the different
groups.

2.5TWO QUANTITATIVE VARIABLES: SCATTERPLOT
AND CORRELATION

In Section 2.1, we look at relationships between two categorical variables, and in
Section 2.4, we investigate relationships between a categorical and a quantitative
variable. In this section, we look at relationships between two quantitative variables.

D A T A 2 . 9 Presidential Approval Ratings and Re-election
When a US president runs for re-election, how strong is the relationship
between the president’s approval rating and the outcome of the election?
Table 2.32 includes all the presidential elections since 1940 in which an
incumbent was running and shows the presidential approval rating at the time
of the election and the margin of victory or defeat for the president in the
election.64 The data are available in ElectionMargin. ◼

Table 2.32 Presidential approval rating and margin of victory or defeat

Year Candidate Approval Margin Result

1940 Roosevelt 62 10.0 Won
1948 Truman 50 4.5 Won
1956 Eisenhower 70 15.4 Won
1964 Johnson 67 22.6 Won
1972 Nixon 57 23.2 Won
1976 Ford 48 −2.1 Lost
1980 Carter 31 −9.7 Lost
1984 Reagan 57 18.2 Won
1992 G. H. W. Bush 39 −5.5 Lost
1996 Clinton 55 8.5 Won
2004 G. W. Bush 49 2.4 Won
2012 Obama 50 3.9 Won

64Data obtained from http://www.fivethirtyeight.com and http://www.realclearpolitics.com.
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Example 2.32
(a) What was the highest approval rating for any of the losing presidents? What

was the lowest approval rating for any of the winning presidents? Make a con-
jecture about the approval rating needed by a sitting president in order to win
re-election.

(b) Approval rating and margin of victory are both quantitative variables. Does
there seem to be an association between the two variables?

Solution (a) Three presidents lost, and the highest approval rating among them is 48%. Nine
presidents won, and the lowest approval rating among them is 49%. It appears
that a president needs an approval rating of 49% or higher to win re-election.

(b) In general, it appears that a higher approval rating corresponds to a larger mar-
gin of victory, although the association is not perfect.

Visualizing a Relationship between Two Quantitative
Variables: Scatterplots
The standard way to display the relationship between two quantitative variables is to
extend the notion of a dotplot for a single quantitative variable to a two-dimensional
graph known as a scatterplot. To examine a relationship between two quantitative
variables, we have paired data, where each data case has values for both of the
quantitative variables.

Scatterplot

A scatterplot is a graph of the relationship between two quantitative
variables.

A scatterplot includes a pair of axes with appropriate numerical scales,
one for each variable. The paired data for each case are plotted as a
point on the scatterplot. If there are explanatory and response vari-
ables, we put the explanatory variable on the horizontal axis and the
response variable on the vertical axis.

Example 2.33
Draw a scatterplot for the data on approval rating and margin of victory in
Table 2.32.

Solution We believe approval ratings may help us predict the margin of victory, so the
explanatory variable is approval rating and the response variable is margin of
victory. We put approval rating on the horizontal axis and margin of victory on
the vertical axis. The 12 data pairs are plotted as 12 points in the scatterplot of
Figure 2.50. The point corresponding to Roosevelt in 1940, with an approval rating
of 62% and a margin of victory of 10 points, is indicated. We notice from the upward
trend of the points that the margin of victory does tend to increase as the approval
rating increases.
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Figure 2.50 Approval
rating and margin of
victory
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Interpreting a Scatterplot
When looking at a scatterplot, we often address the following questions:

• Do the points form a clear trend with a particular direction, are they more scat-
tered about a general trend, or is there no obvious pattern?

• If there is a trend, is it generally upward or generally downward as we look from
left to right? A general upward trend is called a positive association while a gen-
eral downward trend is called a negative association.

• If there is a trend, does it seem to follow a straight line, which we call a linear
association, or some other curve or pattern?

• Are there any outlier points that are clearly distinct from a general pattern in the
data?

For the presidential re-election data in Figure 2.50, we see a positive association
since there is an upward trend in margin of victory as approval increases. While the
points certainly do not all fall exactly on a straight line, we can imagine drawing a
line to match the general trend of the data. There is a general linear trend, and it is
a relatively strong association.

Example 2.34
Scatterplots Using Data from Florida Lakes

Four scatterplots are shown in Figure 2.51 using data from the FloridaLakes dataset,
introduced in Data 2.4 on page 80. For each pair of variables, discuss the information
contained in the scatterplot. If there appears to be a positive or negative association,
discuss what that means in the specific context.

Solution (a) Acidity appears to have a negative linear association with average mercury level,
but not a strong one as the points are scattered widely around any straight line.
Since the association is negative, larger values of acidity tend to be associated
with smaller levels of mercury.

(b) Alkalinity also is negatively associated with average mercury level, with a
slightly stronger association along a more curved trend. One lake with a high
average mercury level around 1.1 ppm also has a high alkalinity at almost 90
mg/L and is clearly away from the general trend of the data. Note that neither of
the values for this lake would be considered outliers for the individual variables,
but the data pair stands out in the scatterplot so it is considered an outlier. Since
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Figure 2.51 Scatterplots of data from Florida lakes

the association is negative, larger values of alkalinity tend to be associated with
smaller levels of mercury.

(c) There is a positive association since the acidity increases with alkalinity along a
curved pattern. Since the association is positive, larger values of acidity tend to
be associated with larger values of alkalinity.

(d) The average mercury levels show a strong positive association with the standard-
ized mercury levels that fit fairly closely to a straight line. Since the association is
positive, larger levels of standardized mercury tend to be associated with larger
levels of mercury.

Summarizing a Relationship between Two Quantitative
Variables: Correlation
Just as the mean or median summarizes the center and the standard deviation or
interquartile range measures the spread of the distribution for a single quantita-
tive variable, we need a numerical statistic to measure the strength and direction of
association between two quantitative variables. One such statistic is the correlation.
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Correlation

The correlation is a measure of the strength and direction of linear
association between two quantitative variables.

As with previous summary statistics, we generally use technology to compute a
correlation. Also as with some of our previous summary statistics, the notation we
use for correlation depends on whether we are referring to a sample or a population.

Notation for the Correlation

The correlation between two quantitative variables of a sample is
denoted r.

The correlation between two quantitative variables of a population is
denoted 𝜌, which is the Greek letter “rho”.

Properties of the Correlation
Table 2.33 shows correlations for each of the pairs of variables that have been

displayed in scatterplots earlier in this section.

Table 2.33 Compare these correlations to their scatterplots

Variable 1 Variable 2 Correlation

Margin of victory Approval rating 0.86
Average mercury Acidity −0.58
Average mercury Alkalinity −0.59
Alkalinity Acidity 0.72
Average mercury Standardized mercury 0.96

Notice that all the correlations in the table are between −1 and +1. We see that a
positive correlation corresponds to a positive association and a negative correlation
corresponds to a negative association. Notice also that correlation values closer to 1
or −1 correspond to stronger linear associations. We make these observations more
precise in the following list of properties.

Properties of the Correlation

The sample correlation r has the following properties:

• Correlation is always between −1 and 1, inclusive: −1 ≤ r ≤ 1.

• The sign of r (positive or negative) indicates the direction of
association.

• Values of r close to +1 or −1 show a strong linear relationship, while
values of r close to 0 show no linear relationship.

• The correlation r has no units and is independent of the scale of
either variable.

• The correlation is symmetric: The correlation between variables x
and y is the same as the correlation between y and x.

The population correlation 𝜌 also satisfies these properties.
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istock.com/dangdumrong

Is the chirp rate of crickets associated with the
temperature?

D A T A 2 . 10 Cricket Chirps and Temperature
Common folk wisdom claims that one can determine the temperature on a
summer evening by counting how fast the crickets are chirping. Is there really
an association between chirp rate and temperature? The data in Table 2.34 were
collected by E. A. Bessey and C. A. Bessey,65 who measured chirp rates for
crickets and temperatures during the summer of 1898. The data are also stored
in CricketChirps. ◼

Table 2.34 Cricket chirps and temperature

Temperature (∘ F) 54.5 59.5 63.5 67.5 72.0 78.5 83.0

Chirps (per minute) 81 97 103 123 150 182 195

Example 2.35
A scatterplot of the data in Table 2.34 is given in Figure 2.52.

(a) Use the scatterplot to estimate the correlation between chirp rate and tempera-
ture. Explain your reasoning.

(b) Use technology to find the correlation and use correct notation.

(c) Are chirp rate and temperature associated?

Solution (a) Figure 2.52 shows a very strong positive linear trend in the data, so we expect
the correlation to be close to +1. Since the points do not all lie exactly on a line,
the correlation will be slightly less than 1.

(b) We use the notation r for this sample correlation. Using technology, we see that
r = 0.99, matching the very strong positive linear relationship we see in the scat-
terplot.

(c) Yes, cricket chirp rates and air temperature are strongly associated!

65Bessey, E. A. and Bessey, C. A., “Further Notes on Thermometer Crickets,” American Naturalist, 1898;
32: 263–264.
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Figure 2.52 Scatterplot
of chirp rate and
temperature
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Correlation Cautions

Example 2.36
Figure 2.53 shows the estimated average life expectancy66 (in years) for a sample
of 40 countries against the average amount of fat67 (measured in grams per capita
per day) in the food supply for each country. The scatterplot shows a clear positive
association (r = 0.70) between these two variables. The countries with short life
expectancies all have below-average fat consumption, while the countries consum-
ing more than 100 grams of fat on average all have life expectancies over 70 years.
Does this mean that we should eat more fat in order to live longer?

Figure 2.53 Life
expectancy vs grams of
fat in daily diet for 40
countries
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66United Nations Development Program, Human Development Report 2003.
67Food and Agriculture Organization of the United Nations.
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Solution No! Just because there is a strong association between these two variables, it would
be inappropriate to conclude that changing one of them (for example, increasing fat
in the diet) would cause a corresponding change in the other variable (lifetime). An
observational study was used to collect these data, so we cannot conclude that there
is a causal relationship. One likely confounding variable is the wealth of the country,
which is associated with both life expectancy and fat consumption.

A strong correlation does not necessarily imply a causal association! As we saw
in Chapter 1, we need to be aware of confounding variables and we need to pay
attention to whether the data come from an experiment or an observational study.

Correlation Caution #1

A strong positive or negative correlation does not (necessarily) imply
a cause and effect relationship between the two variables.

Example 2.37
Core body temperature for an individual person tends to fluctuate during the day
according to a regular circadian rhythm. Suppose that body temperatures for an
adult woman are recorded every hour of the day, starting at 6 am. The results are
shown in Figure 2.54. Does there appear to be an association between the time of
day and body temperature? Estimate the correlation between the hour of the day
and the woman’s body temperature.

Solution There is a regular pattern with temperatures rising in the morning, staying fairly
constant throughout the day, and then falling at night, so these variables are asso-
ciated. Despite this association, the correlation between these two variables will be
near zero. (For Figure 2.54 the actual correlation is r = −0.08.) The beginning hours
appear to have a positive association but the trend is negative for the later hours.
Remember that correlation measures the strength of a linear relationship between
two variables.

Figure 2.54 Hourly body
temperatures
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Correlation Caution #2

A correlation near zero does not (necessarily) mean that the two
variables are not associated, since the correlation measures only the
strength of a linear relationship.

D A T A 2 . 11 Effects of Diet on Levels of Retinol and Beta-carotene
In a study on the association between diet and levels of retinol and
beta-carotene in the blood stream, researchers recorded a variety of dietary
and demographic variables for the subjects. Variables include alcohol con-
sumption, average daily calories, age, sex, multivitamin use, fat grams per day,
fiber grams per day, smoking habits, etc. The data are available in
NutritionStudy. ◼

Example 2.38
Figure 2.55 shows the alcohol consumption (drinks per week) and average daily
caloric intake for 91 subjects who are at least 60 years old, from the data in
NutritionStudy. Notice the distinct outlier who claims to down 203 drinks per week
as part of a 6662 calorie diet! This is almost certainly an incorrect observation. The
second plot in Figure 2.55 shows these same data with the outlier omitted. How do
you think the correlation between calories and alcohol consumption changes when
the outlier is deleted?

Solution The correlation between alcohol consumption and daily calories is r = 0.72 with the
outlier present, but only r = 0.15 when that data point is omitted. What initially
might look like a strong association between alcohol consumption and daily calories
turns out to be much weaker when the extreme outlier is removed.

Correlation Caution #3

Correlation can be heavily influenced by outliers. Always plot your
data!
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Figure 2.55 Alcohol consumption vs calories (with and without an outlier)
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A Formula for Correlation
We routinely rely on technology to compute correlations, but you may be wonder-
ing how such computations are done. While computing a correlation “by hand” is
tedious and often not very informative, a formula, such as the one shown below, can
be helpful in understanding how the correlation works:

r = 1
n − 1

∑(
x − x
sx

)(
y − y
sy

)

Essentially this involves converting all values for both variables to z-scores,
which puts the correlation on a fixed −1 to +1 scale and makes it independent of
the scale of measurement. For a positive association, large values for x tend to occur
with large values of y (both z-scores are positive) and small values (with negative z-
scores) tend to occur together. In either case the products are positive, which leads
to a positive sum. For a negative association, the z-scores tend to have opposite signs
(small x with large y and vice versa) so the products tend to be negative.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Describe an association displayed in a scatterplot

• Explain what a positive or negative association means between two
variables

• Interpret a correlation

• Use technology to find a correlation

• Recognize that correlation does not imply cause and effect

• Recognize that you should always plot your data in addition to
interpreting numerical summaries

Exercises for Section 2.5

SKILL BUILDER 1
Match the scatterplots in Figure 2.56 with the corre-
lation values in Exercises 2.186 to 2.189.

2.186 r = −1
2.187 r = 0

2.188 r = 0.8

2.189 r = 1

SKILL BUILDER 2
Match the scatterplots in Figure 2.57 with the corre-
lation values in Exercises 2.190 to 2.193.

2.190 r = 0.09

2.191 r = −0.38
2.192 r = 0.89

2.193 r = −0.81

SKILL BUILDER 3
In Exercises 2.194 to 2.199, two quantitative vari-
ables are described. Do you expect a positive or
negative association between the two variables?
Explain your choice.

2.194 Size of a house and Cost to heat the house.
2.195 Distance driven since the last fill-up of the
gas tank andAmount of gas left in the tank.
2.196 Outside temperature and Amount of clothes
worn.
2.197 Number of text messages sent on a cell phone
and Number of text messages received on the
phone.
2.198 Number of people in a square mile andNum-
ber of trees in the square mile.
2.199 Amount of time spent studying andGrade on
the exam.
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SKILL BUILDER 4
In Exercises 2.200 and 2.201, make a scatterplot of
the data. Put the X variable on the horizontal axis
and the Y variable on the vertical axis.

2.200

X 3 5 2 7 6

Y 1 2 1.5 3 2.5

2.201

X 15 20 25 30 35 40 45 50

Y 532 466 478 320 303 349 275 221

SKILL BUILDER 5
In Exercises 2.202 and 2.203, use technology to find
the correlation for the data indicated.

2.202 The data in Exercise 2.200.

2.203 The data in Exercise 2.201.

2.204 Light Roast or Dark Roast for Your Coffee?
A somewhat surprising fact about coffee is that the
longer it is roasted, the less caffeine it has. Thus an
“extra bold” dark roast coffee actually has less caf-
feine than a light roast coffee. What is the explana-
tory variable and what is the response variable? Do
the two variables have a negative association or a
positive association?

2.205 How Much Potassium Is in Your Spinach?
Nutrient content of vegetables can vary depending
on the soil conditions in which they are grown. For
example, as in Exercise 1.103, we see that “higher
amounts of iron in the soil in which spinach is grown
has been associated with lower amounts of potas-
sium in the leaves.”68 The average amount of potas-
sium in one cup of cooked spinach is 840 mg.

(a) What are the two variables being discussed in
the sentence in quotation marks? Which is the
explanatory variable?

(b) Does the sentence imply that there is a pos-
itive, negative, or no association between the
two variables?

(c) If spinach is grown in soil with a high level of
iron, do we expect the potassium level in one
cup of the cooked spinach to be greater then
840, less than 840, or about equal to 840 mg?

(d) Repeat part (c) for soil with a low level of iron.

2.206 Reading and the Brain Exercise 1.104 intro-
duces an observational study on children ages 8
to 12 that examines the number of hours children
spend reading, the number of hours children spend
on screen-based media time, and MRI results of
connectivity in children’s brains. The study found
that more time spent reading was associated with

68Shea K, Health & Nutrition Update, Tufts University, August
11, 2019.



128 CHA P T E R 2 Describing Data

higher connectivity, while more screen time was
associated with lower connectivity.

(a) Identify each relationship as a positive associa-
tion, a negative association, or no association.

(i) Hours reading and connectivity

(ii) Hours of screen time and connectivity

(b) Can we conclude from this study that spend-
ing more time reading increases connectivity in
children’s brains?

2.207 Mother’s Love, Hippocampus, and Resil-
iency Multiple studies69 in both animals and
humans show the importance of a mother’s love
(or the unconditional love of any close person to
a child) in a child’s brain development. A recent
study shows that children with nurturing mothers
had a substantially larger area of the brain called
the hippocampus than children with less nurturing
mothers. This is important because other studies
have shown that the size of the hippocampus mat-
ters: People with large hippocampus area are more
resilient and are more likely to be able to weather
the stresses and strains of daily life. These obser-
vations come from experiments in animals and
observational studies in humans.

(a) Is the amount of maternal nurturing one
receives as a child positively or negatively asso-
ciated with hippocampus size?

(b) Is hippocampus size positively or negatively
associated with resiliency and the ability to
weather the stresses of life?

(c) How might a randomized experiment be
designed to test the effect described in part (a) in
humans? Would such an experiment be ethical?

(d) Can we conclude that maternal nurturing in
humans causes the hippocampus to grow larger?
Can we conclude that maternal nurturing in ani-
mals (such as mice, who were used in many of
the experiments) causes the hippocampus to
grow larger? Explain.

2.208 Commitment Genes and Cheating Genes In
earlier studies, scientists reported finding a “com-
mitment gene” in men, in which men with a certain
gene variant were much less likely to commit to
a monogamous relationship.70 That study involved
only men (and we return to it later in this text),
but a new study, involving birds this time rather

69Raison, C., “Love key to brain development in children,”
cnn.com, The Chart, March 12, 2012.
70Timmer, J., “Men with genetic variant struggle with commit-
ment,” http://www.arstechnica.com, reporting on a study in Pro-
ceedings of the National Academy of Science, 2009.

than humans, shows that female infidelity may be
inherited.71 Scientists recorded who mated with or
rebuffed whom for five generations of captive zebra
finches, for a total of 800 males and 754 females.
Zebra finches are believed to be a monogamous
species, but the study found that mothers who cheat
withmultiple partners often had daughters who also
cheat with multiple partners. To identify whether
the effect was genetic or environmental, the scien-
tists switched many of the chicks from their origi-
nal nests. More cheating by the biological mother
was strongly associated with more cheating by the
daughter. Is this a positive or negative association?

2.209 Two Different Depression Scales Example
1.28 introduces a study examining the impact of diet
on depression. The study used two different ways to
measure depression. One is the DASS (Depression,
Anxiety, and Stress Scale) which uses self-reported
symptoms, while the other is the CESD (Centre for
Epidemiological Studies Depression Scale), which
is a more involved clinical assessment. On both
scales, higher numbers indicate greater depression
symptoms. We are interested in whether we can use
the self-reported data as a good predictor of clin-
ical results (and hence a good starting point for
patients). Figure 2.58 shows a scatterplot of the two
depression scores for each of the 75 participants at
the start of the diet/depression experiment (before
the effect of any dietary intervention.)

(a) Does the association appear to be positive or
negative? What does that mean for these two
variables?

(b) Describe, in the context of this situation, the
characteristics of a case in each of the following
possible locations on the scatterplot:

(i) The upper left

(ii) The upper right

(iii) The lower left

(iv) The lower right

(a) For the case farthest to the right on the scat-
terplot, estimate the score on the self-reported
scale. Estimate the score on the clinical scale.

2.210 Possible Cases for Ages of Husbands and
Wives Suppose we record the husband’s age and
the wife’s age for many randomly selected male-
female married couples. Since these are both quan-
titative variables, we create a scatterplot for the
data, with wife’s age on the horizontal (X) axis

71Millus, S., “Female infidelity may be inherited,” Science News,
July 16, 2011, p. 10.
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Figure 2.58 Two different depression scales

and husband’s age on the vertical (Y) axis. Describe
the characteristics of a case in each of the following
locations in the scatterplot:

(a) The top left corner

(b) The top right corner

(c) The bottom left corner

(d) The bottom right corner

2.211 Social Jetlag Social jetlag refers to the dif-
ference between circadian and social clocks, and is
measured as the difference in sleep and wake times
between work days and free days. For example,
if you sleep between 11 pm and 7 am on week-
days but from 2 am to 10 am on weekends, then
your social jetlag is three hours, or equivalent to
flying from the West Coast of the US to the East
every Friday and back every Sunday. Numerous
studies have shown that social jetlag is detrimental
to health. One recent study72 measured the self-
reported social jetlag of 145 healthy participants,
and found that increased social jetlag was associ-
ated with a higher BMI (body mass index), higher
cortisol (stress hormone) levels, higher scores on a
depression scale, fewer hours of sleep during the
week, less physical activity, and a higher resting
heart rate.

(a) Indicate whether social jetlag has a positive or
negative correlation with each variable listed:
BMI, cortisol level, depression score, weekday
hours of sleep, physical activity, heart rate.

72Rutters, F., et al., “Is social jetlag associated with an adverse
endocrine, behavioral, and cardiovascular risk profile?” J Biol
Rhythms, October 2014; 29(5):377–383.

(b) Can we conclude that social jetlag causes the
adverse effects described in the study?

2.212 Football, Brain Size, and Cognitive Scores
Exercise 2.165 on page 112 introduces a study that
examines the association between playing football,
brain size as measured by left hippocampal volume
(in 𝜇L), and percentile on a cognitive reaction test.
Figure 2.59 gives two scatterplots. Both have num-
ber of years playing football as the explanatory vari-
able while Graph (a) has cognitive percentile as the
response variable and Graph (b) has hippocampal
volume as the response variable.

(a) The two corresponding correlations are −0.465
and −0.366. Which correlation goes with which
scatterplot?

(b) Both correlations are negative. Interpret what
this means in terms of football, brain size, and
cognitive percentile.

2.213 At What Age Do People Get Married? A
sample of marriage licenses from St. Lawrence
County73 in Northern New York State gives the
ages of husbands and wives at the time of mar-
riage for 105 newly married couples. (The sam-
ple includes all marriage licenses given out in the
county during the specific time period, and all of the
couples in the sample were male-female couples.)
The data are stored in MarriageAges and the first
few cases from this file are shown in Table 2.35. Use
StatKey or other technology to create a scatterplot
of the data, using the wife’s age as the X variable

73Thanks to Linda Casserly at the County Clerk’s office for the
data.



130 CHA P T E R 2 Describing Data

(a)

6

0

20

40

60

80

100

8 10 12
Years of Football

C
o

g
ni

ti
ve

 P
er

ce
nt

ile

14 16 18

(b)

6

2000

2500

3000

3500

4000

8 10 12
Years of Football

Le
ft

 H
ip

p
o

ca
m

p
us

 V
o

lu
m

e

14 16 18

Figure 2.59 Football, cognitive percentile, and brain size

and husband’s age as the Y variable. Use the scat-
terplot to answer the following questions:

(a) Wesee inTable 2.35 that thefirstcase isa50-year-
oldwomanand53-year-oldmangettingmarried.
Did any other 50-year-old women got married
during this time period? If so, how many? And
if so, what are the ages of their husbands?

(b) What is the age of the oldest man to get married
during this time period? What is the age of the
youngest man to get married during this time
period?

(c) How many of the women who got married dur-
ing this time period were older than 65? How
many were still in their teens (less than 20 years
old)?

Table 2.35 First ten cases in
MarriageAges, giving ages from marriage
licenses

Husband 53 38 46 30 31 26 29 48 65 29 …
Wife 50 34 44 36 23 31 25 51 46 26 …

2.214 Correlation Between Spouse’s Ages at Time
of Marriage Exercise 2.213 introduces the dataset
MarriageAges, which includes the ages of the two
people getting married for a sample of 105 mar-
riage licenses. (All of the couples in the sample
were male-female couples.) Use StatKey or other
technology to find the correlation between the hus-
band’s age and the wife’s age. Give the correct nota-
tion with your answer.

2.215 Distance vs Speed for Homing Pigeons
Exercise 1.21 introduces a dataset containing race
results for a homing pigeon race. The data are in
HomingPigeons, and include the distance traveled
by the pigeons (in miles) and the speed of the
pigeons (in yards per minute). Use technology to

create a scatterplot, with miles on the horizontal
axis and speed on the vertical axis.

(a) Based on your scatterplot, Would you say there
is a positive or negative association between dis-
tance and speed for homing pigeons?

(b) The winner of the race had a speed of 1676 yards
per minute. How far did that pigeon fly?

(c) Find the correlation between distance and
speed for this sample of pigeons. Is this value
consistent with the direction of association you
found in (a)?

2.216 NFL Pre-Season Does pre-season success
indicate regular season success in the US National
Football League? We looked at the number of pre-
season wins and regular season wins for all 32 NFL
teams over a 15-year span. The data are stored in
NFLPreseason2019.
(a) What would a positive association imply about

the relationship between pre-season and regu-
lar season success in the NFL? What would a
negative association imply?

(b) The correlation between these two variables
is r = 0.118. What does this correlation tell
you about the strength of a linear relationship
between these two variables?

2.217 What’s Wrong with the Statement? A
researcher claims to have evidence of a strong
positive correlation (r = 0.88) between a person’s
blood alcohol content (BAC) and the type of alco-
holic drink consumed (beer, wine, or hard liquor).
Explain, statistically, why this claimmakes no sense.

2.218 Help for Insomniacs In Exercise 1.29, we
learned of a study in which participants were ran-
domly assigned to receive or not receive cogni-
tive behavioral therapy (CBT), and then reported
whether or not they experienced any sleep improve-
ment. One news magazine reporting this study said
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“Sleep improvements were strongly correlated with
CBT.” Why is this an incorrect use of the statistics
word correlation?

2.219 Genetic Diversity and Distance from Africa
It is hypothesized that humans originated in
East Africa, and migrated from there. We com-
pute a measure of genetic diversity for differ-
ent populations,74 and the geographic distance of
each population from East Africa (Addis Ababa,
Ethiopia), as one would travel over the surface of
the earth by land (migration long ago is thought to
have happened by land). The relationship between
these two variables is shown in Figure 2.60 and the
data are given inGeneticDiversity.

(a) Describe the relationship between genetic
diversity and distance from East Africa. Does
there appear to be an association? If so, it is
positive or negative? Strong or weak? Linear or
nonlinear?

(b) Which of the following values gives the correla-
tion between these two variables: r = −1.22, r =
−0.83, r = −0.14, r = 0.14, r = 0.83, or r = 1.22?

(c) On which continent is the population with the
lowest genetic diversity? On which continent is
the population that is farthest from East Africa
(by land)?

74Calculated from data from Ramachandran, S., Deshpande,
O., Roseman, C.C., Rosenberg, N.A., Feldman, M.W., Cavalli-
Sforza, L.L. “Support from the relationship of genetic and geo-
graphic distance in human populations for a serial founder effect
originating in Africa,” Proceedings of the National Academy of
Sciences, 2005, 102: 15942–15947.
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Figure 2.60 Genetic diversity of populations by
distance from East Africa

(d) Populations with greater genetic diversity are
thought to be better able to adapt to chang-
ing environments, because more genetic diver-
sity provides more opportunities for natural
selection. Based only on this information and
Figure 2.60, do populations closer or farther
from East Africa appear to be better suited to
adapt to change?

2.220 The Happy Planet Index The website
TED.com offers free short presentations, called
TED Talks, on a variety of interesting subjects. One
of the talks is called “The Happy Planet Index,”
by Nic Marks.75 Marks comments that we regularly
measure and report economic data on countries,
such as Gross National Product, when we really
ought to be measuring the well-being of the people
in the countries. He calls this measure Happiness,
with larger numbers indicating greater happiness,
health, and well-being. In addition, he believes we
ought to be measuring the ecological footprint, per
capita, of the country, with larger numbers indicat-
ing greater use of resources (such as gas and elec-
tricity) and more damage to the planet. Figure 2.61
shows a scatterplot of these two quantitative vari-
ables. The data are given inHappyPlanetIndex.

(a) Does there appear to be a mostly positive or
mostly negative association between these two
variables? What does that mean for these two
variables?

(b) Describe the happiness and ecological footprint
of a country in the bottom left of the graph.

(c) Costa Rica has the highest Happiness index.
Find it on the graph and estimate its ecological
footprint score.

(d) For ecological footprints between 0 and 6, does
a larger ecological footprint tend to be asso-
ciated with more happiness? What about for
ecological footprints between 6 and 10? Discuss
this result in context.

(e) Marks believes we should be working to move
all countries to the top left of the graph, closer
to Costa Rica. What attributes does a country in
the upper left of the graph possess?

(f) This graph shows a third variable as well:
region of the world. One way to depict a
categorical variable on a scatterplot is using
different colors or shapes for different cate-
gories. The code is given in the top right, and
is categorized as follows: 1 = Latin America,

75Marks, N., “The Happy Planet Index,” http//www.TED.com/
talks, August 29, 2010.
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Figure 2.61 Happiness and ecological footprint

2 = Western nations, 3 = Middle East, 4 = Sub-
Saharan Africa, 5 = South Asia, 6 = East Asia,
7 = former Communist countries. Discuss one
observation of an association between region
and the two quantitative variables.

(g) If the goal is to move all countries to the top
left, how should efforts be directed for those in
the bottom left? How should efforts be directed
for those in the top right?

WHICH PUMPKIN BEER IS BEST?
One of the Locks rates pumpkin beers each fall with
their spouse, and Exercises 2.221 – 2.224 pertain to
these data. The data are stored in PumpkinBeer.

2.221 Pumpkin Beer Ratings by Spouse Figure 2.62
shows a scatterplot of the wife’s ratings versus the
husband’s ratings.

(a) Describe a point in the upper right of the plot in
terms of wife and husband ratings.

(b) Describe a point in the bottom left of the plot in
terms of wife and husband ratings.

(c) Describe a point in the bottom right of the plot
in terms of wife and husband ratings.

(d) Describe a point in the top left of the plot in
terms of wife and husband ratings.

2.222 Pumpkin Beer Ratings by Year Figure 2.63
shows a scatterplot of the average rating (averaging
husband and wife’s ratings for each beer) by year.

(a) In which year did the couple rate the most
pumpkin beers?
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Figure 2.62 Wife and husband ratings of different
pumpkin beers

(b) If the couple’s average ratings were averaged
for all beers in a year, which year would have
the highest overall average?

(c) Which year had the highest range of average
ratings?

(d) In which year did the couple taste their highest
average rated beer?

2.223 Pumpkin Beer Correlation: Wife and Hus-
band RatingsAnswer the following questions about
pumpkin beer ratings using the dataset Pumpkin-
Beer.
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Figure 2.63 Average pumpkin beer rating by year

(a) What is the correlation between wife and hus-
band ratings of pumpkin beers?

(b) Which beer was rated highest by the wife? In
what year?

(c) Which two beers were rated highest by the hus-
band? In what year?

2.224 Pumpkin Beer Correlation: Average Rating
and Year Answer the following questions about
pumpkin beer ratings using the dataset Pumpkin-
Beer.

(a) What is the correlation between average rat-
ing and year? Do the average ratings generally
increase or decrease over time?

(b) There is one low outlier; which beer is it?

(c) If the low outlier were to be removed, would the
correlation increase or decrease?

2.225 Is Your Body Language Closed or Open?
A closed body posture includes sitting hunched
over or standing with arms crossed rather than sit-
ting or standing up straight and having the arms
more open. According to a recent study, people
who were rated as having a more closed body pos-
ture “had higher levels of stress hormones and said
they felt less powerful than those who had a more
open pose.”76

(a) What are the variables in this study? Is each
variable categorical or quantitative? Assume
participants had body language rated on a
numerical scale from low values representing
more closed to larger values representing more
open. Assume also that participants were rated

76“Don’t Slouch!” Consumer Reports OnHealth, February 2011;
23(2):3.

on a numerical scale indicating whether each
felt less powerful (low values) or more powerful
(higher values).

(b) Do the results of the study indicate a positive
or negative relationship between the body lan-
guage scores and levels of stress hormones?
Would your answer be different if the scale had
been reversed for the body language scores?

(c) Do the results of the study indicate a positive
or negative relationship between the body lan-
guage scores and the scores on the feelings of
power? Would your answer be different if both
scales were reversed? Would your answer be
different if only one of the scales had been
reversed?

2.226 SAT Scores: Math vs Verbal The Student-
Survey dataset includes scores on the Math and
Verbal portions of the SAT exam.

(a) What would a positive relationship between
these two variables imply about SAT scores?
What would a negative relationship imply?

(b) Figure 2.64 shows a scatterplot of these two
variables. For each corner of the scatterplot
(top left, top right, bottom left, bottom right),
describe a student whose SAT scores place him
or her in that corner.

(c) Does there appear to be a strong linear relation-
ship between these two variables? What does
that tell you about SAT scores?

(d) Which of the following is most likely to be the
correlation between these two variables?

−0.941, −0.605, −0.235, 0.445, 0.751, 0.955
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Figure 2.64 MathSAT score and VerbalSAT score

2.227 Exercising or Watching TV? The Student-
Survey dataset includes information on the number
of hours a week students say they exercise and the
number of hours a week students say they watch
television.
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(a) What would a positive relationship between
these two variables imply about the way stu-
dents spend their time? What would a negative
relationship imply?

(b) For each corner of the scatterplot of these two
variables shown in Figure 2.65 (top left, top
right, bottom left, bottom right), describe a stu-
dent whose daily habits place him or her in that
corner.

(c) There are two outliers in this scatterplot.
Describe the student corresponding to the out-
lier on the right. Describe the student corre-
sponding to the outlier on the top.

(d) The correlation between these two variables is
r = 0.01. What does this correlation tell you
about the strength of a linear relationship
between these two variables?
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Figure 2.65 Number of hours a week of exercise and of
television watching

2.228 Females Rating Males on OKCupid The
OKCupid dating site provides lots of very interest-
ing data.77 Figure 2.66 shows a scatterplot of the age
of males that females find most attractive, based
on the age of the females doing the rating. The X-
variable is the age of heterosexual females using the
OKCupid site. For each age, the Y-variable gives
the age of males that are rated most attractive by
women at that age. So, for example, the dot that is
farthest left shows that 20-year-old women find men
who are age 23 the most attractive. The Y = X line
is also shown on the graph, for reference. (The com-
parable graph for males is given in Exercise 2.229.)

77Matlin, C., “Matchmaker, Matchmaker, Make Me a Spread-
sheet,” http://fivethirtyeight.com, September 9, 2014. Based on
data from http://blog.okcupid.com.
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Figure 2.66 Women rating men

(a) At what age(s) do women find men the same
age as themselves the most attractive?

(b) What age men do women in their early 20s find
the most attractive: younger men, older men, or
men the same age as themselves?

(c) What age men do women in their 40s find the
most attractive: younger men, older men, or
men the same age as themselves?

(d) Which of the following is likely to be closest to
the correlation between these two variables?

0.9, 0, −0.9

2.229 Males Rating Females on OKCupid
Exercise 2.228 introduced data showing the age of
males that females findmost attractive, based on the
age of the females doing the rating. Here we exam-
ine the ratings males give for females. Figure 2.67
shows a scatterplot of the age of females that males
find most attractive, based on the age of the males
doing the rating. The X-variable is the age of het-
erosexual males using the OKCupid site. For each
age, the Y-variable gives the age of females that
are rated most attractive by men at that age. So,
for example, the dot that is farthest left shows that
20-year-old men find women who are also age 20
the most attractive. The Y = X line is shown on the
graph, for reference.

(a) At what age(s) do men find women the same
age as themselves the most attractive?

(b) What age range for women do all ages of men
find most attractive?

(c) Which of the following is likely to be closest to
the correlation between these two variables?

0.9, 0, −0.9
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Figure 2.67 Men rating women

2.230 Comparing Global Internet Connections In
Exercise 2.138 on page 101, we discuss data on
average internet download speeds in nine different
countries in order to determine whether internet
speed is related to the amount of time users spend
online.78 The data are shown in Table 2.36 and are
also available in the dataset GlobalInternet2019.

(a) What would a positive association mean
between these two variables? Explain why a
positive relationship might make sense in this
context.

(b) What would a negative association mean
between these two variables? Explain why a
negative relationship might make sense in this
context.

Table 2.36 Internet speed and hours online

Hours
Country Internet speed Online

Swizerland 38.85 4.97
United States 32.89 6.52
Germany 24.64 4.62
Australia 16.36 5.07
United Kingdom 22.37 5.77
France 30.44 4.63
Spain 36.06 4.3
Italy 17.3 6.07
Brazil 4.84 9.29

(c) Make a scatterplot of the data, using internet
speed as the explanatory variable and time
online as the response variable. Is there a pos-
itive or negative relationship? Are there any

78Internet speeds for 2019 downloaded from https://www.cable.
co.uk/broadband/speed/worldwide-speed-league. Online hours
for 2019 downloaded from https://datareportal.com/library.

outliers? If so, indicate the country associated
with each outlier and describe the characteris-
tics that make it an outlier for the scatterplot.

(d) If we eliminate any outliers from the scatter-
plot, does it appear that the remaining countries
have a positive or negative relationship between
these two variables?

(e) Use technology to compute the correlation. Is
the correlation affected by the outliers?

(f) Can we conclude that a slower connection
speed causes people to spendmore time online?

2.231 Iris Petals Allometry is the area of biol-
ogy that studies how different parts of a body
grow in relation to other parts. Figure 2.68 shows
a scatterplot79 comparing the length and width of
petals of irises.

(a) Does there appear to be a positive or nega-
tive association between petal width and petal
length? Explain what this tells us about petals.

(b) Discuss the strength of a linear relationship
between these two variables.

(c) Estimate the correlation.

(d) Are there any clear outliers in the data?

(e) Estimate the width of the petal that has a length
of 30 mm.

(f) There are at least two different types of irises
included in the study. Explain how the scat-
terplot helps illustrate this, and name one dif-
ference between the types that the scatterplot
makes obvious.
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Figure 2.68 Iris petals

79R.A. Fishers’s iris data downloaded from http://lib.stat.cmu
.edu/DASL/Datafiles/Fisher’sIrises.html.
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2.232 Create a Scatterplot Draw any scatterplot
satisfying the following conditions:

(a) n = 10 and r = 1

(b) n = 8 and r = −1
(c) n = 5 and r = 0

2.233 Offensive Rebounds vs Defensive Rebounds
The dataset NBAPlayers2019 is introduced on
page 100, and includes many variables about play-
ers in the National Basketball Association in
2018–2019.

(a) Use technology to create a scatterplot for the
relationship between the number of offensive
rebounds in the season and the number of
defensive rebounds. (Put offensive rebounds on
the horizontal axis.)

(b) Does the relationship appear to be positive or
negative? What does that mean for these two
variables? How strong is the relationship?

(c) There appear to be two outliers at the right with
a high numbers of offensive rebounds. Who are
they?

(d) Use technology to find the correlation between
these two variables.

2.234 Do Movies with Larger Budgets Get Higher
Audience Ratings? The dataset HollywoodMovies
is introduced on page 105, and includes many

variables for movies, including Budget and Audi-
enceScore.

(a) Use technology to create a scatterplot to show
the relationship between the budget of a movie,
in millions of dollars, and the audience score.
We want to see if the budget has an effect on
the audience score.

(b) There is an outlier with a very large budget.
What is the audience rating for this movie and
what movie is it?

(c) For the data value with the lowest audience rat-
ing, what is the budget and what movie is it?

(d) Use technology to find the correlation between
these two variables.

2.235 Pick a Relationship to Examine Choose one
of the following datasets: USStates, Hollywood-
Movies, AllCountries, or NBAPlayers2019, and
then select any two quantitative variables that we
have not yet analyzed. Use technology to graph a
scatterplot of the two variables and discuss what
you see. Is there a linear relationship? If so, is the
association positive or negative? How strong is the
trend? Are there any outliers? If so, identify them
by name. In addition, use technology to find the cor-
relation. Does the correlation match what you see
in the scatterplot? Be sure to state the dataset and
variables you use.

2.6TWO QUANTITATIVE VARIABLES: LINEAR REGRESSION

In Section 2.5, we investigate the relationship between two quantitative variables.
In this section, we discuss how to use one of the variables to predict the other when
there is a linear trend.

Image Source/Getty Images

Can we predict the size of a
tip?
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D A T A 2 . 12 Restaurant Tips

The owner80 of a bistro called First Crush in Potsdam, New York, is interested in
studying the tipping patterns of its patrons. He collected restaurant bills over a
two-week period that he believes provide a good sample of his customers. The
data from 157 bills are stored in RestaurantTips and include the amount of the
bill, size of the tip, percentage tip, number of customers in the group, whether
or not a credit card was used, day of the week, and a coded identity of the
server. ◼

For the restaurant tips data, we want to use the bill amount to predict the tip
amount, so the explanatory variable is the amount of the bill and the response
variable is the amount of the tip. A scatterplot of this relationship is shown in
Figure 2.69.

Figure 2.69 Tip vs Bill
for a sample of First
Crush customers
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Example 2.39
(a) Use Figure 2.69 to describe the relationship between the bill amount and the tip

amount at this restaurant.

(b) Use technology to find the correlation between these two variables.

(c) Draw a line on the scatterplot that seems to fit the data well.

Solution (a) Figure 2.69 shows a strong positive linear relationship in the data, with a few
outliers (big tippers!) above the main pattern.

(b) Using technology, we see that the correlation is r = 0.915, reinforcing the fact
that the data have a strong positive linear relationship.

(c) There aremany lines we could draw that fit the data reasonably well. Try drawing
some! Which of the lines you drew do you think fits the data the best? One line
that fits the data particularly well is shown in Figure 2.70.

The Regression Line
The process of fitting a line to a set of data is called linear regression and the line of
best fit is called the regression line. The regression line for the restaurant tips data is
shown in Figure 2.70 and we see that it seems to fit the data very well. The regression

80Thanks to Tom DeRosa for providing the tipping data.
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line provides a model of a linear association between two variables, and we can use
the regression line on a scatterplot to give a predicted value of the response variable,
based on a given value of the explanatory variable.

Figure 2.70 How well
does this line fit the data?
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Example 2.40
Use the regression line in Figure 2.70 to estimate the predicted tip amount on a
$60 bill.

Solution The predicted tip amount for a $60 bill is about $10, because the point on the regres-
sion line above Bill = 60 is at a height of about $10 on the vertical Tip scale.

Usually, rather than estimating predictions using a graph, we use the equation of
the regression line. For the equation of a line we use y = b0 + b1xwhere the constant
b0 represents the y-intercept and the coefficient b1 represents the slope of the line.

81

Finding the regression line, then, means finding values for the slope and intercept of
the line that best describes the linear trend of the data. This can be done on many
calculators and computer programs.

To help distinguish between the predicted and observed values of the response
variable, we often add a “hat” to the response variable name to denote the predicted
value. Thus if our data pairs are (x, y) with x as the explanatory variable and y as the
response variable, the regression line is given by

ŷ = b0 + b1x

Explanatory and Response Variables

The regression line to predict y from x is NOT the same as the regres-
sion line to predict x from y. Be sure to always pay attention to which is
the explanatory variable and which is the response variable! A regres-
sion line is always in the form

̂Response = b0 + b1 ⋅ Explanatory

81You may have learned the equation for a line as y = mx + b. Statisticians prefer to use y = b0 + b1x. In
either case, the coefficient of x is the slope and the constant term is the vertical intercept.
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For the restaurant tips data, the equation of the regression line shown in
Figure 2.70 is

̂Tip = −0.292 + 0.182 ⋅ Bill

The y-intercept of this line is −0.292 and the slope is 0.182.

Using the Equation of the Regression Line to Make Predictions
The equation of the regression line is often also called a prediction equation

because we can use it to make predictions.We substitute the value of the explanatory
variable into the prediction equation to calculate the predicted response.

Example 2.41
Three different bill amounts from theRestaurantTips dataset are given. In each case,
use the regression line ̂Tip = −0.292 + 0.182 ⋅ Bill to predict the tip.

(a) A bill of $59.33

(b) A bill of $9.52

(c) A bill of $23.70

Solution
(a) If the bill is $59.33, we have

̂Tip = −0.292 + 0.182 ⋅ Bill

= −0.292 + 0.182(59.33)
= 10.506

The predicted size of the tip is 10.506 or about $10.51.

(b) For a bill of $9.52, we have ̂Tip = −0.292 + 0.182(9.52) = 1.441 ≈ $1.44 .

(c) For a bill of $23.70, we have ̂Tip = −0.292 + 0.182(23.70) = 4.021 ≈ $4.02.

The predicted value is an estimate of the average response value for that partic-
ular value of the explanatory variable. We expect actual values to be above or below
this amount.

Residuals
In Example 2.41, we found the predicted tip for three of the bills in the restau-

rant tips dataset. We can look in the dataset to see how close these predictions are
to the actual tip amount for those bills. The residual is the difference between the
observed value and the predicted value. On a scatterplot, the predicted value is
the height of the regression line for a givenBill amount and the observed value is the
height of the particular data point with that Bill amount, so the residual is the ver-
tical distance from the point to the line. The residual for one data value is shown in
Figure 2.71.

Residuals

The residual at a data value is the difference between the observed
and predicted values of the response variable:

Residual = Obser𝑣ed − Predicted = y − ŷ

On a scatterplot, the residual represents the vertical deviation from
the line to a data point. Points above the line will have positive resid-
uals and points below the line will have negative residuals. If the pre-
dicted values closely match the observed data values, the residuals will
be small.
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Figure 2.71 A residual is
the vertical deviation
from a point to the line
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Example 2.42
In Example 2.41, we find the predicted tip amount for three different bills in the
RestaurantTips dataset. The actual tips left by each of these customers are shown
below. Use this information to calculate the residuals for each of these sample points.

(a) The tip left on a bill of $59.33 was $10.00.

(b) The tip left on a bill of $9.52 was $1.00.

(c) The tip left on a bill of $23.70 was $10.00.

Solution (a) The observed tip left on the bill of $59.33 is $10.00 and we see in Example 2.41(a)
that the predicted tip is $10.51. The observed tip is a bit less than the predicted
tip. We have

Residual = Obser𝑣ed − Predicted = 10.00 − 10.51 = −0.51

(b) The observed tip left on the bill of $9.52 is just $1.00, and we see in Ex-
ample 2.41(b) that the predicted tip for a bill this size is $1.44, so

Residual = Obser𝑣ed − Predicted = 1.00 − 1.44 = −0.44

(c) The observed tip left on a bill of $23.70 (the first case in the dataset) is $10.00
and we see in Example 2.41(c) that the predicted tip is only $4.02. The observed
tip is quite a bit larger than the predicted tip and we have

Residual = Obser𝑣ed − Predicted = 10.00 − 4.02 = 5.98

This is one of the largest residuals. The server would be quite happy to receive
this extra large tip!

Example 2.43
Data 2.9 on page 117 introduced data that show the approval rating of a president
running for re-election and the resulting margin of victory or defeat for the president
in the election. The data are in ElectionMargin.

(a) The regression line for these 12 data points is

̂Margin = −36.8 + 0.839(Appro𝑣al)

Calculate the predicted values and the residuals for all the data points.

(b) Show the residuals as distances on a scatterplot with the regression line.

(c) Which residual is the largest? For this largest residual, is the observed margin
higher or lower than the margin predicted by the regression line? To which pres-
ident and year does this residual correspond?
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Solution (a) We use the regression line to find the predicted value for each data point, and
then subtract to find the residuals. The results are given in Table 2.37. Some of
the residuals are positive and some are negative, reflecting the fact that some
of the data points lie above the regression line and some lie below.

Table 2.37 Predicted margin and residuals for presidential
incumbents

Approval Actual Margin Predicted Margin Residual

62 10.0 15.23 −5.23
50 4.5 5.17 −0.67
70 15.4 21.94 −6.54
67 22.6 19.43 3.17
57 23.2 11.04 12.16
48 −2.1 3.49 −5.59
31 −9.7 −10.76 1.06
57 18.2 11.04 7.16
39 −5.5 −4.05 −1.45
55 8.5 9.36 −0.86
49 2.4 4.33 −1.93
50 3.9 5.17 −1.27

(b) See Figure 2.72. At a given approval rating, such as 62, the observed margin (10)
corresponds to the height of the data point, while the predicted value (15.23)
corresponds to the height of the line at an approval rating of 62. Notice that
in this case the line lies above the data point, and the difference between the
observed value and the predicted value is the length of the vertical line joining
the point to the line.

(c) The largest residual is 12.16. The observed margin of victory is 23.2, high above
the predicted value of 11.04. We see in Figure 2.72 that this is the point with the
greatest vertical deviation from the line. Looking back at Table 2.32 on page 117,
we see that this residual corresponds to President Nixon in 1972.

Figure 2.72 Residuals
measure vertical
deviations from the line
to the points
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What Does “Line of Best Fit” Mean?
How can we determine which line is the best fit for a set of data? And what

do we even mean by “best fit”? Our goal is to find the line that provides the best
predictions for the observed values of the response variable. The line that fits the
data best should then be one where the residuals are close to zero. In particular, we
usually try to make the squares of the residuals, (y − ŷ)2, small. The least squares line
is the line with the slope and intercept that makes the sum of the squared residuals
as small as it can possibly be.

Least Squares Line

The least squares line is the line that minimizes the sum of the squared
residuals.

Throughout this text, we use the terms regression line and least squares line and
line of best fit and fitted line interchangeably.

We should expect observed values to fall both above and below the line of best
fit, so residuals are both positive and negative. This is one reason why we square
them. In fact, if we add up all of the residuals from the regression line, the sum will
always be zero.

Interpreting the Slope and Intercept of the Regression Line
Recall that the regression line for the RestaurantTips data is

̂Tip = −0.292 + 0.182 ⋅ Bill

How can we interpret the slope 0.182 and intercept −0.292?
Recall that for a general line y = b0 + b1x, the slope represents the change in y

over the change in x. If the change in x is 1, then the slope represents the change
in y. The intercept represents the value of y when x is zero.

Interpreting the Slope and Intercept of the Regression Line

For the regression line ŷ = b0 + b1x,

• The slope b1 represents the predicted change in the response vari-
able y given a one unit increase in the explanatory variable x.

• The intercept b0 represents the predicted value of the response vari-
able y if the explanatory variable x is zero. The interpretation may
be nonsensical since it is often not reasonable for the explanatory
variable to be zero.

Example 2.44
For the RestaurantTips regression line ̂Tip = −0.292 + 0.182 ⋅ Bill, interpret the
slope and the intercept in context.

Solution The slope 0.182 indicates that the tip is predicted to go up by about $0.182 for a one
dollar increase in the bill. A rough interpretation is that people in this sample tend
to tip about 18.2%.

The intercept −0.292 indicates that the tip will be −$0.292 if the bill is $0. Since
a bill is rarely zero dollars and a tip cannot be negative, this makes little sense.
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Example 2.45
In Example 2.34 on page 119, we consider some scatterplots from the dataset
FloridaLakes showing relationships between acidity, alkalinity, and fish mercury
levels in n = 53 Florida lakes. We wish to predict a quantity that is difficult to
measure (mercury level of fish) using a value that is more easily obtained from a
water sample (acidity). We see in Example 2.34 that there appears to be a negative
linear association between these two variables, so a regression line is appropriate.

(a) Use technology to find the regression line to predictMercury from pH, and plot
it on a scatterplot of the data.

(b) Interpret the slope of the regression line in the context of Florida lakes.

(c) Put an arrow on the scatterplot pointing to the data for Puzzle Lake, which has
an acidity of 7.5 and an average mercury level of 1.10 ppm. Calculate the pre-
dicted mercury level for Puzzle Lake and compare it to the observed mercury
level. Calculate the residual.

Solution (a) We use technology to find the regression line:

̂Mercury = 1.53 − 0.1523 ⋅ pH

For the scatterplot, since we are predicting mercury level from pH, the pH vari-
able goes on the horizontal axis and the mercury variable goes on the vertical
axis. The line is plotted with the data in Figure 2.73.

(b) The slope in the prediction equation represents the expected change in the
response variable for a one unit increase in the explanatory variable. Since the
slope in this case is −0.1523, we expect the average mercury level in fish to
decrease by about 0.1523 ppm for each increase of 1 in the pH of the lake water.

(c) See the arrow in Figure 2.73. The predicted value for Puzzle Lake is ̂Mercury =
1.53 − 0.1523 ⋅ (7.5) = 0.388 ppm. The observed value of 1.10 is quite a bit higher
than the predicted value for this lake. The residual is 1.10 − 0.388 = 0.712, the
largest residual of all 53 lakes.

Figure 2.73 Using
acidity to predict average
mercury level in fish
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Notation for the Slope
We have seen that we use the notation b1 for the slope of a regression line that

comes from a sample. What about the regression line for a population? The dataset
on presidential elections used to create the regression line ̂Margin = −36.8 + 0.839⋅
Appro𝑣al in Example 2.43 represents the population of all relevant US presidential
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elections since 1940. As we have seen with other quantities, the notation we use for
the slope of the regression line of a population is different than the notation we use
for the slope of the regression line of a sample. For the slope of a regression line for
a population, we use the Greek letter 𝛽1 (beta).

Regression Cautions
In the solution to Example 2.44, we see that predicting the tip for a bill of $0 does
not make any sense. Since the bill amounts in that dataset range from $1.66 to $70.51,
it also would not make sense to use the regression line to predict the tip on a bill of
$1000. In general, it is not appropriate to use regression lines to make predictions
using values of the explanatory variable that are far from the range of values used
to create the line. This is called extrapolating too far from the original data.

Regression Caution #1

Avoid trying to apply a regression line to predict values far from those
that were used to create it.

Example 2.46
In Example 2.45 on page 143, we used the acidity (pH) of Florida lakes to predict
mercury levels in fish. Suppose that, instead of mercury, we use acidity to predict
the calcium concentration (mg/l) in Florida lakes. Figure 2.74 shows a scatterplot of
these data with the regression line ̂Calcium = −51.4 + 11.17 ⋅ pH for the 53 lakes in
our sample. Give an interpretation for the slope in this situation. Does the intercept
make sense? Comment on how well the linear prediction equation describes the
relationship between these two variables.

Solution The slope of 11.17 in the prediction equation indicates that the calcium concentra-
tion in lake water increases by about 11.17 mg/l when the pH goes up by one. The
intercept does not have a physical interpretation since there are no lakes with a pH
of zero and a negative calcium concentration makes no sense. Although there is
clearly a positive association between acidity and calcium concentration, the rela-
tionship is not a linear one. The pattern in the scatterplot indicates a curved pattern
that increases more steeply as pH increases. The least squares line predicts negative
calcium concentrations (which are impossible) for pH levels as large as 4.5, which
are within the domain of lakes in this sample.

Figure 2.74 Using
acidity to predict calcium
concentration
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The correlation between acidity and average mercury levels in Figure 2.73 is
−0.575 while acidity and calcium concentration in Figure 2.74 have a correlation of
0.577. Although these correlations are close in magnitude, linear regression is a more
appropriate model for the first situation than it is for the second. It is always impor-
tant to plot the data and look for patterns that may or may not follow a linear trend.

Regression Caution #2

Plot the data! Although the regression line can be calculated for any
set of paired quantitative variables, it is only appropriate to use a
regression line when there is a linear trend in the data.

Finally, when we plot the data, we also look for outliers that may exert a strong
influence on the regression line, similar to what we see for correlation in Figure 2.55
on page 125.

Regression Caution #3

Outliers can have a strong influence on the regression line, just as we
saw for correlation. In particular, data points for which the explana-
tory value is an outlier are often called influential points because they
exert an overly strong effect on the regression line.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use technology to find the regression line for a dataset with two
quantitative variables

• Calculate predicted values from a regression line

• Interpret the slope (and intercept, when appropriate) of a regression
line in context

• Calculate residuals and visualize residuals on a scatterplot

• Beware of extrapolating too far out when making predictions

• Recognize the importance of plotting your data

Exercises for Section 2.6

SKILL BUILDER 1
In Exercises 2.236 to 2.239, two variables are
defined, a regression equation is given, and one data
point is given.

(a) Find the predicted value for the data point and
compute the residual.

(b) Interpret the slope in context.

(c) Interpret the intercept in context, and if the
intercept makes no sense in this context, explain
why.

2.236 Hgt = height in inches, Age = age in years of
a child.
̂Hgt = 24.3 + 2.74(Age); data point is a child 12 years
old who is 60 inches tall.
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2.237 BAC = blood alcohol content (% of alcohol
in the blood), Drinks = number of alcoholic drinks.
̂BAC = −0.0127 + 0.018(Drinks); data point is an
individual who consumed 3 drinks and had a BAC
of 0.08.

2.238 Weight = maximum weight capable of bench
pressing (pounds), Training = number of hours
spent lifting weights a week.
̂Weight = 95 + 11.7(Training); data point is an indi-
vidual who trains 5 hours a week and can bench 150
pounds.

2.239 Study = number of hours spent studying for
an exam, Grade = grade on the exam.
̂Grade = 41.0 + 3.8(Study); data point is a student
who studied 10 hours and received an 81 on the
exam.

SKILL BUILDER 2
Use technology to find the regression line to predict
Y from X in Exercises 2.240 to 2.243.

2.240

X 3 5 2 7 6
Y 1 2 1.5 3 2.5

2.241

X 2 4 6 8 10 12
Y 50 58 55 61 69 68

2.242

X 10 20 30 40 50 60
Y 112 85 92 71 64 70

2.243

X 15 20 25 30 35 40 45 50
Y 532 466 478 320 303 349 275 221

2.244 Predicting One Depression Score from
AnotherExample 1.28 and Exercise 2.209 introduce
a study examining the impact of diet on depres-
sion. The study used two different ways to mea-
sure depression: the DASS, which uses self-reported
symptoms, and the CESD, a more clinical assess-
ment. On both scales, higher numbers indicate
greater depression symptoms. Figure 2.75 shows the
regression line on the scatterplot of the depression
scores for each of the 75 participants at the start of
the diet/depression experiment (before the effect of
any dietary intervention.)

Figure 2.75 Using one depression scale to predict
another

(a) For the case with the largest negative residual,
estimate each of the following quantities: the
self-reported score, the clinical score, the pre-
dicted clinical score, and the residual.

(b) There appear to be three different cases that
might have the largest positive residual. For the
one with a self-reported score of 0, estimate: the
clinical score, the predicted clinical score, and
the residual.

2.245 Acceleration – Sporty Cars The Cars2020
dataset has several variables that measure how fast
the different car models can accelerate. QtrMile is
the time (in seconds) it takes a car to go a quar-
ter mile from a standing start. Acc030 is the time
(also in seconds) to go from 0 to 30 mph. Figure 2.76
shows a scatterplot with regression line for pre-
dicting the QtrMile time using Acc030 for the 11
“sporty” cars in the dataset.

(a) Estimate the Acc030 and QtrMile times for the
car with the largest positive residual.

(b) Repeat part(a) for the car with the most
extreme negative residual.

Figure 2.76 Using Acc030 to predict QtrMile times for
sporty cars
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2.246 Acceleration – All Cars Exercise 2.245 and
Figure 2.76 deal with the relationship between Qtr-
Mile and Acc030 times for just the 11 cars in
Cars2020 that are classified as sporty. Figure 2.77
has a similar regression fit using all 110 cars in the
dataset. Note that the sporty car points are in the
lower left of this plot.

(a) Which plot (sporty or all cars) shows a
stronger relationship between QtrMile times
and Acc030?

(b) Which regression line has a larger slope?

(c) The correlation between QtrMile and Acc030
for the 11 sporty cars is r = 0.885. Is the correla-
tion for all 110 cars larger or smaller than this?

(d) Which statistic, slope or correlation, do you
think is more reliable for comparing the
strengths of these associations?

Figure 2.77 Using Acc030 to predict QtrMile times for
all cars

2.247 Concentration of CO2 in the Atmosphere
Levels of carbon dioxide (CO2) in the atmosphere
are rising rapidly, far above any levels ever before
recorded. Levels were around 278 parts per million
in 1800, before the Industrial Age, and had never,
in the hundreds of thousands of years before that,
gone above 300 ppm. Levels are now over 400 ppm.
Table 2.38 shows the rapid rise of CO2 concen-
trations over the 55 years from 1960–2015, also
available inCarbonDioxide.82 We can use this infor-
mation to predict CO2 levels in different years.

82Dr. Pieter Tans, NOAA/ESRL, http://www.esrl.noaa.gov/gmd/
ccgg/trends/. Values recorded at the Mauna Loa Observatory in
Hawaii.

(a) What is the explanatory variable? What is the
response variable?

(b) Draw a scatterplot of the data. Does there
appear to be a linear relationship in the data?

(c) Use technology to find the correlation between
year and CO2 levels. Does the value of the cor-
relation support your answer to part (b)?

(d) Use technology to calculate the regression line
to predict CO2 from year.

(e) Interpret the slope of the regression line, in
terms of carbon dioxide concentrations.

(f) What is the intercept of the line? Does it make
sense in context? Why or why not?

(g) Use the regression line to predict the CO2 level
in 2003. In 2025.

(h) Find the residual for 2010.

Table 2.38 Concentration of carbon
dioxide in the atmosphere

Year CO2

1960 316.91
1965 320.04
1970 325.68
1975 331.11
1980 338.75
1985 346.12
1990 354.39
1995 360.82
2000 369.55
2005 379.80
2010 389.90
2015 400.83

2.248 The Honeybee Waggle Dance When honey-
bee scouts find a food source or a nice site for a
new home, they communicate the location to the
rest of the swarm by doing a “waggle dance.”83

They point in the direction of the site and dance
longer for sites farther away. The rest of the bees
use the duration of the dance to predict distance
to the site. Table 2.39 shows the distance, in meters,
and the duration of the dance, in seconds, for seven
honeybee scouts.84 This information is also given in
HoneybeeWaggle.

83Check out a honeybee waggle dance on YouTube!
84Seeley, T., Honeybee Democracy, Princeton University Press,
Princeton, NJ, 2010, p. 128.
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Table 2.39 Duration of a
honeybee waggle dance to
indicate distance to the source

Distance Duration

200 0.40
250 0.45
500 0.95
950 1.30
1950 2.00
3500 3.10
4300 4.10

(a) Which is the explanatory variable? Which is the
response variable?

(b) Figure 2.78 shows a scatterplot of the data. Does
there appear to be a linear trend in the data? If
so, is it positive or negative?

(c) Use technology to find the correlation between
the two variables.

(d) Use technology to find the regression line to
predict distance from duration.

(e) Interpret the slope of the line in context.

(f) Predict the distance to the site if a honeybee
does a waggle dance lasting 1 second. Lasting
3 seconds.
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Figure 2.78 Using dance duration to predict distance
to source

2.249 Is It Getting Harder to Win a Hot Dog Eat-
ing Contest?Every Fourth of July, Nathan’s Famous
in New York City holds a hot dog eating contest,
which we discuss in Exercise 2.128. Table 2.27 on
page 99 shows the winning number of hot dogs
eaten every year from 2002 to 2019, and the data
are also available inHotDogs. Figure 2.79 shows the
scatterplot with the regression line.

(a) Is the trend in the data mostly positive or
negative?
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Figure 2.79 Winning number of hot dogs

(b) Using Figure 2.79, is the residual larger in 2007
or 2008? Is the residual positive or negative in
2014?

(c) Use technology to find the correlation.

(d) Use technology to find the regression line to
predict the winning number of hot dogs from
the year.

(e) Interpret the slope of the regression line.

(f) Predict the winning number of hot dogs in 2020.
(Bonus: Find the actual winning number in 2020
and compute the residual.)

(g) Why would it not be appropriate to use this
regression line to predict the winning number
of hot dogs in 2030?

2.250 Fluoride Exposure Can Be Harmful Many
communities add fluoride to their drinking water to
prevent tooth decay. However, fluoride crosses the
placenta and laboratory studies show that it accu-
mulates in brain regions involved in learning and
memory. A study85 of 512 Canadian women found
that fluoride exposure during pregnancy was asso-
ciated with lower IQ scores in children. The article
states that “A 1-mg higher daily intake of fluoride
among pregnant women was associated with a 3.66
lower IQ score in their children.”

(a) Is this an experiment or an observational study?

(b) What is the explanatory variable? What is the
response variable?

(c) Is the correlation between these two variables
positive or negative?

(d) What specific quantity is being described in the
quoted sentence?

85Green R, Lanphear B, and Hornung R, “Association Between
Maternal Fluoride Exposure During Pregnancy and IQ scores in
Offspring in Canada,” JAMA Pediatrics, August 19, 2019.
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2.251 Oxygen and Lung Cancer A recent study86

has found an association between elevation and
lung cancer incidence. Incidence of cancer appears
to be lower at higher elevations, possibly because
of lower oxygen levels in the air. We are told that
“for every one km rise in elevation, lung cancer inci-
dence decreased by 7.23” where cancer incidence is
given in cases per 100,000 individuals.

(a) Is this a positive or negative association?

(b) Which of the following quantities is given in the
sentence in quotes: correlation, slope of regres-
sion line, intercept of regression line, or none of
these?

(c) What is the explanatory variable? What is the
response variable?

2.252 Football and Cognitive Percentile Exercise
2.165 on page 112 introduces a study that exam-
ines several variables on collegiate football play-
ers, including the variable Years, which is number
of years playing football, and the variable Cogni-
tion, which gives percentile on a cognitive reaction
test. Exercise 2.212 shows a scatterplot for these
two variables and gives the correlation as −0.366.
The regression line for predicting Cognition from
Years is:

̂Cognition = 102 − 3.34 ⋅ Years

(a) Predict the cognitive percentile for someone
who has played football for 8 years and for
someone who has played football for 14 years.

(b) Interpret the slope in terms of football and cog-
nitive percentile.

(c) All the participants had played between 7 and
18 years of football. Is it reasonable to interpret
the intercept in context? Why or why not?

2.253 Football and Brain Size Exercise 2.165 on
page 112 introduces a study that examines several
variables on collegiate football players, including
the variable Years, which is number of years playing
football, and the variable BrainSize, which is vol-
ume of the left hippocampus in the brain measured
in 𝜇L. Figure 2.80 shows a scatterplot of these two
variables along with the regression line. For each
of the following cases, estimate from the graph the
number of years of football, the predicted brain size,
the actual brain size, and the residual.

86Simeonov, K.P., and Himmelstein, D.S., “Lung cancer inci-
dence decreases with elevation: Evidence for oxygen as an
inhaled carcinogen,” Peer Journal, 2015; 3:e705.
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Figure 2.80 Relationship of football experience and
brain hippocampus size

(a) The case with 18 years of football experience.

(b) The case with the largest positive residual.

(c) The case with the largest negative residual.

2.254 TV Hours Over a Decade The PASeniors
dataset has survey data from a sample of Pennsylva-
nia high school seniors who participated in the Cen-
sus at Schools project over the decade from 2010 to
2019. One of the variables (TVHours) asks about
number of hours spent watching TV each week. To
see how that variable might change over the decade
we run a regression where the explanatory variable t
measures time (in years) over the decade with t = 0
in 2010 and t = 9 in 2019. The fitted line predicting
the average weekly hours of TV each year is

̂TVHours = 8.835 − 0.397t

Based on the fitted line, about how much has the
average weekly TV hours increased or decreased
over this decade?

2.255 Computer Hours Over a Decade Repeat
Exercise 2.254 using the number of hours using
a computer each week (ComputeHours) as the
response variable (rather than TVHours). The fit-
ted line predicting the average weekly hours on a
computer each year is

̂ComputeHours = 14.347 + 0.467t

Based on the fitted line, about how much has
the average weekly computer hours increased or
decreased over this decade?

2.256 Runs and Wins in Baseball In Exercise 2.174
on page 115, we looked at the relationship between
total hits by team in the 2019 season and division
(NL or AL) in baseball. Two other variables in the
BaseballHits2019 dataset are the number of wins



150 CHA P T E R 2 Describing Data

and the number of runs scored during the season.
The dataset consists of values for each variable from
all 30 MLB teams. From these data we calculate the
regression line:

̂Wins = −31.94 + 0.1443(Runs)

(a) Which is the explanatory and which is the
response variable in this regression line?

(b) Interpret the intercept and slope in context.

(c) The Houston Astros won a league-high 107
games while scoring 920 runs in 2019. Predict
the number of games won by Houston using the
regression line. Calculate the residual. Were the
Astros efficient at winning games with 920 runs?

2.257 Presidential Elections In Example 2.43 on
page 140, we used the approval rating of a president
running for re-election to predict the margin of vic-
tory or defeat in the election. We saw that the least
squares line is ̂Margin = −36.76 + 0.839 (Appro𝑣al).
Interpret the slope and the intercept of the line in
context.

2.258 Height and Weight Using the data in the
StudentSurvey dataset, we use technology to find
that a regression line to predict weight (in pounds)
from height (in inches) is

̂Weight = −170 + 4.82(Height)

(a) What weight does the line predict for a person
who is 5 feet tall (60 inches)? What weight is
predicted for someone 6 feet tall (72 inches)?

(b) What is the slope of the line? Interpret it in con-
text.

(c) What is the intercept of the line? If it is reason-
able to do so, interpret it in context. If it is not
reasonable, explain why not.

(d) What weight does the regression line predict
for a baby who is 20 inches long? Why is it not
appropriate to use the regression line in this
case?

2.259 NFL Pre-Season Using 15 years of National
Football League (NFL) data, we calculate the fol-
lowing regression line to predict regular season wins
(Wins) by number of wins in the 4 pre-season games
(PreSeason):

̂Wins = 7.27 + 0.35(PreSeason)

(a) Which is the explanatory variable, and which is
the response variable in this regression line?

(b) How many wins does the regression line predict
for a team that won 2 games in pre-season?

(c) What is the slope of the line? Interpret it in
context.

(d) What is the intercept of the line? If it is reason-
able to do so, interpret it in context. If it is not
reasonable, explain why not.

(e) How many regular season wins does the regres-
sion line predict for a team that wins 100 pre-
season games? Why is it not appropriate to use
the regression line in this case?

2.260 Is the Honeybee Population Shrinking? The
Honeybee dataset contains data collected from
the USDA on the estimated number of honeybee
colonies (in thousands) for the years 1995 through
2012.87 We use technology to find that a regression
line to predict number of (thousand) colonies from
year (in calendar year) is

̂Colonies = 19, 291, 511 − 8.358(Year)

(a) Interpret the slope of the line in context.

(b) Often researchers will adjust a year explana-
tory variable such that it represents years since
the first year data were colleected. Why might
they do this? (Hint: Consider interpreting the y-
intercept in this regression line.)

(c) Predict the bee population in 2100. Is this pre-
diction appropriate (why or why not)?

PREDICTING PERCENT BODY FAT
Exercises 2.261 to 2.263 use the dataset BodyFat,
which gives the percent of weight made up of body
fat for 100 men as well as other variables such as
Age, Weight (in pounds), Height (in inches), and
circumference (in cm) measurements for the Neck,
Chest, Abdomen, Ankle, Biceps, andWrist.88

2.261 UsingWeight to Predict Body Fat Figure 2.81
shows the data and regression line for using weight
to predict body fat percentage. For the case with the
largest positive residual, estimate the values of both
variables. In addition, estimate the predicted body
fat percent and the residual for that point.

2.262 Using Abdomen Circumference to Predict
Body Fat Figure 2.82 shows the data and regres-
sion line for using abdomen circumference to pre-
dict body fat percentage.

87USDA National Agriculture and Statistical Services, http://
usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?
documentID=1191. Accessed September 2015.
88A sample taken from data provided by R. Johnson in
“Fitting Percentage of Body Fat to Simple Body Measure-
ments,” Journal of Statistics Education, 1996, http://www.amstat
.org/publications/jse/v4n1/datasets.johnson.html.
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percent body fat

(a) Which scatterplot, the one using Weight in
Figure 2.81 or the one using Abdomen in
Figure 2.82, appears to contain data with a
larger correlation?

(b) In Figure 2.82, one person has a very large
abdomen circumference of about 127 cm. Esti-
mate the actual body fat percent for this person
as well as the predicted body fat percent.

(c) Use Figure 2.82 to estimate the abdomen cir-
cumference for the person with about 40%
body fat. In addition, estimate the residual for
this person.

2.263 Using Neck Circumference to Predict Body
Fat The regression line for predicting body fat
percent using neck circumference is

̂BodyFat = −47.9 + 1.75 ⋅Neck

(a) What body fat percent does the line predict for
a person with a neck circumference of 35 cm?
Of 40 cm?

(b) Interpret the slope of the line in context.

(c) One of the men in the study had a neck circum-
ference of 38.7 cm and a body fat percent of
11.3. Find the residual for this man.

2.264 Predicting Audience Movie Scores Can
movie critics help predict audience ratings for
movies? The RottenTomatoes variable in Holly-
woodMovies gives a composite rating on a 0-100
scale based on critics for each movie. The Audi-
enceScore gives a similar rating based on audience
responses.

(a) Produce a scatterplot with fitted regression line
and comment on any relationship it shows.

(b) Find the prediction equation and interpret the
slope in the context of movie ratings.

(c) The movie Green Book won the Academy
Award for Best Picture of 2018. It has a rotten
tomatoes score of 78 and audience rating of 91.
Find the residual for this movie.

2.265 Faculty Salary and Completion Rate The
CompRate variable in CollegeScores4yr records the
percentage of students at each four-year school who
graduate within six years (known as the completion
or graduation rate). Another variable, FacSalary,
gives the average monthly salary for faculty (in dol-
lars) at each school.

(a) Use technology to find a regression line for
predicting the completion rate at four-year col-
leges, based on their faculty salaries.

(b) What does the fitted line indicate about the
expected completion rate at a school with aver-
age monthly faculty salary of $5,000?

(c) Does it look like higher completion rates are
associated with higher faculty salaries?

2.266 Predicting Highway MPG Use the data in
Cars2020 to fit a regression line to predict the high-
way gas mileage (HwyMPG) of car models using
the mileage rating for city driving (CityMPG).

(a) Write down the prediction equation and inter-
pret the slope in the context of this data situa-
tion.

(b) The Toyota Corolla is rated at 23 mpg in the city
and 40 mpg on the highway. Find the residual
for the Corolla for this fitted model.

2.267 Predicting World Gross Revenue for a Movie
from Its Opening Weekend Use the data in Holly-
woodMovies to use revenue from a movie’s opening
weekend (OpeningWeekend) to predict total world
gross revenues by the end of the year (WorldGross).
Both variables are in millions of dollars.

(a) Use technology to create a scatterplot for this
relationship. Describe the scatterplot: Is there
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a linear trend? How strong is it? Is it positive
or negative? Does it look as if revenue from a
movie’s opening weekend is a good predictor of
its future total earnings?

(b) The scatterplot contains an outlier with an
unusually high world gross for a relatively small
opening weekend. Use the dataset to identify
this movie.

(c) Use technology to find the correlation between
these variables.

(d) Use technology to find the regression line.

(e) Use the regression line to predict world gross
revenues for a movie that makes 50 million dol-
lars in its opening weekend.

2.268 Using Life Expectancy to Predict Happiness
In Exercise 2.220 on page 131, we introduce the
dataset HappyPlanetIndex, which includes infor-
mation for 143 countries to produce a “happiness”
rating as a score of the health and well-being of the
country’s citizens, as well as information on the eco-
logical footprint of the country. One of the variables
used to create the happiness rating is life expectancy
in years. We explore here how well this vari-
able, LifeExpectancy, predicts the happiness rating,
Happiness.

(a) Using technology and the data in HappyPlan-
etIndex, create a scatterplot to use LifeEx-
pectancy to predict Happiness. Is there enough
of a linear trend so that it is reasonable to con-
struct a regression line?

(b) Find a formula for the regression line and dis-
play the line on the scatterplot.

(c) Interpret the slope of the regression line in con-
text.

2.269 Pick a Relationship to Examine Choose one
of the following datasets: USStates, StudentSurvey,
AllCountries, or NBAPlayers2019, and then select
any two quantitative variables that we have not yet
analyzed. Use technology to create a scatterplot of
the two variables with the regression line on it and
discuss what you see. If there is a reasonable linear
relationship, find a formula for the regression line.
If not, find two other quantitative variables that do
have a reasonable linear relationship and find the
regression line for them. Indicate whether there are
any outliers in the dataset that might be influential
points or have large residuals. Be sure to state the
dataset and variables you use.

2.7DATA VISUALIZATION AND MULTIPLE VARIABLES

In Sections 2.1 through 2.6 we consider basic graphs that can be used to visualize the
distribution of a single variable (such as a histogram or a barchart), or a relationship
between two variables (such as a scatterplot or side-by-side boxplot). Often we may
wish to extend these basic methods or create an entirely new type of graph to convey
more information. For example, we may wish to display more than two variables, to
incorporate geographic information, to track data over time, or to connect our graph
to the specific applied context of our dataset in other ways. Our only guiding prin-
ciple is to facilitate quick and accurate interpretation of data, and this allows plenty
of room for creativity. Good data visualization (“data viz”) can involve elements
of statistics, computer graphics, and artistic design.

Here we explore some additional, more advanced, techniques to visualize data,
including ways to visually explore relationships between multiple variables.

Augmented Scatterplots for More than Two Variables
The scatterplot, introduced in Section 2.5, displays a relationship between two quan-
titative variables by letting the horizontal axis correspond to one variable, the verti-
cal axis correspond to the other variable, and plotting a point for each pair of values.
For a basic scatterplot the type of “point” (for example, a black circle) does not
change. However, we can incorporate other variables by letting the size, shape, or
color of the points vary. A scatterplot in which the size of the point depends on
another variable is sometimes called a bubble chart or bubble plot.

For example, Figure 2.83 gives a scatterplot of household income vs percent with
a college degree for all US States, using theUSStates dataset. The size of each point
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Figure 2.83 Augmented
scatterplot showing
various information for
all US states
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is proportional to the population of the state, and the color of each point indicates
the region of the state (South, West, Northeast, or Midwest). In this single figure we
are showing four variables: three quantitative variables (HouseholdIncome,College,
Population) and one categorical variable (Region). The regression line for predicting
HouseholdIncome from College is also shown. This augmented scatterplot can be
used to answer questions about any combination of these four variables.

Example 2.47
Figure 2.83 shows income, education, population, and region of US states.

(a) California is in the West and has the largest population of all states. About what
percentage of California residents have a college degree?

(b) On average, which region of the US has the highest rate of college education?

(c) Is there a region of the US that appears to have high household income relative
to college education rate?

Solution (a) California is represented by the largest circle. It is colored purple for being in
the western region and appears to be centered over a college % that is slightly
below 35%.

(b) The northeast states (reddish points) tend to be toward the right of the plot,
indicating that these states generally have higher college education rates.

(c) Western states (purple points) generally appear to have high household income
relative to their college education rate. There are several purple points that are
far above the regression line.

If we are not restricted to the printed page, scatterplots and other graphs can be
augmented further by making them interactive or dynamic. An interactive graph can
give additional information based on user input. For example, an interactive version
of Figure 2.83 may give the name of the corresponding state if your mouse curser
hovers over a particular point. A dynamic graph can change over time, like a movie.

A great example of augmented scatterplots that are both dynamic and inter-
active is the Gapminder software (https://www.gapminder.org/tools). This online
applet can display worldwide health, economic, and environmental data aggregated
by country over time. There are several variables to choose for the horizontal and
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Figure 2.84 A screenshot of the Gapminder software∗

vertical axes of a scatterplot, and the applet allows us to see how the scatterplot has
changed historically year-by-year. By default, the color of a given point gives the
world region of the country, and the size of the points give the population of the
country.

Example 2.48
Gapminder: Child Mortality vs Income

In the Gapminder applet, set the vertical axis to child mortality (deaths under age 5
per 1000 births) and the horizontal axis to income (GDP in current US dollars, per
person). Click the play icon and observe how the scatterplot changes over time.89

This dynamic scatterplot allows us to answer the following questions:

(a) In 2018, do child mortality rate and income per person have a positive or nega-
tive association?

(b) In 1800, which country has the largest income per person? In 2000?

(c) In 1800, what are the two largest countries by population? In 2018?

(d) In general, what is the worldwide trend in child mortality rate and income per
person from 1800 to 2018?

Solution (a) Pause at the year 2018. Child mortality rate and income per person have a clear
negative association (see Figure 2.84).

(b) When we start at the first frame (1800) and hover over the rightmost point, we
see that the country with the largest income per person is the Netherlands.When
we pause at the year 2000, we see that the country with the highest income per
person is Qatar.

(c) When we start at 1800 and hover over the two largest points, we see that they
are China and India. When we do the same in 2018, we see that the two largest
countries by population are still China and India.

89For a very exciting commentary on this dynamic scatterplot, see the TED talk by Hans Rosling, a
founder of Gapminder: https://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.
∗FREE TO USE! CC- BY GAPMINDER.ORG.
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(d) Play the graph from start to finish. In general, with each passing year we see
child mortality decrease and income per person increase.

Displaying Geographic Data
Data are popularly referred to as “numbers + context,” and it is nice when visual-
ization of data connects to the context, in addition to simply showing the numbers.
If the data correspond to geographic entities, one way to connect to their context is
to display data or summary statistics on a map. A common approach is to color each
geographic unit (for example: states, countries, or cities) by the variable of interest.
If the variable is categorical we can use a different color for each category, analo-
gous to using different colors for different points in an augmented scatterplot. If the
variable is quantitative, the color of each unit can be given by a color-scale, in which
values are associated with a color spectrum (for example: light to dark, or green to
blue); this is sometimes called a heatmap.

As an example of a heatmap, we consider population density from theAllCoun-
tries dataset. Here our geographic units are countries, and we can show all countries
on a world map. In Figure 2.85, the color of each country is determined by matching
that country’s population density in people per square kilometer with a color on the
spectrum from light yellow (low density) to dark red (high density).

Example 2.49
Population Density Heatmap

Using the population density in Figure 2.85, rank the following countries from low-
est to highest population density: United States, India, Canada, Mexico, and China.

Solution Looking at their colors, we see that Canada (light yellow) is the least dense,
then the United States (yellow), then Mexico (orange), then China (light red), then
India (red).

0.1

Population Density (Million per 1000 sq.km)

500

Figure 2.85 A map of world countries, colored by population density.
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Displaying Data Over Time
In many situations, data are measured over multiple points in time. In such cases
we often plot time on the horizontal axis and a quantitative variable of interest on
the vertical axis to produce a time series plot. Since we typically have just one data
value at each time period, we usually connect the points for adjacent time periods
with line segments to help visualize trends and pattern in the data over time (and
may omit plotting the points themselves.) Although there may be lots of short term
fluctuations in a time series plot, we try to look for long term general trends, possible
striking departures from trends, and potential seasonal patterns that are repeated at
regular intervals.

Example 2.50
Quarterly Housing Starts (2000–2018)

A common measure of economic activity is the number of new homes being con-
structed. Data in HouseStarts2018 include the number (in thousands) of new resi-
dential houses started in the US90 each quarter from 2000 to 2018. Figure 2.86(a)
shows a time series plot of the data over all 19 years and Figure 2.86(b) focuses on
just the five year period from 2014 to 2018 to better see the quarterly seasonal pat-
tern. Discuss what these plots tell us about trends in housing starts over this time
period.

Solution In Figure 2.86(a) we see that housing starts in the US generally increased until about
2006 when a substantial decline started that lasted until around 2009 (corresponding
to the worldwide economic slowdown often called the Great Recession). Housing
starts began to recover after 2009 and show modest increases through 2018, but still
lag well below the levels of the early 2000’s.

In Figure 2.86(b) we examine the recovery more closely and notice a seasonal
pattern that occurs throughout the time series. Housing starts tend to be low in the
winter (Q1=January-March), rise rapidly to a high level in the spring (Q2=April-
June), drop slightly, but stay pretty high in the summer (Q3=July-September), and
then fall quite a bit in the fall (Q4=October-December). This pattern, a clear reflec-
tion of the influence of favorable building weather, repeats over the five-year period,
even as the overall trend shows a steady increase.

(a) 2000–2018
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(b) 2014–2018

Figure 2.86 Quarterly housing starts in the United States

90Data on housing starts downloaded from the US Census Bureau website at https://www.census.gov/
econ/currentdata/
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D A T A 2 . 13 Berkeley Growth Study
In the 1940s and 1950s, the heights of 39 boys and 54 girls, in centimeters, were
measured at 30 different time points between the ages of 1 and 18 years as part
of the University of California Berkeley growth study.91 The data are available in
HeightData. ◼

The Berkeley growth data involves many repeated measures over time (age),
so it makes sense to plot the data in a chart where age is given on the horizontal
axis, and the height of the children is given on the vertical axis. To display the data
for a single child, we could simply make a time series plot of height that shows the
measurements at each of the 30 different age times for that child. To show the data
for all children at once we can use a spaghetti plot. In a spaghetti plot, we plot all
available measurements and connect the points within each subject (in this case,
each child) with a line, like many strands of spaghetti.

This is a spaghetti pot, NOT a spaghetti plot

In Figure 2.87 a line shows the growth trajectory for each child in the Berkeley
growth study. We again make use of color, letting red lines correspond to girls and
blue lines correspond to boys.

Figure 2.87 Spaghetti
plot of heights in the
Berkeley growth study,
colored by sex
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91Tuddenham, R.D., and Snyder, M.M., (1954). “Physical growth of California boys and girls from birth
to age 18”, University of California Publications in Child Development, 1, 183–364.
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Example 2.51
Using Figure 2.87, showing childhood growth:

(a) Generally when do girls tend to stop growing in height? When do boys stop
growing in height?

(b) Was the tallest participant in this study from ages 2 to 12 a boy or a girl?

Solution (a) For girls, growth appears to slow substantially between ages 13 and 14 (after
this, the slope of the red lines are very small). For boys, growth appears to slow
between the ages of 15 and 16.

(b) A red line is above all others between age 2 and age 12, so the tallest individual
between these ages is a girl.

Breaking it Down
Many of the basic plots that we’ve learned in previous sections can easily be
extended just by breaking it down by a categorical variable. In other words, instead
of looking at one plot containing all the cases, we break it down into several plots,
where each plot includes only the cases within a certain subgroup. Often, breaking
the data down into subgroups can reveal new and important insights.

D A T A 2 . 14 Discrimination among the Developmentally Disabled?
The California Department of Developmental Services (DDS) allocates funds to
support developmentally disabled California residents (such as those with
autism, cerebral palsy, or intellectual disabilities) and their families. We’ll refer
to those supported by DDS as DDS consumers. An allegation of discrimination
was made when it was found that average annual expenditures were
substantially lower for Hispanic consumers than for white non-Hispanic
consumers (who, for simplicity below, we refer to simply as white consumers.)
The dataset DDS includes data on annual expenditure (in $), ethnicity, age, and
sex for 1000 DDS consumers.92 Do these data provide evidence of
discrimination? ◼

Example 2.52
Expenditure by Ethnicity

Compare annual expenditure for Hispanic consumers versus white consumers.

Solution Figure 2.88 provides a visual comparison of annual DDS expenditure values for
Hispanic consumers versus white consumers. From the graph, it is immediately
apparent that expenditures tend to be much higher for white consumers than for
Hispanic consumers. Computing means for each group, we find that the average
annual expenditure is $11,066 for Hispanic consumers, as opposed to $24,698 for
white consumers. Based on this analysis of two variables, it appears that these
data provide very strong evidence of discrimination (we could formalize this with
techniques we’ll learn in Chapter 4 or 6; this difference is extremely significant), with
expenditures much higher, on average, for white non-Hispanics than for Hispanics.

92Taylor, S.A. and Mickel, A.E. (2014). “Simpson’s Paradox: A Data Set and Discrimination Case Study
Exercise,” Journal of Statistics Education, 22(1). The dataset has been altered slightly for privacy reasons,
but is based on actual DDS consumers.
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Figure 2.88 Annual
expenditure for Hispanic
consumers vs white
consumers
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An initial bivariate exploration of expenditure by ethnicity finds very strong
evidence of discrimination. What happens if we “break it down” by age? To make
the data easier to visualize in separate groups, we’ll work with age group categories
rather than age itself.

Example 2.53
Expenditure by Ethnicity, Broken Down by Age Group

Compare annual expenditure for Hispanic consumers versus white consumers,
broken down by age group.

Solution Figure 2.89 provides a visual comparison of annual expenditure values for Hispanic
residents versus white residents, broken down by age group. Each set of side-by-side
boxplots can be interpreted in the usual way, except that now we have a separate set
of side-by-side boxplots for each age group (with age groups shown along the top).
Take a close look at this plot, and in particular, look at the comparison of Hispanic to
white expenditures within each age group. We now see that, within each age group,
expenditures are actually higher for Hispanics than for whites!

Figure 2.89 Expenditure
for Hispanic vs white, by
age group
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In Example 2.53 we find that within age groups, expenditures are consistently
higher for Hispanics than for whites, yet in Example 2.52 we find that expenditures
overall are higher for whites than for Hispanics. How is this possible?? The expla-
nation lies in one additional data visualization.
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Example 2.54
Ethnicity by Age Group

Compare ethnicity counts by age group.

Solution Figure 2.90 shows a bar chart displaying the number of people within each ethnic
category, broken down by age group. For example, the first red bar goes up to 44
on the y-axis, showing that there are 44 Hispanic consumers within the 0-5 years old
age group. This plot shows that the sample contains many more Hispanic children
than white children, and many more white adults than Hispanic adults.

Figure 2.90 Ethnicity
counts by age group
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Combining the information from Figure 2.89 and Figure 2.90, we see that white
consumers tend to be older than Hispanic consumers (Figure 2.90), and older con-
sumers tend to receive higher expenditures than younger consumers (Figure 2.89).
This explains why the white consumers receive higher expenditures overall: not
because of discrimination, but just because they tend to be older. These visualiza-
tions are shown together in Figure 2.91, illustrating this point. Here age is a con-
founding variable, as introduced in Section 1.3: age is associated with both ethnicity
and expenditure, confounding the relationship. Failing to account for the confound-
ing variable can paint a very misleading picture. Luckily, DDS called in a statistician,
and was not falsely charged with discrimination.
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Figure 2.91 Comparing the visualizations of DDS expenditure by ethnicity, with age as a confounding variable



2.7 Data Visualization and Multiple Variables 161

This is an example of Simpson’s Paradox, which occurs when the relationship
between two variables switches when the data are broken down by a third variable.
Although a true reversal is rare, it is often true that the relationship between two
variables differs when a third variable is taken into account. Incorporatingmore than
just two variables can be important for revealing the true story the data have to tell.

Other Visualization Examples
The internet has many creative, interactive, and fascinating visualizations of data.
Here, we link to a small sample of great visualization examples that we encourage
you to check out:

• This interactive visual from the NY Times allows you to guess the relationship
between income and percent of children attending college, then compares your
guess with the guesses of others and the reality: http://www.nytimes.com/interactive/
2015/05/28/upshot/you-draw-it-how-family-income-affects-childrens-college-
chances.html.

• This interactive visual from fivethirtyeight.com is an interactive spaghetti plot of
the performance history of every team in the national basketball association:
http://projects.fivethirtyeight.com/complete-history-of-the-nba/.

• This visual, by Mauro Martino (mamartino.com), shows the increase in political
polarization in the United States Congress since 1948: http://www.mamartino.com/
projects/rise_of_partisanship/.

• This creative dynamic visualization by Nathan Yau (flowingdata.com) shows a day
in the life of 1, 000 people : http://flowingdata.com/2015/12/15/a-day-in-the-life-of-
americans/.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Interpret information from a variety of data visualizations

• Recognize ways to include multiple variables, and the value of includ-
ing additional variables, in a display

• Recognize ways to include geographic data in a display

• Recognize ways to display time-dependent data

• Recognize that there are many effective and creative ways to display
data

• Use data visualization to deepen understanding of confounding
variables

Exercises for Section 2.7

There aremany links included in these exercises, and
some will probably break during the life of this text.
We apologize in advance for any inconvenience.

2.270 Considering Direction of Association

(a) How many variables are included in the
scatterplot in Figure 2.92(a)? Identify each as
categorical or quantitative. Estimate the range
for Variable1 and for Variable2.

(b) In Figure 2.92(a), does the association between
the variables appear to be positive or negative?

(c) Figure 2.92(b) shows the same scatterplot with
regression line added. Which variable is the
response variable? Does the line show a posi-
tive or negative association?

(d) Figure 2.93(a) shows the same scatterplot with
a third variable included. Is the new variable
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Figure 2.92 Describe the association between these variables

categorical or quantitative? If categorical, how
many categories? If quantitative, estimate the
range.

(e) In Figure 2.93(a), if we only consider cases in
Group A, does the association between Vari-
able1 and Variable2 appear to be positive or
negative? How about in Group B? Group C?
Group D?

(f) Figure 2.93(b) shows the same scatterplot as
Figure 2.93(a) with regression lines added
within each of the four groups. Does the regres-
sion line for Group A show a positive or nega-
tive association? How about Group B? Group
C? Group D?

(g) What happens to the direction of association
shown in Figure 2.92 when we add the addi-
tional information contained in Variable3 as in
Figure 2.93? (This is an example of Simpson’s
Paradox for quantitative variables.)

2.271 Visualizing the Happy Planet Index Fig-
ure 2.94 shows a scatterplot illustrating three
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Figure 2.93 Describe the association in each group

different variables from the dataset HappyPlan-
etIndex, introduced in Exercise 2.220. The variable
Happiness is a measure of the well-being of a coun-
try, with larger numbers indicating greater happi-
ness, health, and well-being. The variable Footprint
is a per capita measure of the ecological impact of
a country on the environment, with larger numbers
indicating greater use of resources (such as gas and
electricity) and more damage to the planet. A third
variable, Region, is given by the code shown in the
top right, and is categorized as follows: 1 = Latin
America, 2 = Western nations, 3 = Middle East,
4 = Sub-Saharan Africa, 5 = South Asia, 6 = East
Asia, 7 = former Communist countries.

(a) Classify each of the three variables as categori-
cal or quantitative.

(b) Which two regions seem to have the greatest
happiness score? Which region seems to have
the greatest ecological footprint?

(c) Which region seems to have the lowest happi-
ness score? Does the ecological footprint tend
to be high or low in that area?
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Figure 2.94 Happiness, ecological footprint, and region

(d) Looking at the scatterplot overall and ignoring
region, does there appear to be a positive rela-
tionship between happiness score and ecologi-
cal footprint?

(e) Considering only region 2 (Western nations),
does there appear to be a positive relationship
between happiness score and ecological foot-
print?

(f) The country with the highest happiness score is
Costa Rica. Is it in the top left, top right, bottom
left, or bottom right of the scatterplot?

(g) According to Nic Marks, the developer of the
Happy Planet Index, we should be trying to
move more countries to the top left of the scat-
terplot. To do this for countries in region 4
(Sub-Saharan Africa), which variable should we
focus on and should we be trying to increase or
decrease this variable for these countries? For
countries in region 2 (Western nations), which
variable should we focus on and should we be
trying to increase or decrease this variable for
these countries?

2.272 Height, Weight, and BodyFat Figure 2.95
shows a bubble plot of height, weight, and body
fat percentage for a sample of 100 men, from the
dataset BodyFat, introduced in Exercise 2.219. The
body fat percentage is indicated by the size of
the bubble for each case.

(a) How many variables are shown in the scatter-
plot? Identify each as categorical or quantita-
tive.

(b) Ignoring bubble size, does there appear to be a
positive or negative relationship between height
and weight?

(c) Dothebubbles tendtobe largeron the tophalfof
the scatterplot or the bottom half? Interpret this
in context and in terms of the relevant variables.

(d) Body fat percentage depends on more than just
height and weight. There are two cases who are
about 66 inches tall, one weighing about 125
pounds and the other about 140 pounds. Which
has the larger body fat percentage?

(e) There are two cases weighing about 125 pounds,
one about 66 inches tall and the other about
67 inches tall. Which has a larger body fat
percentage?
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Figure 2.95 Height, weight, and body fat
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(f) Does the person with the largest weight have a
body fat percentage that is relatively large, rela-
tively small, or pretty average?

(g) Does the person with the largest height have a
body fat percentage that is relatively large, rel-
atively small, or pretty average? How about the
person with the third largest height?

(h) This particular sample included only males, but
if we created a similar graph for a dataset
including both males and females, indicate one
way in which we could incorporate the fourth
variable of sex in the graph.

2.273 Visualizing Football and Brain Size
Exercise 2.165 introduces a study in which the num-
ber of years playing football and the size of the
hippocampus in the brain were recorded for each
person in the study. There were three different
groups in the study: football players who had been
diagnosed with at least one concussion, football
players who had never been diagnosed with a con-
cussion, and a control group of people who had
never played football. Figure 2.96(a) shows a graph
that incorporates all three of these variables.

(a) Identify each variable as quantitative or cate-
gorical.

(b) Why are all the blue dots stacked up on the left?

(c) Overall, does there appear to be a positive
or negative association (or no association)
between years playing football and hippocam-
pus size?

(d) Figure 2.96(b) shows the same graph with
regression lines for the two groups of football
players. Which of the groups has the line that is
lower on the graph?What does this tell us in the
context of the three variables?

(e) Which of the groups has the line with the
steeper slope?
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Figure 2.96 Brain size, football experience, and concussions

2.274 Carbon Dioxide Levels Over Time Scien-
tists are concerned about global warming and the
effect of carbon dioxide emissions on the atmo-
sphere. Figure 2.97 shows the concentration of car-
bon dioxide (CO2) in the atmosphere, in parts per
million (ppm), over two different time intervals.
Often, plots of data over time can look very dif-
ferent depending on the time interval selected for
the graph. Figure 2.97(a) shows the concentration93

of CO2 during the period from 1959 to 2015, while
Figure 2.97(b) shows the concentration94 over a
very different window: the last 400,000 years!!

(a) Using Figure 2.97(a), estimate the CO2 concen-
tration in 1960. Estimate the CO2 concentration
in 2015.

(b) Is CO2 concentration primarily increasing,
decreasing, or oscillating up and down during
the period from 1959 to 2015?

(c) In the period of time shown in Figure 2.97(b),
is CO2 concentration primarily increasing,
decreasing, or oscillating up and down?

(d) In Figure 2.97(b), locate the portion of data that
is shown in Figure 2.97(a). What does the curve
look like on that piece?

(e) What was the highest concentration of CO2
ever in the 400,000 year history of the Earth,
before 1950?

(f) For more data visualization on this subject,
watch the 3-minute animated video “CO2
Movie” at http://www.esrl.noaa.gov/gmd/ccgg/
trends/history.html.

93Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/
trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanog-
raphy (scrippsco2.ucsd.edu/).
94Data from the Vostok Ice Core project, Barnola, J.M., Ray-
naud, D., Lorius, C., and Barkov, N.I., http://cdiac.ornl.gov/ftp/
trends/co2/vostok.icecore.co2



2.7 Data Visualization and Multiple Variables 165

310

320

330

340

350

360

370

380

390

400

1959 1968 1977 1986

(a)

Year

C
O

2

1995 2004 2013

200

250

300

350

400

–400000 –300000 –200000

(b)

YrsAgo

C
O

2

–100000

1950

2015

0

Figure 2.97 Carbon dioxide levels over time, in two very different windows

2.275 Forty-Yard Dash at the NFL Combine Every
year the National Football League invites 335 draft
eligible college football players to a scouting com-
bine where they participate in a variety of drills
and exercises. One of the more popular drills, called
the 40-yard dash, is the time it takes each player
to run 40-yards. We computed the average 40-yard
dash time every season from 1990 to 2016 for all
players at two positions: wide receiver (WR), who
receive passes from the quarterback, and defensive
cornerback (DC), who try to stop the wide receivers
from catching the ball. These data are presented as
a spaghetti plot in Figure 2.98.

(a) Describe the general trend of both positions.
Are the players getting faster or slower?

(b) In 2016 which position had a faster average 40
time?

(c) Does one position appear to be consistently
faster than the other?
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Figure 2.98 Average 40 yard dash time by season for
WR and DC

2.276 Golden State Warriors: One Game During a
record breaking season the Golden State Warriors
of the National Basketball Association (NBA) won
24 straight games to start the 2015–2016 season.
Adam Pearce plotted the point differential, Golden
State points −Opponent points, each minute of the
first 16 games of the streak.95 One of those games,
a 119 to 104 victory on November 6th, is plotted in
Figure 2.99(a).

(a) Were the Warriors ever losing in this game
(point differential below 0)?

(b) The game is split into quarters, demonstrated
by the minutes remaining where 48 to 36 is 1st
quarter, 36 to 24 is 2nd quarter, 24 to 12 is 3rd
quarter, 12 to 0 is 4th quarter. In which quarter
did the Warriors have their largest lead?

2.277 Golden State Warriors: First Half of Season
Exercise 2.276 plotted the Golden State Warriors
point differential, Golden State points −Opponent
points, each minute of one game during their record
breaking 2015–2016 season. AdamPearce96 of road-
tolarissa.com also plotted the game state (winning
or losing or tied) every minute of every game
over the first half of the Warriors season in Figure
2.99(b). Within this plot each orange dot above 0
indicates a game where they were winning at that
minute (point differential above 0), and each purple
dot below 0 indicates a game where they were los-
ing (point differential below 0) at that minute. The
darkness of the dot indicates how far the point dif-
ferential was above or below 0.

95Used with permission from http://roadtolarissa.com/gsw-
streak/. Check out more of Adam Pearce’s work at roadtolarissa
.com.
96Used with permission. Check out more of Adam Pearce’s work
at roadtolarissa.com.
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(a) Over one game (b) Over 41 games

Figure 2.99 Score difference by minutes

(a) How many games were the Warriors losing at
the 24-minute mark (halftime)?

(b) How many games were the Warriors losing at
the 0-minute mark (the end of the game)?

2.278 Marriage Age vs Number of Children Using
the Gapminder software (https://www.gapminder
.org/tools), set the vertical axis to Age at 1st mar-
riage (women) and the horizontal axis to Babies
per woman. This scatterplot shows the mean age at
which woman marry, and the mean number of chil-
dren they have, for various countries. Click the play
icon and observe how the scatterplot changes over
time, then answer the following questions:

(a) Overall, is there a positive or negative associa-
tion betweenAge at 1st marriage and Babies per
woman?

(b) Describe what happens to the number of babies
per woman, and age at 1st marriage, between
1941 and 1943 in Russia (at the height of World
War II).

(c) Describe what happens to the number of babies
per woman, and the age at 1st marriage, in
Libya from 1973 to 2005.

2.279 Income Distribution by CountryAmountain
chart is a creative way to display the distribution
of a quantitative variable over different categories.
The overall distribution is shown as a smoothed
histogram, and the area underneath is colored

according to different categories. The distribution
of the variable for each category corresponds to the
size of its colored area. The Gapminder software
includes a mountain chart that shows the distribu-
tion of income broken down by world region and
country (https://www.gapminder.org/tools/#$chart-
type=mountain). Click the play icon to see how the
mountain chart changes from 1800 to present day,
then answer the following questions:

(a) Extreme poverty is defined as living on less than
$2 a day. In 1970, the majority of people liv-
ing in extreme poverty came from which world
region?

(b) In 2019, the majority of people living in extreme
poverty came from which world region?

(c) Describe the shape of the worldwide distribu-
tion of income in 1970. In 2019.

2.280 A Day in the Life This creative
dynamic visualization by Nathan Yau (flowing-
data.com) shows a day in the life of 1000 different
representative Americans based on survey data:
http://flowingdata.com/2015/12/15/a-day-in-the-life-
of-americans/. Watch the dynamic visualization
over the entire day, then answer the following ques-
tions:

(a) At 6 am, what are the majority of Americans
doing?

(b) At 10 am, what is the most common activity for
Americans?



2.7 Data Visualization and Multiple Variables 167

2000 20101990

2010

No Data 15%–19%10%–14% 20%–24% 25%–29%<10% ≥30%

Figure 2.100 Obesity rates in the US over time

(c) Are more Americans eating & drinking at 6 pm
or 7 pm?

(d) Describe one additional fact from this visual-
ization that you find particularly interesting or
surprising.

2.281 US Obesity Levels by State and over Time
These questions refer to the graphs found at
http://stateofobesity.org/adult-obesity/ which show a
sequence of maps of US states, colored by the pro-
portion of the adult population classified as obese,
for many different years between 1990 and 2018.
Three of the maps, from 1990, 2000, and 2010, as
well as a key for the color coding of percent obese,
are shown in Figure 2.100.

(a) The cases are US states and one variable is
year. Another variable is percent obese in that
state, which could be a quantitative variable
but here is classified into categories, making it
a categorical variable. Using the legend given
in Figure 2.100 (and ignoring the category of
“No Data”), how many different categories are
shown? (There is one more category already in
the online graphs as this book goes to print and
maybe another one by the time you are reading
this!)

(b) Using Figure 2.100, what appears to be the
highest category needed for any state in 1990?
In 2000? In 2010?

2.282 US Obesity Levels by State over Many Years
Exercise 2.281 deals with some graphs showing
information about the distribution of obesity rates
in states over three different years. The website
http://stateofobesity.org/adult-obesity/ shows similar
graphs for a wider selection of years. Use the graphs
at the website to answer the questions below.

(a) What is the first year recorded in which the 15-
19% category was needed, and howmany states
are in that category in that year? What is the
first year the 20-24% category was needed?
The 25-29% category? The 30-34% category?
The 35%+ category?

(b) If you are in the US right now as you read
this, what state are you in? In what obesity rate
category did that state fall in 1990? In what
category is it in now? If you are not in the US
right now as you read this, find out the current
percent obese of the country you are in. Name
a state (and year, if needed) which roughly
matches that value.

2.283 Spaghetti Plots of USObesity Levels by State
over Many Years Exercises 2.281 and 2.282 look at
geographic plots of obesity rates in different years.
The website http://stateofobesity.org/adult-obesity/
also shows a spaghetti plot (on the right) which
tracks the obesity rate of each state for the years
from 1990. Hovering over any strand highlights that
state (click to select it or click on the state in the
map) and then you can point along the strand to
see the obesity rate for that year. Use this graph to
answer the questions below.

(a) Between 1990 and 2018, did the percent obese
more than double: for every state or no states
or just some states?

(b) Is there more variability in obesity rates
between states in 1990 or in 2018?

(c) Identify the state with the largest percent obese
in 1990, and give the state name and the per-
cent obese at that time. In addition, identify the
state with the smallest percent obese in 2018,
and give the state name and the percent obese
at that time.

2.284 What Do You Call a Sweetened Carbonated
Beverage? If you reach for a sweetened carbon-
ated beverage, do you refer to it as soda, pop, coke,
or a soft drink? Different regions of the United
States use different terms, as shown in this heat
map: https://news.ncsu.edu/2013/06/you-say-tomato-
i-say-soda-or-is-it-pop/.97 If you live in the United
States, specify where you live and which term is

97“You Say Tomato, I Say Soda. Or Is it Pop?” NC State
News, 6/4/13. https://news.ncsu.edu/2013/06/you-say-tomato-i-
say-soda-or-is-it-pop/ Visualization by Joshua Katz (NC State
University), Data from Bert Vaux (Cambridge University).



168 CHA P T E R 2 Describing Data

predominantly used there. If you do not live in the
United States, choose a location in the US and spec-
ify the location and which term is predominantly
used there.

2.285 TheDudeMapGo to http://qz.com/316906/the-
dude-map-how-american-men-refer-to-their-bros/ to
see “The dude map: How Americans refer to their
bros,”98 a heat map of the United States display-
ing how common the words “dude,” “bro”, “buddy,”
“fella,” and “pal” are across the US.

(a) In which region of the country is “bro” most
commonly used?

(b) In which region of the country is “buddy” most
commonly used?

2.286 Cotton Pricing Although the abundance and
availability of data have increased rapidly due to
technology advances, and computers make fancier
and fancier visualizations, data visualization itself is
not new. This link https://vintagevisualizations.com/
products/manufactures-specific-cotton-goods pro-
vides a data visualization of the consumption and
price of cotton from 1880. Zoom in on the graph to
better see certain features.

(a) In 1880, which state spent the most money (per
capita) on cotton? Which spent the least?

(b) In which year (1825 to 1880) was cotton most
expensive?

2.287 A Map of All Americans! Visualization
can often be an effective way to make sense
of very large datasets. The Census Dot Map at
http://racialdotmap.demographics.coopercenter.org/
displays the race and location of every American
recorded by the 2010 Census; that’s over 300 mil-
lion data points displayed simultaneously on one
map! If you were counted in the US Census in 2010,
you can find your dot on the map!

98Sonnad, N., “The dude map: How Americans refer to their
bros,” Quartz, 12/23/14.
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Figure 2.101 Petal length and petal width

(a) Zoom out to see the entire United States.Which
half of the country is more heavily populated,
the East or the West?

(b) Zoom in to see the town/city your school is
located in.99 (Click on “Add map labels” to help
you find it.) Are there any noticeable racial/
ethnic patterns, with any areas predominantly
populated by a particular racial/ethnic group? If
so, describe one of these noticeable characteris-
tics. If not, describe a noticeable characteristic
about the population density in your town.

2.288 Names over Time The website http://www.vi
sualcinnamon.com/babynamesus gives a spaghetti
plot showing the popularity of the top 10 baby
names for each year 1880 to 2014 (use the window
scroller at the bottom to select the timespan shown).
By default, girl names are shown. What was the top
baby girl name in 2014? In 1880?

FISHER’S IRIS DATA
Exercises 2.289 to 2.291 refer to the data in Fish-
erIris, from a paper published in 1936 by Sir R.A.
Fisher, widely considered the father of modern
statistics.100 The cases are 150 irises and there are
five variables: Type of iris is categorical, while petal
width, petal length, sepal width, and sepal length
(all in millimeters) are quantitative. Sepals are the
green leaves underneath the petals, providing sup-
port for the petals.

2.289 Petal Length and PetalWidth Figure 2.101(a)
shows a scatterplot of the two quantitative variables
petal length and petal width.

(a) Explain how the scatterplot appears to show at
least two different types of irises.

99If outside the US, pick a city to look at and specify which city
you pick.
100Fisher, R.A., “The use of multiple measurements in taxo-
nomic problems,” Annals of Eugenics, 7(2), 1936, 179–188.
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Figure 2.102 A scatterplot matrix

(b) Figure 2.101(b) shows the same scatterplot with
the Type categorical variable included. We can
now see that there are three different types
included: Setosa, Versacolor, and Virginica.
Which type has the smallest petals? Which type
has the largest petals?

2.290 A Scatterplot Matrix There are five variables
in the dataset, and all are included in the scatter-
plot matrix shown in Figure 2.102. The graph shows
scatterplots for each pair of quantitative variables,
with the Type categorical variable included on each.
For example, the second one down on the left is the
same scatterplot as in Figure 2.101(b), with petal
width on the horizontal axis and petal length on the
vertical axis.

(a) Which shows a clearer distinction between Ver-
sicolor and Virginica: a scatterplot of petal
length and petal width or a scatterplot of sepal
length and sepal width?

(b) Considering only the Setosa type of iris, does
the association between sepal width and petal
length appear to be positive, negative, or nei-
ther?

2.291 A 3-Dimensional Scatterplot We have seen
that we can use a bubble plot to show a third quan-
titative variable on a scatterplot. Another way to
show three quantitative variables together is to use

a 3-dimensional scatterplot, such as the one show-
ing petal length, petal width, and sepal length in
Figure 2.103. In this case,whichvariable is on thever-
tical axis?Which color dots are highest up (meaning
they have the largest values for that variable)?
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Figure 2.103 A 3-dimensional scatterplot

VISUALIZING CHANGES IN THE US POPU-
LATION OVER TIME
The website http://www.pewresearch.org/next-ameri
ca/#Two-Dramas-in-Slow-Motion shows two data
visualizations of the US population changing from
1950 or 1960 to 2060 (projected). The first visualiza-
tion is broken down by both sex and age, and the
second visualization is broken down by race and
ethnicity. Exercises 2.292 and 2.293 pertain to this
article.
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2.292 Look at the dynamic visualization titled “U.S.
Age Pyramid Becomes a Rectangle” (the first visu-
alization on the page). The data visualization is
essentially histograms of age, but the histograms are
turned sideways and broken down by sex, compar-
ing males and females.

(a) Go to View Data for 1950 (the baby boomer
band will be at the bottom). Describe the dis-
tribution of ages (for either sex) in 1950.

(b) In 1950, is the age distribution left-skewed,
right-skewed, or symmetric? (Think of what the
histogram would look like on a regular number
line with 0 on the left.)

(c) Click the Animation Control button to watch
the distribution change over time. How does the
(projected) age distribution in 2060 differ from
the age distribution in 1950? (Note the age dis-
tribution in 2060 is close to what is referred to
as a “uniform” distribution, a histogram that is
essentially flat.)

(d) In 2060, are there projected to be more males or
females in the 85+ range?

2.293 Look at the visualization titled “Changing
Face of America” (the second visualization on the
page). This is a new kind of visualization in which
the total for each year is scaled to 100%, and the
colors are shaded according to the percentage of the
population comprised of each racial/ethnic group.

(a) Which racial/ethnic group is decreasing themost
in terms of percentage of the US population?

(b) Which racial/ethnic group is increasing the most
in terms of percentage of the US population?

(c) Which racial/ethnic group is staying the most
constant in terms of percentage of the US
population?

2.294 The Wind Map The website hint.fm/wind/
shows the current wind patterns across the US. In
order to generate this map, what two variables are
being recorded at weather stations across the US?

2.295 Are Carbon or Steel Bikes Faster? Dr.
Jeremy Groves was interested in whether his car-
bon bike or his steel bike led to a shorter commute
time. To answer this, he flipped a coin each day to
randomly decide whether to ride his 20.9 lb (9.5 kg)
carbon bike or his 29.75 lb (13.5 kg) steel bike for his
27 mile round trip commute. His data for 56 days
are stored in BikeCommute. (We’re not sure why
distance wasn’t always the same, but apparently it
wasn’t.) Upon inspection of the data, he finds that
the commute took an average of 107.8 minutes on
the steel bike and 108.3 minutes on the carbon bike,

suggesting the steel bike is faster, but he also finds
that the average speed on the steel bike was 15.05
mph and the average speed on the carbon bike was
15.19 mph, suggesting that the carbon bike is faster.
What’s going on?!?

(a) Using Figure 2.104, what is the most obvious
difference between commutes on the steel and
the carbon bike?

(b) Use your answer to part (a) to explain why the
carbon bike is slightly faster in terms of aver-
age speed, but yields a longer commute time, on
average.

(c) In this study investigating whether the steel or
the carbon bike yields a shorter commute time,
a confounding variable is present. What is the
confounding variable?

(d) What advice would you give to Dr. Groves to
minimize his commute time?
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Figure 2.104 Commute distance and time, by type of
bike

2.296 Political Polarization Pew Research Cen-
ter collected data on the same 10 political
value questions from 1994 to 2014 and combines
these responses to place each person on a scale
ranging from consistently liberal to consistently
conservative.101 Visit http://www.people-press.org/
2014/06/12/section-1-growing-ideological-consistency/
#interactive to see a visualization of responses (in
the form of a smoothed histogram), broken down
by political party, changing over time. Click “Ani-
mate data from 1994–2014” to dynamically watch
the distribution of responses changing over time.

101“Political Polarization in the American Public,” Pew Research
Center, June 12, 2014, http://www.people-press.org/2014/06/12/
section-1-growing-ideological-consistency/#interactive
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(a) Describe what happened to the median Demo-
crat value in the years 1994–2014.

(b) Describe what happened to the median Repub-
lican value in the years 1994–2014.

(c) Is there more political polarization (less overlap
between parties) in 1994 or 2014?

(d) In what year did the two medians start moving
rapidly away from each other?

(e) By default, the general population results are
shown. Click “POLITICALLY ACTIVE” just
above the visualization to see results only for
the third of the public who are most politically
active. In 2014, are the politically active people
more or less politically polarized than the gen-
eral population?

(f) Read the first two paragraphs of the article.
Do you think you learn more from reading the
text or from looking at the data visualization?
(Note: This is a matter of opinion and there is no
right or wrong answer, but it is worth thinking
about.)

2.297 Regional Support for Same Sex Marriage
The website https://www.pewresearch.org/fact-tank/
2014/10/15/gay-marriage-arrives-in-the-south-where-
the-public-is-less-enthused/102 shows the changing
views on gay marriage from 2003 to 2014, by region.
Scroll down to the visualization titled “Regional
Support for Same-Sex Marriage”.

(a) In 2014, which region of the country had the
highest support for same-sex marriage?

(b) In 2014, which region of the country had the
lowest support for same-sex marriage?

(c) Although regions have different starting levels
of support, the increase in support for same-sex
marriage is remarkably consistent across many
of the different regions. Which region of the
country displayed the smallest increase? The
largest?

(d) The author (or the statistician / data scientist)
decided to display these data with a separate
time series plot for each region. Name two other
ways these data could have been visualized.

2.298 Does Buying Organic Food Improve Your
Health? Or Is It Income? In Exercise 1.112 we
see that according to a large national random
sample,103 people who bought organic food were

102Lipka, M., “Gay marriage arrives in the South, where the pub-
lic is less enthused” Pew Research Center, October 15, 2014.
103https://www.cdc.gov/nchs/nhanes/index.htm

more likely to report their health as very good or
excellent. Another question on the survey asked
about income, and the relationships of income with
the variables buying organic and health status are
shown in Figures 2.105 and 2.106.

(a) Using Figure 2.105, describe the relationship
between whether or not someone bought
organic and their income.

(b) Using Figure 2.106, describe the relationship
between income and general health status. For
this figure, people are put into discrete income
categories (this is done on the survey for pri-
vacy purposes); the proportion with very good
or excellent health within each income category
is shown by income level. The point size shows
the number of people in that particular income
category.

Y
es

N
o

0 2000 4000 6000 8000

Monthly Income ($)

B
ou

gh
t 

O
rg

an
ic

?

Figure 2.105 Buying organic versus income
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Figure 2.106 Health status versus income
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(c) Using your answers to parts (a) and (b), explain
why income is a confounding variable in the
relationship between buying organic and health
status.

(d) The survey data show that people who bought
organic food were more likely to report their
health as very good or excellent. Can we con-
clude that buying organic improves health sta-
tus? Why or why not?

2.299 Organic and Health: Breaking it Down by
Income In Exercise 2.298 we see that income is a
confounding variable potentially responsible for the
fact that people who buy organic food have a higher
proportion of people who report their health as
very good or excellent. To explore this relationship
without the confounding, we can break it down by
income group, and look at the difference in the pro-
portion of people who report their health as very
good or excellent among those who bought organic
and those who didn’t, within each income group.
This is shown in Figure 2.107.

(a) After breaking it down by income, is it still gen-
erally true that people who bought organic are
more likely to report very good or excellent
health?

(b) Based on Figure 2.107 we see that the higher
reported health status for those who bought
organic is not only due to the confounding
variable income. Can we conclude that buying
organic food improves reported health status?
Why or why not?
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Figure 2.107 Health status by whether or not a person
bought organic, broken down by income group

2.300 Kidney Stone Treatment A study104 col-
lected data comparing treatments for kidney stones.
Two of the treatments studied were open surgery
and percutaneous nephrolithotomy. Treatment was
deemed “successful” if, after three months, the kid-
ney stones were either eliminated or less than 2mm.
The latter treatment (nephrolithotomy) is cheaper
and less invasive, but is it as successful? Results are
shown in Figure 2.108, first overall and then broken
down by stone size. (If the answers are not obvious
visually, in each case you can calculate the propor-
tion of successes using the numbers shown on the
graph.)

(a) When all stone sizes are considered, which
treatment is more successful?

(b) When only small kidney stones are considered,
which treatment is more successful?

(c) When only large kidney stones are considered,
which treatment is more successful?

(d) Which stone size results in higher success rates,
regardless of treatment type?

(e) Which treatment is more commonly used for
small stones?

(f) Which treatment is more commonly used for
large stones?

(g) This is an example of Simpson’s Paradox. Use
your answers to parts (d) to (f) to explain how
one treatment can be better for both small
AND large stones, yet the other treatment
appears to be better overall.

(h) Do you think this was a randomized experi-
ment, with treatment randomly assigned? Why
or why not?

2.301 Draw a Graph for Income vs College! The
New York Times created an interesting interactive
graph on income versus percent of children who
attend college.105 They ask you to first draw what
you think the graph might look like, based on your
intuition, and then compare your guess to the actual
graph. The site also then shows a visualization
of everyone’s guesses. Go to https://www.nytimes.
com/interactive/2015/05/28/upshot/you-draw-it-how-
family-income-affects-childrens-college-chances.html,

104Charig,R.,Webb,D.R., Payne, S. (1986). “Comparisonof treat-
ment of renal calculi by open surgery, percutaneous nephrolitho-
tomy, and extracorporeal shockwave lithotripsy”. British Medical
Journal (Clinical Residents Edition), 292(6524): 879–882.
105Aisch, G., Cox, A., andQuealy, K., “YouDraw It: How Family
Income Predicts Children’s college Chances,” New York Times,
May 28, 2015.
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Figure 2.108 Success rates, first for all stones, and then broken down by stone size

make your guess by drawing a line on the plot, and
then click “I’m Done”. How did you do? (The title
above the plot showing your guess and reality tells
you how you did—just reproduce the title phrase
for your answer.)

2.302 What’s Really Warming the World? Scien-
tists at NASA collected data to study which forces,
including both natural and human factors, are
responsible for the increase in observed temper-
ature in the last two centuries.106 Go to http://www.
bloomberg.com/graphics/2015-whats-warming-the-
world/ to see their resulting data visualization, an
animated spaghetti plot (click the down arrow or
scroll down with your mouse to see each new line
appear). According to this data visualization, what
is warming the world?

2.303 The Racial Divide The website http://
vallandingham.me/racial_divide/#pt uses data from
the US Census to visualize where whites and blacks
live in different cities. Figure 2.109 gives a heat
map of all the census tracts in St. Louis, with each
tract colored according to the racial composition
(white to black). Also, the space between tracts is
shown proportional to the change in racial composi-
tion between neighboring tracts. Comment on what
you see.

2.304 Cloud Cover in San Francisco Often, the
same dataset can be visualized in many different
ways. Figure 2.110 shows two different visualiza-
tions of San Francisco’s typical cloud cover (as a
percent of the sky) for each day of the year and
time of day, based on the same data from the last

106Roston, E. and Migliozzi, B., “What’s Really Warming the
World?,” Bloomberg, June 24, 2015.

Figure 2.109 The census tracts of St. Louis, colored by
racial composition

30 years.107 Figure 2.110(a) shows a spaghetti plot
with each hour of the day depicted with a separate
strand, and Figure 2.110(b) displays the data with a
different curve for every day of the year (the cen-
ter of the circle is 0% cloud cover, the outer circle
is 100%). Both visualizations are created using the
same data, and both convey the same information;
you may use whichever you find more intuitive to
answer the following questions.

(a) Do mornings or evenings typically have more
cloud cover, in general?

107Visualizations created by Zan Armstrong and used with per-
mission. Check out more of her work at zanarmstrong.com.
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(a) Spaghetti plot by days (b) Time of day in a circle

Figure 2.110 Percent of cloud cover for San Francisco by time and day

(b) Which season (winter, spring, summer, or fall)
typically shows the most variability in cloud
cover throughout the day?

(c) Which visualization do you find easier to inter-
pret? (The answer may depend on the ques-
tion of interest and there is no right or wrong
answer.)

2.305 Cloud Cover in San Francisco – Online The
plots in Exercise 2.304 on cloud cover in San Fran-
cisco can be found online at

weatherlines.zanarmstrong.com

if you prefer Figure 2.110(a) or

weather.zanarmstrong.com

if you prefer Figure 2.110(b). In the interactive dis-
play you can hover over points to get more informa-
tion. You can also click on the map to change the
city or the drop down menu to change the weather
statistic that is plotted. Use the interactive plots at
this website to answer the questions below.

(a) In San Francisco, approximately what time of
day has the highest percent cloud cover in
August?

(b) Which season tends to be the least windy for
Chicago (the “Windy City”)?

SCIENCE DATA STORIES VIDEOS
Data visualizations can also include video. In 2016,
Science magazine hosted a Data Stories compe-
tition, in which participants upload a short video
visualizing and telling a story with data. The win-
ners can be viewed at www.sciencemag.org/projects/

data-stories/winners. Exercises 2.306 to 2.309 per-
tain to the winners and finalists in this competition.

2.306 The Corporate Winner and People’s Choice
Winner was Daniel Gallagher from NASA’s Sci-
entific Visualization Studio, for his video “Martian
Atmosphere Loss Explained by NASA.”Watch this
video and briefly describe the main message of the
video.

2.307 The Professional Winner was RJ Andrews
from Info We Trust, for the video “Are Gazelles
Endangered?”

(a) Watch this video. What data are this video con-
veying?

(b) You can interact with the data and learn about
other animals at this site:
http://www.infowetrust.com/endangeredsafari/.
Go to this site and hover over an animal on the
interactive visualization. Indicate what animal
you chose, whether its population is increas-
ing or decreasing, and the endangered status of
the animal. (These details appear at the bottom
when you hover over an animal.)

2.308 The Student Winner was Ulf Aslak Jensen,
for the video “How People Gather: An Interac-
tive Visualization Approach.” Watch this video, and
answer the following questions:

(a) What data are this video displaying?

(b) You can explore the data shown in the video
on your own at https://ulfaslak.com/research/
temporal_communities/. Interact with the data,
and report one of your findings.



2.7 Data Visualization and Multiple Variables 175

2.309 The finalists can be viewed at http://www
.sciencemag.org/projects/data-stories/finalists. Pick a
video that interests you, watch it, and answer the
following questions:

(a) Give a link to the chosen video.

(b) What data are being displayed in the video?

(c) What did you learn from the video?

2.310 Faculty Salary, Completion Rate, and Con-
trol Exercise 2.265 on page 151 looks at the rela-
tionship between monthly faculty salary (Fac-
Salary) and student six-year graduation rate (Com-
pRate) for the data on four-year colleges in Col-
legeScores4yr. Here we look at the relationship
more closely accounting for possible differences
between Public and Private schools (while omitting
the for profit schools).

(a) Using the data in CollegeScores4yr, which type
of four-year school (Private or Public) has a
higher mean faculty salary?

(b) Which has a higher mean completion rate?

(c) Based only on your answers to parts (a) and (b),
would you expect completion rates to increase
or decrease as faculty salaries increase.

(d) Figure 2.111 shows a scatterplot of FacSalary
vs CompRate with separate regression lines for
Private and Public colleges. Which type of con-
trol (private or public) is represented by the
blue circles and solid blue regression line?

(e) Is the association displayed in the scatterplot
for both types of schools consistent with your
answer to part (c) which was based only on the
sample means?

Figure 2.111 Completion rate vs faculty salary for public and private four-year colleges

GOOGLE PUBLIC DATA
The link http://www.google.com/publicdata/directory
brings up some data visualizations created from
public online data. Hovering your mouse over the
little circles below the visualization brings you to
a different data visualization (or you can just wait
for the image to change). Many of the visualizations
are dynamic, and by clicking them and then pressing
the play button, you can watch them change over
time. Also, when you click on the image, you can
then edit it, including changing the variables and
cases (often countries) displayed, or even the way
the data are visualized. You can also hover over
the points to see case labels and get more accurate
information. Exercises 2.311 to 2.313 pertain to this
website.

2.311 Find an example of an augmented scatterplot
and click on the image. You can answer the follow-
ing questions using either the default variables and
cases, or else use the menu on the left to select vari-
ables and cases you are more interested in.

(a) Take a screenshot of the visualization (use the
most recent year if multiple years are available)
and include it.

(b) Which variable is displayed on the x-axis? The
y-axis? The color of the points? The size of the
points?

(c) Describe what you see in this static visualiza-
tion. (You don’t have to describe everything,
just choose a few of the most obvious or inter-
esting features.)

(d) Choose one point and hover over it to see which
country (or case) it corresponds to. Give the val-
ues of each variable for this country (or case).
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(e) If this is a dynamic graph, press play to watch
the trend over time. Comment on what is hap-
pening over time.

(f) If this is a dynamic graph, choose one case, iden-
tify its name, and explain how this case changes
over time.

2.312 Find an example of plot displaying geo-
graphic data and click on the image. You can answer
the following questions using either the default vari-
ables and cases, or else use the menu on the left to
select variables and cases you are more interested
in.

(a) Take a screenshot of the visualization (use the
most recent year if multiple years are available)
and include it.

(b) Which variable is displayed by color? By point
size (if the plot has points)?

(c) Describe what you see in this static visualiza-
tion. (You don’t have to describe everything,
just choose a few of the most obvious or inter-
esting features.)

(d) Choose one point and hover over it to see which
country (or case) it corresponds to. Give the
variable value(s) for this country (or case).

(e) If this is a dynamic graph, press play to watch
the trend over time. Comment on what is hap-
pening over time.

(f) If this is a dynamic graph, choose one case, iden-
tify it’s name, and explain how this case changes
over time.

2.313 Find an example of a spaghetti plot and click
on the image. You can answer the following ques-
tions using either the default variables and cases, or
else use the menu on the left to select variables and
cases you are more interested in.

(a) Take a screenshot of the visualization and
include it.

(b) What is this plot displaying?

(c) Describe the overall trend in this visualization.

(d) Choose one case, identify it, and describe the
trend for this particular case.

2.314 Find your own! Find your own data visualiza-
tion online.108

(a) Include a screenshot of the visualization.

(b) What data are being displayed?

(c) Describe the story told by the visualization.

2.315 Monthly City Temperatures The data file
CityTemps contains the average monthly temper-
ature (in ∘C) for the cities of Moscow (Russia),
Melbourne (Australia), and San Francisco (United
States) in each of the years 2014 and 2015.

(a) Use time series plots and/or spaghetti plots
to compare monthly temperatures between
Moscow and San Francisco.

(b) Use time series plots and/or spaghetti plots to
compare monthly temperatures between Mel-
bourne and San Francisco.

2.316 Create Your Own: Augmented Scatterplot
Using any of the datasets that come with this
text that include at least two quantitative variables
and at least one categorical variable (or any other
dataset that you find interesting and that meets
these conditions), use statistical software to create
an augmented scatterplot that identifies the dots by
the category that they are in. Indicate the dataset,
the cases, and the variables that you use. Comment
(in context) about any interesting features revealed
in your plot.

2.317 Create Your Own: Bubble Plot Using any of
the datasets that come with this text that include
at least three quantitative variables (or any other
dataset that you find interesting and that meets this
condition), use statistical software to create a bub-
ble plot of the data. Indicate the dataset, the cases,
and the variables that you use. Specify which vari-
able represents the size of the bubble. Comment (in
context) about any interesting features revealed in
your plot.

2.318 Create Your Own: Be Creative!! Create your
own data visualization, and describe it. Be creative!!

108If you need inspiration, check out flowingdata.com, driven-by-
data.net/, or search for “New York Times Data Visualization” in
Google images.
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Summary: Collecting Data
In Chapter 1, we learn about appropriate ways to collect data. A dataset consists
of values for one or more variables that record or measure information for each
of the cases in a sample or population. A variable is generally classified as either
categorical, if it divides the data cases into groups, or quantitative, if it measures
some numerical quantity.

What we can infer about a population based on the data in a sample depends on
the method of data collection. We try to collect a sample that is representative of the
population and that avoids sampling bias. The most effective way to avoid sampling
bias is to select a random sample. Also, we try to avoid other possible sources of
bias by considering things like the wording of a question. The key is to always think
carefully about whether the method used to collect data might introduce any bias.

Data collected to analyze a relationship between variables can come from an
observational study or a randomized experiment. In an observational study, we need
to be wary of confounding variables. A randomized experiment allows us to avoid
confounding variables by actively manipulating one of the variables. The handling
of different treatment groups in an experiment should be as similar as possible, with
the use of blinding (double-blind or single-blind) and a placebo treatment when
appropriate.

The only way to infer a causal association between variables statistically is
through data obtained from a randomized experiment.One of the most common and
serious mistakes in all of statistics comes from a failure to appreciate the importance
of this statement.

Summary: Describing Data
In Chapter 2, we learn about methods to display and summarize data. We use
statistical graphs to display information about the variables, and summary statistics
to quantify aspects of that information. The type of graph or statistic we use often
depends on the types of variables (quantitative or categorical), as summarized
below and in Table A.1.

Describing a Single Variable
• Categorical variable

– Graphical display: bar chart, pie chart

– Summary statistics: frequency table, relative frequency table, proportion

• Quantitative variable

– Graphical display: dotplot, histogram, boxplot

– Summary statistics:

* Center: mean, median

* Other locations:maximum, minimum, first quartile, third quartile

* Spread: standard deviation, interquartile range, range

177
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Describing a Relationship between Two Variables
• Categorical vs Categorical

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table, difference in proportions

• Categorical vs Quantitative

– Graphical display: side-by-side boxplots (or other side-by-side graphs)

– Summary statistics: statistics for the quantitative variable within each category of
the categorical variable, difference in means

• Quantitative vs Quantitative

– Graphical display: scatterplot

– Summary statistics: correlation, regression line

Some statistics (such as the median and interquartile range) are resistant to the
effects of outliers, while others (such as the mean, standard deviation, correlation,
and regression line) can be strongly influenced by extreme values. We discuss two
methods for identifying possible outliers in quantitative data: using z-scores or using
1.5 ⋅ IQR.

The techniques discussed in Chapter 2 allow us to look for patterns, find anoma-
lies, and suggest relationships within a given set of data. Many of the conclusions we
draw are fairly informal. We might see that the sample mean for one group is larger
than that of another group, but we are not ready yet to determine whether that
difference might extend to the entire population or whether it is likely due just to
random chance. We return to these ideas in Chapter 3 when we study more formal
techniques for using the information in sample data to make inferences about the
nature of a given population.

Table A.1 Appropriate graphical displays and summary statistics
by variable type

Variable(s) Graphical Displays Summary Statistics

One categorical Bar chart Proportion
Pie chart Frequency table

Relative frequency table

One quantitative Histogram Mean
Dotplot Median
Boxplot Standard deviation

Five-number summary
IQR, Range

Two categorical Side-by-side bar chart Two-way table
Segmented bar chart Difference in proportions

One quantitative Side-by-side boxplots Any quantitative statistic
and one categorical Side-by-side histograms broken down by groups

Side-by-side dotplots Difference in means

Two quantitative Scatterplot Correlation
Regression line
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Case Study: Sleep, Alcohol, Depression, and Cognition

UpperCut Images/Getty Images

Is this an early morning class?

D A T A A . 1 Sleep Study with College Students

A recent study1examines the relationship between sleep habits, alcohol use,
academic performance, measures of depression and stress, and other variables
in US college students. The data were obtained from a sample of 253 students
who did skills tests to measure cognitive function, completed a survey that
asked many questions about attitudes and habits, and kept a sleep diary to
record time and quality of sleep over a two-week period. Some data from this
study, including 27 different variables, are available in SleepStudy. ◼

Example A.1
What are the cases in this study? What is the sample size n? How many rows and
how many columns will the dataset have, if we use cases as rows and variables as
columns? To what population do we want to generalize?

Solution The cases are the students who participated in the study, and the sample size is
n = 253. The dataset will have 253 rows and 27 columns. The population is US col-
lege students.

1Onyper, S., Thacher, P., Gilbert, J., and Gradess, S., “Class Start Times, Sleep, and Academic Perfor-
mance in College: A Path Analysis,” Chronobiology International, April 2012; 29(3): 318–335. Thanks to
Serge Onyper and Pamela Thacher for sharing the data with us.



180 UN I T A

Example A.2
Six variables from the study are described below. Which of these variables are cate-
gorical and which are quantitative?

DASScore Amount of depression, anxiety, and stress, on a
0 to 100 scale, with higher values indicating
more depression, anxiety, and/or stress

Stress Amount of stress coded as Normal or High
LarkOwl Circadian preference, identified as early riser (Lark),

night owl (Owl), or Neither
AlcoholUse Self-reported as Abstain, Light, Moderate, or Heavy
PoorSleepQuality Ameasure of sleep quality on a 0 to 20 scale, with higher

values indicating poorer sleep quality
CognitionZScore Z-score based on several cognitive skills tests

Solution We see that Stress, LarkOwl, and AlcoholUse are categorical, while DASScore,
PoorSleepQuality, and CognitionZScore are quantitative.

Example A.3
Does this study describe an experiment or an observational study? Can we infer
causation from the results? What do we have to assume in order to generalize from
the sample to the broader population?

Solution This study describes an observational study, since no explanatory variables were
manipulated. Since the data come from an observational study, we cannot infer cau-
sation from the results. In order to generalize from the sample to the population,
we need to assume that the sample is representative of the population and is not
biased.

Example A.4
Using the variables described in Example A.2, indicate how we might display the
relevant data graphically and what summary statistics we might use to examine the
variable or relationship in each case below.

(a) The distribution ofDAS scores

(b) The relationship between stress and circadian preference

(c) The relationship between alcohol use and cognitive skills

(d) The relationship between sleep quality and DAS score

Solution (a) DAS scores are quantitative, so we might display the results using a dotplot, a
histogram, or a boxplot. Relevant summary statistics are the mean and standard
deviation and/or the five number summary.

(b) Both variables are categorical so we would most likely display the data in a two-
way table. We might compare the proportion that have high stress in each of the
three circadian preference groups.

(c) Alcohol use is a categorical variable and cognition scores are a quantitative vari-
able so we might use side-by-side boxplots to visualize this relationship. It would
make sense to compare the mean cognitive score for each group, or to look at
the difference in mean cognitive score between the groups.

(d) Sleep quality andDAS score are both quantitative so we would use a scatterplot
to visualize the relationship. The relevant summary statistics are correlation and
possibly a regression line.
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In the examples that follow, we explore all the variables and relationships
described in Example A.4. Use technology to verify the graphs and summary
statistics described in the examples!

Example A.5
Are You a Lark or an Owl?

Past studies2 indicate that about 10% of us are morning people (Larks) while 20%
are evening people (Owls) and the rest aren’t specifically classified as either. Studies
also indicate that this circadian preference may not be settled until 22 years of age
or later. Table A.2 shows the number in each category for the 253 college students in
the study described in Data A.1. In this sample of college students, what proportion
are Larks? Include correct notation with your answer.

Table A.2 Circadian preference: Are you a
lark or an owl?

Type Frequency

Lark 41
Neither 163
Owl 49

Total 253

Solution The proportion of Larks in the sample is

p̂ = 41
253

= 0.162.

Surprisingly, there are more early risers in this sample of college students than
expected.

Example A.6
Depression/Anxiety/Stress Scores

A histogram of DAS scores is given in Figure A.1.

(a) Describe the shape of the distribution.

(b) Is the mean or the median likely to be larger?

(c) For these scores, the mean is 20.04 and the standard deviation is 16.54. The
highest DAS score is 82. Find and interpret the z-score for this value.

Figure A.1 Describe the
distribution of DAS
scores
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2http://www.nasw.org/users/llamberg/larkowl.htm.
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Solution (a) The distribution of DAS scores is skewed to the right. There are many scores
between 0 and 20, and then a few much higher scores.

(b) The large values in the right tail will pull the mean up, so the mean will be larger.

(c) The z-score for the highest score is

Z-score = 82 − 20.04
16.54

= 3.746.

This student’sDAS score is 3.746 standard deviations above the mean.

Example A.7
Stress and Circadian Preference

Are stress levels of college students affected by circadian preference? Table A.3
shows a two-way table for these two variables.

(a) What proportion of all the students in the sample report a high level of stress?

(b) Give the proportion reporting a high level of stress in each of the three circadian
preference groups. Use subscripts to identify the three proportions. Which group
has the lowest proportion reporting a high level of stress?

(c) What proportion of those with high stress are Larks?

Table A.3 Stress levels and circadian preference

Lark Neither Owl Total

Normal 31 125 41 197
High 10 38 8 56

Total 41 163 49 253

Solution (a) We see that the proportion reporting a high level of stress is p̂ = 56∕253 = 0.221.

(b) Using subscripts L,N, andO for Lark, Neither, and Owl, respectively, we calcu-
late the proportion reporting a high level of stress in each group:

p̂L = 10
41

= 0.244, p̂N = 38
163

= 0.233, p̂O = 8
49

= 0.163.

We see that the night owls have the lowest proportion reporting a high level
of stress.

(c) The proportion of those with high stress that are Larks is 10∕56 = 0.179.

Example A.8
Are Cognitive Skills and Alcohol Use Related?

Is there a relationship between cognitive skills and alcohol use? The variable
CognitionZscore is quantitative while the variable AlcoholUse is categorical.
Summary statistics are given in Table A.4 and side-by-side boxplots are shown in
Figure A.2.

Table A.4 Cognitive skills and alcohol use

Sample Size Mean St.Dev.

Abstain 34 0.0688 0.7157
Light 83 0.1302 0.7482
Moderate 120 −0.0785 0.6714
Heavy 16 −0.2338 0.6469

Overall 253 0.000 0.7068
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Figure A.2 Is there a
difference in cognitive
skills based on alcohol
use? CognitionZscore

A
lc

o
ho

lU
se

2

Moderate

Light

Heavy

Abstain

1 0 1 2

(a) Which alcohol use group has the highest mean cognitive score?Which group has
the lowest? Compute the difference in means between these two groups.

(b) Can we conclude that heavy drinking causes a reduction in cognitive skills? Why
or why not?

(c) Do the side-by-side boxplots appear to show a strong association between the
two variables?

Solution (a) We see that the light drinkers have the highest mean cognitive score while the
heavy drinkers have the lowest. The difference in mean cognitive score between
the two groups is 0.1302 − (−0.2338) = 0.364.

(b) No, we cannot make any causation conclusions from the study since it was not
an experiment.

(c) While it appears that cognition scores tend to be lower in heavy drinkers, there
is a great deal of overlap in all four boxplots so the association does not appear
to be very strong.

Example A.9
Sleep Quality and DAS Score

We are interested in the effect of the DAS score on sleep quality. The scatter-
plot of these two variables along with the regression line is given in Figure A.3.
Recall that for the variable PoorSleepQuality, higher values indicate poorer sleep

Figure A.3 Sleep quality
and depression scores
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quality, and for the variable DASScore, higher values indicate more depression,
anxiety, and/or stress.

(a) For the point with the largest residual, use the graph to estimate theDAS score,
the sleep quality score, and the predicted sleep quality score.

(b) In the context of these variables, describe a person whose values on these two
variables places them in the lower right corner of the scatterplot.

(c) Which of the following values is the best estimate of the correlation between
these two variables:

−0.9 −0.5 0.05 0.5 0.9 2.0

(d) Use technology to find the correlation.

(e) Explain what a positive association means in this context.

Solution (a) The point with the largest residual on the scatterplot appears to have a
DASScore of about 45, a PoorSleepQuality score of about 18, and a predicted
PoorSleepQuality score of about 7.5.

(b) A point in the lower right of the scatterplot would represent a person with a rela-
tively highDASScore and a relatively low PoorSleepQuality score. This indicates
a person with high levels of depression, stress, and/or anxiety but who sleeps very
well. There aren’t many points like this on the scatterplot!

(c) The scatterplot shows a clear positive trend, but the linear relationship is not
that strong. The best answer is a correlation of about 0.5.

(d) Using technology, we see that r = 0.457.

(e) A positive association means that as DASScore increases, we expect Poor-
SleepQuality to increase. In context, this means that people with higher levels
of depression, anxiety, and/or stress tend to have poorer sleep quality.

Example A.10
Predicting Sleep Quality

The regression line for predicting sleep quality from DAS score is:

̂PoorSleepQuality = 4.64 + 0.0806 ⋅DASScore.

(a) Find the predicted value for PoorSleepQuality and calculate the residual for the
person who has aDAS score of 50 and a PoorSleepQuality index of 6.

(b) Interpret the slope in context.

(c) Interpret the intercept in context if it makes sense to do so.

Solution (a) When DASScore = 50, we have ̂PoorSleepQuality = 4.64 + 0.0806(50) = 8.67.
The predicted sleep quality index is 8.67. The actual sleep quality index for this
person is 6, so the residual is 6 − 8.67 = −2.67.

(b) The slope is 0.0806. As the DASScore goes up by 1 unit, the predicted Poor-
SleepQuality score goes up by 0.0806.

(c) The intercept is 4.64. The predicted PoorSleepQuality value is 4.64 for a person
whose DASScore is zero. This is a reasonable interpretation, since it is possible
to have a DASScore of 0 (corresponding to no or very low levels of depression,
anxiety, and stress) and we see in the scatterplot of the data that several people
in the study did have a value of 0 for the DASScore.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a description of a study to evaluate the method of data collection
and to identify relevant variables

• Use the method of data collection to determine what inferences might
be possible

• Recognize which graphs and statistics are relevant in different
situations

• Examine individual variables and relationships between variables in a
dataset

Exercises for UNIT A: Essential Synthesis

RANDOM SAMPLING AND RANDOM
ASSIGNMENT
We have seen that random sampling allows us to
generalize to a broader population and that ran-
dom assignment to groups allows us to conclude
causation. A study may include either one of these,
or both, or neither. For each of the questions in
Exercises A.1 to A.6:

(a) Does the study appear to use random sampling?
(Yes or No)

(b) Does the study appear to use random assign-
ment? (Yes or No)

A.1 To predict the outcome of an election,
2500 likely voters are randomly selected to take
a survey.

A.2 The students in an Introductory Statistics class
are asked to complete a survey about study habits.

A.3 In the oncology unit of a hospital, half the
breast cancer patients are randomly selected to
receive a new drug while the rest will receive a
placebo.

A.4 At a large university, 100 students are ran-
domly selected to take part in a marketing study.
Half of these students will be randomly assigned to
view one advertising campaign while the other half
will watch a different advertising campaign.

A.5 Students in a Psychology class are shown a
scary movie while eating popcorn, to examine the
impact of fear on appetite.

A.6 In a study examining the reaction of mice
to alcohol, all 50 mice in a lab will be randomly
assigned to either have alcohol mixed in with their
water or to have non-alcoholic liquid of similar taste
and caloric content mixed in with their water.

WHICH GRAPH AND STATISTIC?
For the each of the questions in Exercises A.7
to A.16:

(a) From the following list, choose the type(s) of
variable(s) that the question pertains to.

One categorical variable
One quantitative variable
One categorical variable and one quantitative

variable
Two categorical variables
Two quantitative variables

(b) From the following list, choose the appropriate
type(s) of graph(s) that could be used to visual-
ize data corresponding to the question.

Segmented or side-by-side bar charts
Side-by-side boxplots, dotplots, or histograms
Bar chart or pie chart
Scatterplot
Histogram, dotplot, or boxplot

(c) From the following list, choose the appropriate
type(s) of statistic(s) that could be used to sum-
marize data corresponding to the question.

Correlation or slope from regression
Two-way table or difference in proportions
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Mean, median, standard deviation, range, IQR

Statistics by group or difference in means

Frequency or relative frequency table,
proportion

A.7 What is the current public opinion on capital
punishment? Domore people support or oppose it?

A.8 Is there an association between the diameter
of the plate used and how much food is consumed?

A.9 Do people who take amultivitamin live longer
than those who don’t?

A.10 How many hours do college students sleep
each night?

A.11 Are males or females more likely to be homo-
sexual?

A.12 Do college graduates who take a statistics
course in college earn more at age 40 than those
who don’t take statistics?

A.13 How far away are stars in the Milky Way
Galaxy?

A.14 What percentage of first dates yield second
dates?

A.15 Is there an association between how long a
child is breastfed and the weight of the child at
age 2?

A.16 Is there an association between the color of a
car and whether that car has been pulled over for
speeding?

A.17 Does Eye Black Work for Athletes? Athletes
routinely swipe black grease under their eyes to
help cut down on glare on sunny days. Recently,
some athletes have switched from grease to patches
of black tape. Does either method work? Which is
best? A study3 helped to answer these questions. A
sample of 46 subjects were tested using the Pelli-
Robson contrast chart, which gives a numerical rat-
ing for ability to discern contrast against a sunlit
background. Subjects were then randomly assigned
to one of three groups and tested again. One group
used black grease, one used black tape patches, and
one used clear petroleum jelly. The group wear-
ing the black grease was the only group to show
significant improvement in discerning contrast in
sunlight.

3DeBroff, B. and Pahk, P., “The Ability of Periorbitally Applied
Antiglare Products to Improve Contrast Sensitivity in Condi-
tions of Sunlight Exposure,” Archives of Ophthalmology, July
2003; 121: 997–1001.

(a) Is this an experiment or an observational study?
Explain.

(b) Why is this study not double-blind (or even
single-blind)?

(c) What is the sample in this study? Give a reason-
able intended population.

(d) What are the variables in the study? Identify
each as either categorical or quantitative.

(e) What sort of graph would you use to display the
results of the study?

A.18 Penguin Tags May Do Harm In Data 1.3 on
page 10, we describe a 10-year study in which sci-
entists investigated the effect of tagging penguins
with either a metal strip or an electronic tag. In
the study, a sample of 100 penguins were randomly
assigned to one of the two groups and then followed
for 10 years. The study found that, overall, penguins
banded using a metal strip had fewer chicks, had
a lower survival rate (percent to survive over the
decade), and on average took significantly longer on
foraging trips than penguins who were tagged with
an electronic tag.4

(a) What are the cases in this study? What are the
variables? Identify each variable as categorical
or quantitative.

(b) The description above indicates that the sci-
entists found a strong association between the
type of tag and various measures, with the
metal-tagged penguins having less success. Can
we conclude that the metal tag is causing the
problems?

(c) To investigate a relationship between each of
the following two variables, what graph or table
might we use?What statistics might we compare
or use?

i. Type of tag and number of chicks

ii. Type of tag and survival

iii. Type of tag and foraging time

iv. Foraging time and number of chicks

v. Foraging time and survival

A.19 What Webpages Do Students Visit during
Class? In a study5 investigating how students
use their laptop computers in class, researchers
recruited 45 students at one university in the

4Saraux, C., et. al., “Reliability of flipper-banded penguins as
indicators of climate change,” Nature, 13 January 2011; 469:
203–206.
5Kraushaar, J. and Novak, D., “Examining the Affects of Stu-
dent Multitasking with Laptops during the Lecture,” Journal
of Information Systems Education, 2010; 21(2): 241–251.
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Northeast who regularly take their laptops to class.
Software was installed on each of their comput-
ers that logged information on the applications the
computer was running, including how long each
was open and which was the primary focus on the
monitor. Logs were kept over multiple lectures. On
average, the students cycled through 65 active win-
dows per lecture, with one student averaging 174
active windows per lecture! The researchers devel-
oped a rubric to distinguish productive class-related
applications from distractive ones, such as email
and social networking sites. For each student, they
recorded the percent of active windows that were
distractive and the percent of time spent on distrac-
tive windows. They found that, on average, 62% of
the windows students open in class are completely
unrelated to the class, and students had distracting
windows open and active 42% of the time, on aver-
age. Finally, the study included a measure of how
each student performed on a test of the relevant
material. Not surprisingly, the study finds that the
students who spent more time on distracting web-
sites generally had lower test scores.

(a) What are the cases in this dataset? What is the
sample size? Is the sample a random sample?

(b) Is this an experiment or an observational study?
Explain.

(c) From the description given, what variables are
recorded for each case? Identify each as cate-
gorical or quantitative.

(d) What graph(s) might we use to display the data
about the number of active windows opened per
lecture? What graph is most appropriate if we
want to quickly determine whether the maxi-
mum value (174) is an outlier?

(e) The last sentence of the paragraph describes an
association. What graph might be used to dis-
play this association? What statistic might be
used to quantify it? Is it a positive or negative
association?

(f) From the information given, can we conclude
that students who allocate their cognitive
resources to distracting sites during class get
lower grades because of it? Why or why not?

Variable Session N Mean StDev Minimum Q1 Median Q3 Maximum
TempDiff 1 29 2.325 1.058 −0.076 1.571 2.328 2.806 4.915

2 29 1.911 0.747 0.158 1.398 1.936 2.475 3.806
3 29 1.494 0.617 0.534 1.005 1.439 1.898 3.141

Figure A.5 Output with summary statistics on temperature increases

(g) For the association described in part (e), what is
the explanatory variable? What is the response
variable?

(h) Describe the design of a study that might allow
us to make the conclusion in part (f). Comment
on the feasibility of conducting such a study.

A.20 Laptop Computers and Sperm Count In
Exercise 2.131 on page 100, we discuss a study
about the effect of heat from laptop computers on
scrotum temperature in men. Heating the scrotum
by just 1∘C can reduce sperm count and quality, and
repeated increases in temperature can have a long-
term effect. In a new study,6 temperature increases
in the right scrotum over one hour were measured
in ∘C while men sat with a laptop computer on their
lap. Three different conditions were tested. In Ses-
sion 1, men sat with legs close together. In Session 2,
the legs were kept close together and a lap pad was
used to separate the laptop computer from the legs.
In Session 3, no lap pad was used but the legs were
spread farther apart. The sessions were conducted
on three different days with the same volunteers.
(Sitting with legs together without a laptop does not
increase temperature.) A histogram of the values
from Session 2 is shown in Figure A.4, and summary
statistics from computer output for all three sessions
are shown in Figure A.5.
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Figure A.4 Histogram of Session 2

6Data are approximated from summary statistics given in:
Sheynkin, Y., et. al., “Protection from scrotal hyperthermia in
laptop computer users,” Fertility and Sterility, February 2011;
95(2): 647–651.
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(a) Describe the shape of the histogram of the tem-
perature changes from Session 2.

(b) How many men participated in each session?

(c) Give the summary statistics from Session 1.
What are the mean and standard deviation?
What is the five number summary?

(d) Find the z-score for the smallest value in Session
3. Is the smallest value more than two standard
deviations from the mean?

(e) If the histogram in Figure A.4 makes it appro-
priate to do so, use the mean and standard devi-
ation from Session 2 to find an interval that is
likely to contain 95% of the values. If the shape
of the histogram makes this rule inappropriate,
say so.

(f) Use the IQR for Session 1 to determine if the
largest value in Session 1 is an outlier. Show
your work.

(g) Side-by-side boxplots for the three sessions are
shown in Figure A.6. Describe what you see.
How many outliers are there in each session?
Which situation produced the largest tempera-
ture increase? Which is more effective at reduc-
ing the negative effects of the laptop: using a lap
pad or sitting with legs farther apart?
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Figure A.6 Comparing temperature increase for the
three sessions

A.21 A New Drug for Bladder Cancer Eighty-six
patients with bladder cancer participated in a study
in which all tumors were removed and then the sub-
jects were monitored to see if the tumors returned.
Patients were randomly assigned to one of two
treatment groups: one group received a placebo and
one group received the drug thiotepa. The study
was double-blind. Tumors returned in 29 out of 48

patients in the placebo group and in 18 out of 38
patients in the thiotepa group.7

(a) What is the sample in this study? What is the
intended population?

(b) What are the variables in this study? Classify
each as categorical or quantitative.

(c) Is this an experiment or an observational study?
What does it mean to say that the study was
“double-blind”?

(d) What kind of graph or table might be used to
display the data? Display the data in this way.

(e) Compute relevant statistics to compare the suc-
cess rate of the two groups. Does the drug
appear to be more effective than the placebo?

A.22 Genetic Diversity and Distance from Africa
Exercise 2.219 on page 131 describes a data set
exploring the relationship between the genetic
diversity of a population and geographic distance of
each population from East Africa. These data are
displayed in Figure A.7 along with the regression
line. The regression equation is ̂di𝑣ersity = 0.76 −
0.0000067distance.

(a) Is the association between genetic diversity and
distance from East Africa approximately lin-
ear?

(b) Interpret the slope in context.

(c) Interpret the intercept in context.

(d) The Mayan population in Mexico is 19,847 km
from East Africa (by land). Calculate the pre-
dicted genetic diversity for the Mayans.

(e) The actual genetic diversity calculated for the
Mayan population is 0.678. Will the point on
the graph that corresponds to Maya be above
or below the line?

(f) Calculate the residual for Maya.

A.23 How Much Do People Tip in Restaurants?
Data 2.12 on page 137 introduces a dataset con-
taining information on customers’ tipping pat-
terns in a restaurant. The data are available in
RestaurantTips.

(a) What are the cases? What is the sample size?

(b) What are the variables? Identify each variable
as quantitative or categorical.

7Wei, L., Lin, D., and Weissfeld, L., “Regression-analysis of mul-
tivariate incomplete failure time data by modeling marginal dis-
tributions,” Journal of the American Statistical Association, 1989;
84: 1065–73.



A Essential Synthesis 189

5000 10000 15000 20000 25000

0.60

0.65

0.70

0.75

Distance from East Africa (km)

G
en

et
ic

 D
iv

er
si

ty
AFRICA
MIDDLE_EAST
EUROPE
CENTRAL_SOUTH_ASIA
EAST_ASIA
OCEANIA
AMERICA

Figure A.7 Genetic diversity of populations by distance from East Africa.

(c) The variable PctTip includes information on the
tip as a percent of the bill. Use technology to
find the mean tip percentage, the standard devi-
ation, and the five number summary. How large
or small does a tip percentage have to be to
qualify as an outlier relative to this dataset?

(d) Use technology to create a histogram of PctTip
and describe its shape.

(e) Use technology to create a two-way table of
Credit (yes or no depending on whether the bill
was paid with a credit card) and Day (the day
of the week). Compute the proportion of bills
paid with a credit card on Thursday; do the same
for Friday. Does there appear to be an associa-
tion between whether it is Thursday or Friday
and whether a person pays with a credit card or
cash?Why do you think this might be so? (Hint:
For many people, Friday is payday.)

(f) We might be interested in how the tip percent-
age, in the PctTip variable, varies for different
servers (Server)? What graph should be used to
examine a relationship between these two vari-
ables? Use technology to create such a graph
and comment on the relationship. Which server
appears to make the highest percent tips?

(g) Does the size of the bill (Bill) influence the tip
percentage (PctTip)? In addressing this ques-
tion, what is the explanatory variable? What
is the response variable? Use technology to
draw a scatterplot. Are there any outliers in the

scatterplot? Ignoring the outliers, does there
appear to be a positive, negative, or no relation-
ship between these two variables?

(h) Use technology to find the correlation between
Bill and PctTip.

A.24 Analyzing Data from US States The dataset
USStates has a great deal of information on the 50
states in the US, including two categorical variables
and 14 quantitative variables. In the questions that
follow, we ask you to use technology to do some
analysis of this dataset.

(a) Choose one of the two categorical variables and
use technology to create a frequency table and
a relative frequency table of the values.

(b) Choose one of the quantitative variables and
use technology to create a histogram. Describe
the shape of the histogram. For the same vari-
able, create a boxplot. Are there any outliers?
Finally, for the same variable, give summary
statistics: mean, standard deviation, and the five
number summary.

(c) Choose any quantitative variable and any cat-
egorical variable and use technology to create
a side-by-side boxplot. Describe what you see
in the graph, and discuss any association that
might exist between the variables, as evidenced
by the graph.

(d) Create a two-way table of the two categorical
variables. Find appropriate proportions to help
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you determine if there is an association between
the two variables, and explain your reasoning.

(e) Choose any two quantitative variables and use
technology to create a scatterplot. Describe
the scatterplot: Is there an obvious positive or

negative linear trend? Are there any outliers?
Use technology to find the correlation and the
least squares line to predict one variable from
the other. Interpret the slope of the line in
context.

Review Exercises for UNIT A

A.25 Student Survey: Sample or Population? The
results of a student survey were introduced in
Data 1.1 on page 4. Is the dataset from a sample or a
population? If it is froma sample, describe a relevant
population to which we might make inferences.

A.26 Intensive Care Unit Admissions Data 2.3 on
page 77 introduced the dataset ICUAdmissions,
which contains 20 different variables recorded for
200 patients admitted to the Intensive Care Unit at
a hospital.

(a) What is the sample? What is a reasonable pop-
ulation?

(b) Indicate which variables are quantitative.

(c) List at least two questions we might ask about
any one of these individual variables.

(d) List at least two questions we might ask about
relationships between any two (or more) of
these variables.

A.27 Exercise, Protein, and Muscle Mass A Dutch
study implies that exercising before eating protein
might help the body convert more of the protein
into muscle. In the study, 48 men were randomly
assigned to either exercise or rest for 30 minutes.
At the end of the 30 minutes, all drank a protein
shake and had their muscle-protein synthesis mea-
sured. Regardless of age, exerciser’s bodies con-
verted more of the protein to muscle than the rest-
ing bodies.8

(a) What is the sample? What is a reasonable pop-
ulation?

(b) What are the variables? Include all variables
mentioned in the description.

(c) Identify all variables as either categorical or
quantitative.

A.28 Diet and Retinol and Beta-Carotene Levels
The data from a study9 examining the association
between diet and plasma retinol and plasma beta-

8Published online, American Journal of Clinical Nutrition,
November 27, 2010, reported in Consumer Reports OnHealth,
March 2011; 23(3): 3.
9Nierenberg, D., et. al., “Determinants of plasma levels of
beta-carotene and retinol,” American Journal of Epidemiology,
1989 Sep; 130(3): 511–21.

carotene levels are given in NutritionStudy. The
dataset has 315 cases (people who have the mea-
surements taken) and 16 columns that are described
in Appendix B.

(a) Indicate which of the variables are quantitative
and which are categorical.

(b) Discuss one possible relationship of interest in
this dataset between two categorical variables.
Between two quantitative variables. Between
one categorical and one quantitative variable.

A.29 Rowing Solo across the Atlantic Ocean On
January 14, 2012, Andrew Brown of Great Britain
set the world record time (40 days) for rowing solo
across the northern Atlantic Ocean. On March 14,
2010, Katie Spotz of the United States became the
youngest person to ever row solo across theAtlantic
when she completed it in 70 days at the age of
22 years old. Table A.5 shows times for males and
females who rowed solo across the Atlantic Ocean
in the last few years.10

(a) How many cases are there in this dataset? How
many variables are there and what are they? Is
each categorical or quantitative?

(b) Display the information in Table A.5 as a
dataset with cases as rows and variables as
columns.

Table A.5 Number of days to row
alone across the Atlantic Ocean

Male times: 40, 87, 78, 106, 67
Female times: 70, 153, 81

A.30 To Spoon or Not to Spoon? Does cuddling
after sex help boost sexual and relationship satisfac-
tion? A study11 involving 335 participants involved
in romantic relationships found that people who
reported more time spent on cuddling and affection
after sex were more satisfied with their sex lives and

10http://www.oceanrowing.com/statistics/ocean_rowing_records2
.htm.
11Muise, A., Giang, E., and Impett, E.A., “Post sex affection-
ate exchanges promote sexual and relationship satisfaction,”
Archives of Sexual Behavior, October 2014; 43(7): 1391–1402.
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relationships. This fact held true for both men and
women. The average amount of time spent cuddling
after sex was 15 minutes, and time spent on after
sex affection was more strongly associated with sex-
ual and relationship satisfaction than time spent on
either foreplay or sex itself.

(a) Is this an observational study or a randomized
experiment?

(b) Can we conclude that spending more time on
affection after sex increases sexual and relation-
ship satisfaction?

(c) A headline for an article12 describing this study
was titled “To Spoon or Not to Spoon? After-
Sex Affection Boosts Sexual and Relationship
Satisfaction.” Does the study support this title?

(d) The title of the scientific article in which the
study was originally published is “Post Sex
Affectionate Exchanges Promote Sexual and
Relationship Satisfaction.” Does the study sup-
port this title?

A.31 Psychological and Physiological Effects of
Meditation Forty-one employees of a biotechnol-
ogy company participated in a study13 that exam-
ines the immunological and psychological effects
of meditation. Twenty-five of the participants, cho-
sen at random, completed an 8-week meditation
program while the other sixteen employees did no
meditation. Brain wave activity across the front
of the left hemisphere was measured for all par-
ticipants before, immediately following, and four
months after the program. (Studies have suggested
that increased activity in this part of the brain
is associated with decreases in negative emotions
and increases in positive emotions.) All 41 people
received an influenza vaccination at the end of the
program and their immune response to the vaccine
was measured through blood samples taken one
month and two months later. All participants also
completed surveys designed to measure negative
and positive emotions before and after the course.
The surveys produced two numerical scores (one
for positive emotions and one for negative emo-
tions) in both situations.

12“To Spoon or Not to Spoon? After-Sex Affection Boosts
Sexual and Relationship Satisfaction,” http://www.scienceof
relationships.com/home/2014/5/16/to-spoon-or-not-to-spoon-after-
sex-affection-boosts-sexual-a.html, Accessed July 17, 2015.
13Davidson, R., et. al., “Alterations in brain and immune
function produced by mindfulness meditation,” Psychosomatic
Medicine, July/August, 2003, 65:564–570.

Meditators showed an increase in brain wave
activity, a decrease in reported negative feelings,
and no change in reported positive feelings. Non-
meditators showed no significant change in any of
these areas. Meditators had a stronger antibody
response to the vaccine than the non-meditators.

(a) What are the cases in this study? How many
cases are there?

(b) What are the variables? Which are categorical
and which are quantitative?

(c) Which variable is the explanatory variable?

(d) Howmany rows and howmany columns will the
dataset contain if we assume that each data case
is a row and each variable is a column?

A.32 Special Shakes A large restaurant chain (see
Example 1.6) periodically offers special milk shake
flavors for a limited time. Suppose that the con-
tenders for the next special flavor are Green Mint,
Orange Crush, Egg Nog, and Piña Colada. The
chain plans to collect data from customers on these
flavors, and there are several ways they might solicit
responses. For each of the options below, state the
number of variables needed to code the information
in a dataset, whether the variable(s) is/are categor-
ical or quantitative, and what sort of values should
be recorded.

(a) “Which of the four flavors is most appealing to
you?”

(b) “Put a check next to any of the four flavors you
find appealing.”

(c) “Please rank the four flavors with 1=most
appealing and 4=least appealing.”

(d) “Rate each of the four flavors on a 1 to 10 scale
with 10=extremely appealing and 1=very unap-
pealing.”

A.33 Does Physical Beauty Matter? One of the
daily polls on CNN.com asked “Does Physical
Beauty Matter to You?” Of 38,485 people respond-
ing, 79% said yes and 21% said no. Can we conclude
that about 79% of all people think physical beauty
matters?Why or why not? In making such a conclu-
sion, what are we considering the sample? What are
we considering the population? Is there any bias in
the sampling method?

A.34 Do Tanning Salons Mislead Their Cus-
tomers? Investigators posing as fair-skinned teen-
age girls contacted 300 tanning salons nationwide,
including at least three randomly selected in each
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state. The investigators report that 90% of the
salons stated that indoor tanning did not pose
a health risk and over half (51%) of the salons
denied that indoor tanning would increase a fair-
skinned teenager’s risk of developing skin cancer.
Going even further, 78% of the tanning salons even
claimed that indoor tanning is beneficial to health.14

(In fact, many studies have shown that tanning is
dangerous, especially for teenagers, and that tan-
ning raises the risk of melanoma, the deadliest type
of skin cancer, by 74%.)

(a) What is the sample?

(b) Do you think the sample is representative of all
tanning salons in the US?

(c) Although the sample is random, discuss why the
results do not paint an accurate picture of the
dangers of tanning.

(d) Do you think the study accurately portrays the
messages tanning salons give to teenage girls?

A.35 Does Red Increase Men’s Attraction to
Women? A recent study15 examined the impact
of the color red on how attractive men perceive
women to be. In the study, men were randomly
divided into two groups and were asked to rate the
attractiveness of women on a scale of 1 (not at all
attractive) to 9 (extremely attractive). One group
of men were shown pictures of women on a white
background and the other group were shown the
same pictures of women on a red background. The
men who saw women on the red background rated
them as more attractive. All participants and those
showing the pictures and collecting the data were
not aware of the purpose of the study.

(a) Is this an experiment or an observational study?
Explain.

(b) What is the explanatory variable and what is the
response variable? Identify each as categorical
or quantitative.

(c) How was randomization used in this experi-
ment? How was blinding used?

(d) Can we conclude that using a red background
color instead of white increases men’s attrac-
tiveness rating of women’s pictures?

14“Congressional Report Exposes Tanning Industry’s Misleading
Messaging to Teens,” http://www.skincancer.org/news/tanning/
tanningreport, a report released by the House Committee on
Energy and Commerce, February 1, 2012.
15Elliot, A. and Niesta, D., “Romantic Red: Red Enhances
Men’s Attraction to Women,” Journal of Personality and Social
Psychology, 2008; 95(5): 1150–1164.

A.36 Fish Consumption and Intelligence In 2000, a
study16 was conducted on 4000 Swedish 15-year-old
males. The boys were surveyed and asked, among
other things, howoften they consumefisheachweek.
Three years later, these answers were linked to the
boys’ scores as 18-year-olds on an intelligence test.
The study found that boys who consume fish at least
once a week scored higher on the intelligence test.

(a) Is this an experiment or an observational study?
Explain.

(b) What are the explanatory and response vari-
ables?

(c) Give an example of a potential confounding
factor.

(d) Does this study provide evidence that eating fish
once a week improves cognitive ability?

A.37 First Quiz Easy or Hard? In an introduc-
tory statistics class in which regular quizzes are
given, should the first quiz be easy (to give students
confidence) or hard (to convince students to work
harder)? The response variable will be grades on a
later exam that is common to all students.

(a) Describe an observational study to answer this
question.

(b) Describe a confounding variable that is likely to
impact the results of the observational study.

(c) Describe a randomized experiment designed to
answer this question.

A.38 Outwit the Grim Reaper by Walking Faster!
The title of this exercise was a recent headline.17

The article goes on to describe a study in which
men’s walking speeds at age 70 were measured and
then the men were followed over several years.
In the study, men who walked slowly were more
likely to die. The article concludes that “Men can
elude the Grim Reaper by walking at speeds of at
least 3 miles per hour.” What common mistake is
this article making? What is a possible confounding
variable?

A.39 Shoveling Snow Three situations are
described at the start of Section 1.3 on page 31.
In the second bullet, we describe an association
between activity at a building’s heating plant and
more employees missing work due to back pain.
A confounding variable in this case is amount of

16Aberg, M., et. al., “Fish intake of Swedish male adolescents
is a predictor of cognitive performance,” Acta Paediatrica, 2009;
98 (3):555.
17“Outwit the Grim Reaper by Walking Faster,” medicalex-
press.com, posted December 16, 2011.
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snow. Describe how snowfall meets the definition of
a confounding variable by describing how it might
be associated with both variables of interest.

A.40 Exercise and Alzheimer’s Disease A head-
line at MSNBC.com18 stated “One way to ward off
Alzheimer’s: Take a hike. Study: Walking at least
one mile a day reduces risk of cognitive impair-
ment by half.” The article reports on a study19 show-
ing that elderly people who walked a lot tended to
have more brain mass after nine years and were
less likely to develop dementia that can lead to
Alzheimer’s disease than subjects who walked less.
At the start of the study the researchers measured
the walking habits of the elderly subjects and then
followed up with measures of brain volume nine
years later. Assuming that active walkers really did
have more brain mass and fewer dementia symp-
toms, is the headline justified?

A.41 Single-Sex Dorms and Hooking Up The pres-
ident of a large university recently announced20

that the school would be switching to dorms that
are all single-sex, because, he says, research shows
that single-sex dorms reduce the number of student
hook-ups for casual sex. He cites studies showing
that, in universities that offer both same-sex and co-
ed housing, students in co-ed dorms report hooking
up for casual sex more often.

18http://www.msnbc.msn.com/id/39657391/ns/health-alzheimer’s
_disease.
19Erickson, K., et. al., “Physical activity predicts gray matter
volume in late adulthood: The Cardiovascular Health Study,”
Neurology, published online October 13, 2010.
20Stepp, L., “Single-sex dorms won’t stop drinking or ‘hooking-
up’,” www.cnn.com, June 16, 2011.
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Figure A.8 Percent of college graduates by region of the US

(a) What are the cases in the studies cited by the
university president? What are the two vari-
ables being discussed? Identify each as categor-
ical or quantitative.

(b) Which is the explanatory variable and which is
the response variable?

(c) According to the second sentence, does there
appear to be an association between the vari-
ables?

(d) Use the first sentence to determine whether the
university president is assuming a causal rela-
tionship between the variables.

(e) Use the second sentence to determine whether
the cited studies appear to be observational
studies or experiments?

(f) Name a confounding variable that might be
influencing the association. (Hint: Students
usually request one type of dorm or the
other.)

(g) Can we conclude from the information in the
studies that single-sex dorms reduce the number
of student hook-ups?

(h) What common mistake is the university presi-
dent making?

A.42 Percent of College Graduates by Region of
the US The dataset USStates includes information
on the percent of the population to graduate from
college (of those age 25 and older) for each US
state. Figure A.8 shows side-by-side boxplots for
percent of college graduates by region of the coun-
try (Midwest, Northeast, South, and West.)

(a) What are the variables and is each categorical
or quantitative?
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(b) Describe the results seen in the graph. Which
region has the highest percent of college gradu-
ates? Which has the lowest? Are there any out-
liers and, if so, where?

(c) Does there appear to be an association between
these two variables?

(d) Can we conclude that there is causation
between the two variables: that one of the vari-
ables is causing changes in the other?

A.43 Moving in Sync Increases Feelings of Con-
nection If you want people to agree with you, get
them to join you in a line dance or to march in
lock-step with you. A recent study21 shows that we
feel more emotionally connected to one another
when we’re moving in sync. In the study, researchers
asked 70 college students to walk behind an accom-
plice either matching stride for stride, walking com-
pletely out of sync, or walking at any comfortable
pace. The students were randomly divided between
the three options. After following the accomplice
around campus, the students were asked to rate
how close they felt to the accomplice, how much
they liked the accomplice, and how similar they felt
to the accomplice. Ratings were on a 7-point scale
(which we will treat as quantitative) with 7 repre-
senting highest levels of closeness, liking, and sim-
ilarity. On all three questions, those who had been
forced to walk in sync gave substantially higher rat-
ings than either of the other two groups.

(a) What are the cases? What is the sample size?

(b) What are the variables?

(c) Is this an experiment or an observational study?

(d) Use the information given to draw a rough
sketch of possible side-by-side boxplots com-
paring the three groups on the similarity rank-
ings. Be sure the sketch shows the association
described.

(e) In a second part of the experiment, the students
were encouraged by the accomplice to funnel
live pill bugs into a grinder labeled an “exter-
mination machine.” Those who had marched
in step with the accomplice followed orders
and “killed” the most pill bugs. (The pill bugs
were actually secretly funneled to safety.) What
graph would we use to look at a relationship of
number of pill bugs killed by which treatment
group the student was in?What graph would we
use to look at the association of number of pill
bugs killed with the rating given on the liking
accomplice scale?

21Carroll, L., “Moving in sync makes people think alike, study
finds,” The Body Odd, msnbc.com, posted January 18, 2012.

A.44 Who Smokes More: Males or Females The
StudentSurvey dataset includes variables on sex and
on whether or not the student smokes. Who smokes
more: males or females? Table A.6 shows a two-way
table of these two variables.

(a) Which sex has a higher percentage of smokers:
males or females?

(b) What is the proportion of smokers for the entire
sample?

(c) What proportion of the smokers in the sample
are female?

Table A.6 Smoking habits by sex

Female Male Total

Don’t smoke 153 166 319
Smoke 16 27 43
Total 169 193 362

A.45 Does Sexual Frustration Increase the Desire
for Alcohol? Apparently, sexual frustration increa-
ses the desire for alcohol, at least in fruit flies. Sci-
entists22 randomly put 24 fruit flies into one of two
situations. The 12 fruit flies in the “mating” group
were allowed to mate freely with many available
females eager to mate. The 12 in the “rejected”
group were put with females that had already mated
and thus rejected any courtship advances. After
four days of either freely mating or constant rejec-
tion, the fruit flies spent three days with unlimited
access to both normal fruit fly food and the same
food soaked in alcohol. The percent of time each
fly chose the alcoholic food was measured. The fruit
flies that had freely mated chose the two types of
food about equally often, choosing the alcohol vari-
ety on average 47% of the time. The rejected males,
however, showed a strong preference for the food
soaked in alcohol, selecting it on average 73% of
the time. (The study was designed to study a chemi-
cal in the brain called neuropeptide that might play
a role in addiction.)

(a) Is this an experiment or an observational study?

(b) What are the cases in this study? What are the
variables? Which is the explanatory variable
and which is the response variable?

(c) We are interested in the difference in means,
where the means measure the average percent
preference for alcohol (0.47 and 0.73 in this

22Shohat-Ophir, G., Kaun, K., Azanchi, R. and Heberlein, U.,
“Sexual Deprivation Increases Ethanol Intake in Drosophila,”
Science, March 16, 2012; 335(6074): 1351–1355.
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case). Find the difference in means and give the
correct notation for your answer, using the cor-
rect notation for a mean, subscripts to identify
groups, and a minus sign.

(d) Can we conclude that rejection increases a male
fruit fly’s desire for alcohol? Explain.

A.46 Pricing and Social Responsibility An experi-
ment on pricing and social responsibility was con-
ducted using a popular ride at a large amusement
park, where digital photos are taken of the riders
and offered for sale at the end of the ride.23 The
experiment was designed to determine the effect
of pricing strategy under four conditions: the nor-
mal pricing strategy used by the ride; the effect
when customers are allowed to pay whatever they
want; the effect when customers are told that half
the revenue is donated to charity; and the effect
when customers can pay what they want and half
the money is donated to charity. The experimenter
had the amusement park try all four pricing strate-
gies, and the proportion of riders buying the photos
and the mean price paid are given for each of the
pricing scenarios in Table A.5. The ride has 15,000
customers per day, and photos normally cost $12.95.
Compute the daily total revenue for the company
under each of the scenarios. (The total number of
customers buying the photo is the proportion buy-
ing times the 15,000 customers. The total revenue
is the number buying photos times the mean price
paid. Also don’t forget to donate half the money
to charity when required!) What pricing strategy
should the managers of the business use if they are
only concerned about maximizing revenue? What
pricing strategy should they use if they want high
revenue combined with social responsibility?

Table A.5 Which pricing strategy is best?

Proportion Mean Amount
Pricing Strategy Buying Paid

(a) Standard 0.005 $12.95
(b) Pay what you want 0.08 $ 0.92
(c) Half to charity 0.006 $12.95
(d) Both (b) and (c) 0.04 $ 5.50

A.47 Sampling Some Frazer Computing Cus-
tomers Frazer Computing, a company that
leases software, has over 21,000 used car dealer

23Nelson, L., Pricing Strategy and Corporate Social Responsibil-
ity, Research News from the Haas School of Business, October
13, 2010.

customers.24 The company wants to contact 10 of
these car dealers, randomly selected, to conduct in-
depth interviews on how the software is meeting
their needs. Suppose the car dealers are numbered 1
to 21,000. Use a random number generator or table
to select the numbers for the 10 dealers to be in the
sample.

A.48 Driving with a Pet on Your Lap Over 30,000
people participated in an online poll on cnn.com25

asking “Have you ever driven with a pet on your
lap?” The results show that 34% answered yes and
66% answered no. Can we conclude that 34% of all
people have driven with a pet on their lap? Can we
conclude that 34% of all people who visit cnn.com
have driven with a pet on their lap? Explain.

A.49 Does Smiling Increase Positive Emotions?
Scientists came up with a clever way to test
whether the physical act of smiling increases pos-
itive emotions.26 They randomly divided partici-
pants into two groups of 24 each. The “smiling”
group was asked to hold a pencil between their
teeth (which forces the face into a smile), while the
“non-smiling” group was asked to hold a pencil
between their lips (which does not). Participants
were not told the purpose of the experiment. They
then rated video clips on a scale from −9 (very neg-
ative) to +9 (very positive). The ratings of the two
groups did not differ on the negative clips, but the
mean for the smiling group on a positive clip (from
a Tom & Jerry cartoon) was 7.8 while it was 5.9 for
the non-smiling group.

(a) Is this an experiment or an observational study?

(b) Why is it important that participants were not
told the purpose of the study?

(c) Find the difference in means for the ratings on
the positive clip, and use notation, with sub-
scripts and a minus sign, for your answer.

(d) If the difference in means from part (c) is con-
sidered substantial, can we conclude that forc-
ing the facial muscles into a smile in this way
increases positive emotions?

A.50 What Type of Cell Phone? A 2019 survey27

examined cell phone ownership by US adults. The
results of the survey are shown in Table A.6.

24Frazer.com.
25cnn.com, poll results from April 12, 2012.
26Soossignan, R., “Duchenne smile, emotional experience, and
automatic reactivity: A test of the facial feedback hypothesis,”
Emotion, March 2002; 2(1): 52–74.
27“Mobile Technology and Home Broadband 2019,” Pew
Research Center, pewresearch.org, June 13, 2019.
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Table A.6 Frequencies in cell phone ownership

Cell Phone Owned Frequency

Smartphone 1219
Cell phone not smartphone 246
No cell phone 37

Total 1502

(a) Make a relative frequency table of the data.
Give results to three decimal places.

(b) What percent of the survey respondents do not
own a cell phone? What percent own a cell
phone but not a smartphone? What percent
own a smartphone?

A.51 Near-Death Experiences People who have
a brush with death occasionally report experienc-
ing a near-death experience, which includes the
sensation of seeing a bright light or feeling sepa-
rated from one’s body or sensing time speeding up
or slowing down. Researchers28 interviewed 1595
people admitted to a hospital cardiac care unit
during a recent 30-month period. Patients were
classified as cardiac arrest patients (in which the
heart briefly stops after beating unusually quickly)
or patients suffering other serious heart prob-
lems (such as heart attacks). The study found that
27 individuals reported having had a near-death
experience, including 11 of the 116 cardiac arrest
patients. Make a two-way table of the data. Com-
pute the appropriate percentages to compare the
rate of near-death experiences between the two
groups. Describe the results.

A.52 Painkillers and Miscarriage A recent study29

examined the link between miscarriage and the
use of painkillers during pregnancy. Scientists inter-
viewed 1009 women soon after they got positive
results from pregnancy tests about their use of
painkillers around the time of conception or in
the early weeks of pregnancy. The researchers then
recorded which of the pregnancies were successfully
carried to term. The results are in Table A.7.

(a) What percent of the pregnancies ended in mis-
carriage?

(b) Compute the percent of miscarriages for each
of the four groups. Discuss the results.

28Greyson, B., “Incidence and correlates of near-death expe-
riences on a cardiac care unit,” General Hospital Psychiatry,
July/August 2003; 25:269–276.
29Li, D-K., et al., “Use of NSAIDs in pregnancy increases
risk of miscarriage,” British Medical Journal, August 16, 2003;
327(7411): 1.

Table A.7 Does the use of painkillers
increase the risk of miscarriage?

Miscarriage Total

Aspirin 5 22
Ibuprofen 13 53
Acetaminophen 24 172
No painkiller 103 762

Total 145 1009

(c) Is this an experiment or an observational study?
Describe how confounding variables might
affect the results.

(d) Aspirin and ibuprofen belong to a class of med-
ications called nonsteroidal anti-inflammatory
drugs, or NSAIDs. What percent of women
taking NSAIDs miscarried? Does the use of
NSAIDs appear to increase the risk of miscarry-
ing? Does the use of acetominophen appear to
increase the risk? What advice would you give
pregnant women?

(e) Is Table A.7 a two-way table? If not, construct
one for these data.

(f) What percent of all women who miscarried had
taken no painkillers?

A.53 Smoking and Pregnancy Rate Studies have
concluded that smoking while pregnant can have
negative consequences, but could smoking also neg-
atively affect one’s ability to become pregnant? A
study collected data on 678 women who had gone
off birth control with the intention of becoming
pregnant.30 Smokers were defined as those who
smoked at least one cigarette a day prior to preg-
nancy. We are interested in the pregnancy rate dur-
ing the first cycle off birth control. The results are
summarized in Table A.8.

Table A.8 Smoking and pregnancy rate

Smoker Non-smoker Total
Pregnant 38 206 244
Not pregnant 97 337 434

Total 135 543 678

(a) Is this an experiment or an observational study?
Can we use the data to determine whether
smoking influences one’s ability to get preg-
nant? Why or why not?

30Baird, D. andWilcox, A., “Cigarette Smoking AssociatedWith
Delayed Conception,” Journal of the American Medical Associ-
ation, June 2011; 305(23): 2379–2484.



A Review Exercises 197

(b) What is the population of interest?

(c) What is the proportion of women successfully
pregnant after their first cycle ( p̂)? Proportion
of smokers successful ( p̂s)? Proportion of non-
smokers successful ( p̂ns)?

(d) Find and interpret ( p̂ns − p̂s) the difference
in proportion of success between non-smokers
and smokers.

A.54 Age of Patients with Back Pain Figure A.9
shows a histogram of the ages of n = 279 patients
being treated for back pain.31 Estimate the mean
and standard deviation of the ages of back pain
patients.
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Figure A.9 Age of patients with back pain

A.55 Lie Detection Is lie detection software accu-
rate? A recent study was conducted in order to test
the accuracy of a commonly used method of lie
detection.32 The researchers are specifically inter-
ested in how lie detectors perform when an indi-
vidual is stressed. A sample of 48 participants were
gathered and attached to the lie detection device.
They were asked to read deceptive (lying) material
out loud while receiving an electric shock (to add
stress). The lie detector failed to report deception
in 17 of the 48 participants.

(a) What is the sample in this study? What is the
population of interest? What does the variable
measure?

(b) What proportion of time does the lie detector
fail to report deception?

(c) If you were a prosecutor, would you recom-
mend this lie detector to reveal deception?

31Sample dataset from Student Version 12 of Minitab Statistical
Software.
32Hollien, H., Harnsberger, J., Martin, C., andHollien, K., “Eval-
uation of the NITV CVSA,” Journal of Forensic Sciences, Jan-
uary 2010; 53(1):183–193.

A.56 Lie Detection of Truthful Material Exer-
cise A.55 describes a study in which lie detector
accuracy is checked by having participants read
deceptive material. In addition to deceptive mate-
rial, the individuals were also asked to read truthful
material. The electric shock was again included to
add stress. The lie detector accurately reported no
deception in 21 of the 48 participants.

(a) What proportion of the time does the lie detec-
tor incorrectly report deception?

(b) If you were on a jury, would you trust results
from this device?

A.57 Clutch Sizes of Birds A naturalist counts the
number of baby birds, or clutch size, in a sample
of 130 different nests. A histogram of her results
is shown in Figure A.10. Is the distribution approx-
imately symmetric and bell-shaped? Estimate the
mean of the clutch sizes. Estimate the standard
deviation of the clutch sizes.
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Figure A.10 Estimate the mean and the standard
deviation

A.58 PSA Cancer Screening A sample of 30 men
were given the PSA (prostate specific antigen) test
to screen for prostate cancer. For the 30 values
obtained, the median score wasm = 3 and the mean
was x = 11. Explain how it is possible for the mean
and the median to be so different. What is likely to
be true about the shape of the distribution of PSA
scores?

A.59 The Growing Season The number of consec-
utive frost-free days in a year is called the grow-
ing season. A farmer considering moving to a new
region finds that the median growing season for the
area for the last 50 years is 275 days while the mean
growing season is 240 days.

(a) Explain how it is possible for the mean to be
so much lower than the median, and describe
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the distribution of the growing season lengths
in this area for the last 50 years.

(b) Draw a possible curve for the shape of this dis-
tribution. Label the mean and median on the
horizontal axis.

(c) Describe the likely shape of the distribution.

A.60 Normal Body Temperature It is commonly
believed that normal human body temperature is
98.6∘F (or 37∘C). In fact, “normal” temperature can
vary from person to person, and for a given person
it can vary over the course of a day. Table A.9 gives
a set of temperature readings of a healthy woman
taken over a two-day period.

Table A.9 Body temperature during the day

97.2 97.6 98.4 98.5 98.3 97.7
97.3 97.7 98.5 98.5 98.4 97.9

(a) Make a dotplot of the data.

(b) Compute the mean of the data and locate it on
the dotplot as the balance point.

(c) Compute the median of the data and locate it
on the dotplot as the midway point.

A.61 Beta-Carotene Levels in the Blood The
plasma beta-carotene level (concentration of beta-
carotene in the blood), in ng/ml, was measured for a
sample of n = 315 individuals, and the results33 are
shown in the histogram in Figure A.11.

(a) Describe the shape of this distribution. Is it
symmetric or skewed? Are there any obvious
outliers?

(b) Estimate the median of this sample.

(c) Estimate the mean of this sample.
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Figure A.11 Concentration of beta-carotene in the
blood

33http: // lib . stat . cmu . edu / datasets / Plasma_Retinol, accessed
November 24, 2003.

A.62 Time Spent Exercising, between Males and
Females Often we are interested not just in a sin-
gle mean but in a difference in means between
two groups. In the StudentSurvey data, there are 36
seniors: 26 males and 10 females. Table A.10 gives
the number of hours per week that each said he or
she spent exercising.

Table A.10 Number of hours spent exercising
a week

Females 4 2 5 6 12 15 10
5 0 5

Males 10 10 6 5 7 8 4
12 12 4 15 10 5 5
2 2 7 3 5 15 6
6 5 0 8 5

(a) Calculate xf , the mean number of hours spent
exercising by the females.

(b) Calculate xm, the mean number of hours spent
exercising by the males.

(c) Compute the difference, xm − xf , and interpret
it in context.

A.63 Mean or Median Calculate the mean and the
median for the numbers

1, 1, 1, 1, 1, 1, 2, 5, 7, 12

Which do you think is a better measure of center for
this set of values? Why? (There is no right answer,
but think about which you would use.)

A.64 Time in Days to Row Solo across the Atlantic
Ocean Exercise A.29 on page 190 gives a sample of
eight times, in days, to row solo across the Atlantic
Ocean. The times are

40, 87, 78, 106, 67, 70, 153, 81

(a) Use technology to find the mean and standard
deviation of the eight times.

(b) Find and interpret the z-scores for the longest
time and shortest time in the sample.

A.65 Arsenic in Toenails Exercise 2.73 on page 82
discusses the use of toenail clippings to measure
the level of arsenic exposure of individuals in
Great Britain. A similar study was conducted in the
US. Table A.11 gives toenail arsenic concentrations
(in ppm) for 19 individuals with private wells in
New Hampshire, and the data are also available in
ToenailArsenic. Such concentrations prove to be
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an effective indicator of ingestion of arsenic-
containing water.34

Table A.11 Arsenic concentration in toenail
clippings

0.119 0.118 0.099 0.118 0.275 0.358 0.080
0.158 0.310 0.105 0.073 0.832 0.517 0.851
0.269 0.433 0.141 0.135 0.175

(a) Use technology to find the mean and standard
deviation.

(b) Compute the z-score for the largest concentra-
tion and interpret it.

(c) Use technology to find the five number
summary.

(d) What is the range? What is the IQR?

A.66 A Dotplot of Arsenic in Toenails Figure A.12
shows a dotplot of the arsenic concentrations in
Table A.11.

Arsenic
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure A.12 Dotplot of arsenic concentration in
toenails

(a) Which measures of center and spread are most
appropriate for this distribution: the mean and
standard deviation or the five number sum-
mary? Explain.

(b) Is it appropriate to use the 95% rule about hav-
ing 95% of the data within two standard devia-
tions for this distribution? Why or why not?

A.67 Jogging Times Consider the jogging times
from a set of 5-mile runs by two different runners
in Table A.12.

(a) Which runner is faster on average?

(b) What is the main difference in the jogging times
of joggers 1 and 2?

34Adapted from Karagas, M., et. al., “Toenail samples as an indi-
cator of drinking water arsenic exposure,” Cancer Epidemiology,
Biomarkers and Prevention, 1996; 5: 849–852.

Table A.12 Jogging times

Jogger 1 Jogger 2

44 48
45 49
43 38
48 40
45 50

A.68 Mammal Longevities Table 2.21 on page 73
shows longevity (typical lifespan) in years for 40
species of mammals, and the data are also available
inMammalLongevity.

(a) Use technology to find the mean and standard
deviation of the 40 values.

(b) The elephant’s longevity of 40 years appears
to be an outlier in the dotplot in Figure 2.6 on
page 73. Find and interpret the z-score for the
elephant.

A.69 Diabetes Drug Benefits Heart Patients
Rosiglitazone is normally prescribed to control
blood sugar in people with Type II diabetes, but
it may also provide a benefit to heart patients. A
study35 identified 95 people with Type II diabetes
who were undergoing angioplasty to open coro-
nary arteries. For six months after the angioplasty,
about half the patients received daily oral doses of
rosiglitazone, while the rest received a placebo. The
groups were randomly assigned and the study was
double-blind. Each patient was then tested to see if
blood vessel blockage was greater or less than 50%.
Since the goal is to limit the propensity of blood
vessels to close again after angioplasty, an outcome
of less than 50% is desirable. The results are shown
in Table A.13.

Table A.13 Is the drug effective at keeping
blockage less than 50%?

Greater than 50% Less than 50%

Rosiglitazone 5 42
Placebo 21 27

(a) How many patients received the drug? How
many received a placebo?

(b) What percent of all patients in the study had
less than 50% blockage within 6 months of the
angioplasty?

35“Double Duty: Diabetes drug protects reopened heart vessels,”
Science News, June 21, 2003; 163(25):389–390.
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(c) Of the patients with greater than 50% blockage,
what percent were on rosiglitazone?

(d) What percent of the patients given a placebo
had less than 50% blockage?

(e) We wish to compare the effectiveness of rosigli-
tazone to a placebo at keeping blockage to less
than 50%. Calculate the relevant percentages to
make this comparison and discuss the results.

(f) Does rosiglitazone appear to be effective?

A.70 Number of Cell Phone Calls per Day A sur-
vey of n = 1917 cell phone users in May 2010 asked
“On an average day, about how many phone calls
do you make and receive on your cell phone?” The
results36 are displayed in Table A.14.

Table A.14 Number of cell phone
calls made or received per day

Number of Calls Percentage

0 5%
1–5 44%
6–10 22%
11–20 14%
21–30 5%

More than 30 6%
Don’t know 3%

(a) What is the sample? What is the intended pop-
ulation?

(b) Is this a frequency table or a relative frequency
table?

(c) We can’t draw an accurate histogram from the
data in the table since the first category has a
single value and the last is unbounded (even
if we ignore the nonresponses). However, you
should still be able to discuss the general shape
of the distribution. For example, are the data
skewed or relatively symmetric? Explain your
reasoning.

(d) The article lists two statistics for the “center” of
these data: 5.00 and 13.10. Which is the mean
and which is the median? Explain.

A.71 Prostate Cancer and a Drug for Baldness
The drug finasteride is marketed as Propecia to
help protect against male pattern baldness, and
it also may protect against prostate cancer. A
large sample37 of healthy men over age 55 were

36Princeton Survey Research Results, “Spring Change Assess-
ment Survey,” June 4, 2010.
37Thompson, I., et. al., “The influence of finasteride on the devel-
opment of prostate cancer,” New England Journal of Medicine,
July 17, 2003; 349(3): 215–24.

randomly assigned to receive either a daily finas-
teride pill or a placebo. The study lasted seven years
and the men had annual check-ups and a biopsy at
the end of the study. Prostate cancer was found in
804 of 4368 men taking finasteride and in 1145 of
the 4692 men taking a placebo.

(a) Is this an experiment or an observational study?
The study was double-blind; what does that
mean?

(b) What are the variables in the study?

(c) Make a two-way table to display the results.
Include the row and column totals.

(d) What percent of men in the study received finas-
teride?

(e) What percent of the men with prostate cancer
were in the placebo group?

(f) Compare the percent of men getting prostate
cancer between the two groups. Does finas-
teride appear to offer some protection against
prostate cancer?

A.72 Length of Calls on a Cell Phone

(a) Do you expect the distribution of the lengths of
all phone calls made on a cell phone during one
month to be symmetric, skewed to the right, or
skewed to the left?

(b) Two measures of center for this distribution are
2.5 minutes and 13.7 minutes. Which is most
likely to be the mean and which is most likely
to be the median? Explain your reasoning.

A.73 Fighting Insomnia Studies have shown that
behavioral changes and prescription medication can
help older people fight insomnia. Researchers38 fol-
lowed the sleep patterns of 72 people whose aver-
age age was 65. Seventeen people took amedication
called temazepam an hour before bedtime, 18 peo-
ple received training in techniques to improve sleep,
19 did both, and 18 took a placebo and received no
training. The results are summarized in Table A.15.
Find the following proportions for this sample.

(a) The proportion who experiencedmuch improved
sleep quality

Table A.15 Treating insomnia

Improvement Medication Training Both Neither Total
Much 5 7 10 0 22
Some 4 5 6 1 16
None 8 6 3 17 34
Total 17 18 19 18 72

38Information adapted from Science News, April 3, 1999.
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(b) The proportion of those who took medica-
tion (with or without training) who experienced
much improvement

(c) The proportion of those with no improvement
who used temazepam

(d) The proportion of those who did not have train-
ing who experienced some or much improve-
ment

A.74 Comparing Two Drugs in Dialysis Patients
Many kidney dialysis patients get vitamin D injec-
tions to correct for a lack of calcium. Two forms
of vitamin D injections are used: calcitriol and par-
icalcitol. In the first study39 to compare survival
rates of patients getting one drug or the other, the
records of 67,000 dialysis patients were examined.
Half received one drug; the other half the other
drug. After three years, 58.7% of those getting par-
icalcitol had survived, while only 51.5% of those
getting calcitriol had survived. What percent of the
survivors had received paricalcitol? Construct an
approximate two-way table of the data (due to
rounding of the percentages we can’t recover the
exact frequency counts).

A.75 Birth Rate Is the birth rate different in devel-
oped and undeveloped countries? In the dataset
AllCountries, we have information on the birth
rate of all 217 countries as well as an indicator for
whether the country is considered a developed or
undeveloped nation.40 Use the five number sum-
maries for each group of countries in Table A.16 to
answer the following questions.

Table A.16 Five number summaries for birth
rate in developed and undeveloped nations

1st 3rd
Min Quartile Median Quartile Max

Developed 7.0 9.7 10.7 13.9 24.6
Undeveloped 10.1 18.5 22.9 31.8 47.8

(a) Does the birth rate distribution appear to be
different in developed and undeveloped coun-
tries?

39Teng, M., et. al., “Survival of patients undergoing hemodialysis
with paricalcitol or calcitriol Therapy,” New England Journal of
Medicine, July 31, 2003; 349(5): 446–456.
40In this exercise nations are considered undeveloped if the aver-
age electricity used per person is less then 2500 kWh a year
(coded with “1” in the Developed variable of AllCountries). We
combined the other two categories into a single category. Sixty-
one countries were excluded due to missing data.

(b) Would any of the undeveloped countries be out-
liers if they were considered developed? What
about developed countries if they were consid-
ered undeveloped?

(c) Turkmenistan has the highest birth rate (24.6)
among the countries classified as developed. Is
it an outlier for developed countries? Would it
be an outlier in the birth rate distribution for
undeveloped countries?

(d) Using the five number summaries, make a rough
sketch of side-by-side boxplots for birth rate
(ignoring outliers).

A.76 Draw a Boxplot

(a) Draw a boxplot for data that illustrate a distri-
bution skewed to the right.

(b) Draw a boxplot for data that illustrate a distri-
bution skewed to the left.

(c) Draw a boxplot for data that illustrate a sym-
metric distribution.

A.77 Variability by Age in Systolic Blood Pres-
sure How does the variability in systolic blood
pressure compare between ICU patients in their
teens and those in their eighties for the patients in
the dataset ICUAdmissions? The values for each
group are given in Table A.17. Use technology to
find the five number summary, the range and IQR,
and the standard deviation in each case and com-
pare the measures of spread for the two groups.

Table A.17 Systolic blood pressure of ICU
patients

Teens 100 100 104 104 112 130
130 136 140 140 142 146 156

Eighties 80 100 100 110 110 122 130
135 136 138 140 141 162 190 190

A.78 Examining Blood Pressure by Age Are any
of the systolic blood pressures in Exercise A.77 for
patients in their teens or eighties outliers within
their group? Justify your answer.

A.79 Infection in Dialysis Patients Table A.18 gives
data showing the time to infection, at the point of
insertion of the catheter, for kidney patients using
portable dialysis equipment. There are 38 patients,
and the data give the first observation for each
patient.41 The five number summary for the data is
(2, 15, 46, 149, 536).

41McGilchrist, C. and Aisbett, C., “Regression with frailty in
survival analysis,” Biometrics, 1991; 47: 461–466.
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Table A.18 Time to infection for dialysis
patients

2 5 6 7 7 8 12 13
15 15 17 22 22 23 24 27
30 34 39 53 54 63 96 113
119 130 132 141 149 152 152 185
190 292 402 447 511 536

(a) Identify any outliers in the data. Justify your
answer.

(b) Draw the boxplot.

EFFECT OF DIET ON NUTRIENTS IN THE
BLOOD
Exercises A.80 and A.81 use data from Nutrition-
Study on dietary variables and concentrations of
micronutrients in the blood for a sample of n = 315
individuals.

A.80 Daily Calorie Consumption The five num-
ber summary for daily calorie consumption is (445,
1334, 1667, 2106, 6662).

(a) The ten largest data values are given below.
Which (if any) of these is an outlier?

3185 3228 3258 3328 3450 3457

3511 3711 4374 6662

(b) Determine whether there are any low outliers.
Show your work.

(c) Draw the boxplot for the calorie data.

A.81 Daily Calories by Sex Figure A.13 shows side-
by-side boxplots comparing calorie consumption by
sex.
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Figure A.13 Calorie consumption by sex

(a) Which sex has the largest median daily calorie
consumption? Which sex has the largest out-
lier? Which sex has the most outliers?

(b) Does there seem to be an association between
sex and calorie consumption? Explain.

A.82 Systolic Blood Pressure: Boxplot Figure A.14
shows the boxplot for the systolic blood pressures
for all 200 patients in the ICU study in ICUAd-
missions. Discuss what information this graph
gives about the distribution of blood pressures in
this sample of patients. What is the five number
summary?

50 75 100 125 150 175 200 225 250

Systolic Blood Pressure (mm Hg)

Figure A.14 Systolic blood pressure of ICU patients

A.83 Systolic Blood Pressure and Survival The
data in ICUAdmissions contains a categorical vari-
able Status indicating whether each patient lived
(0) or died (1). Is there a relationship between
the status (lived/died) and the systolic blood pres-
sures? Use the side-by-side boxplots showing the
systolic blood pressures for these two groups of
patients in Figure A.15 to discuss how the distribu-
tions compare.

Lived

Died

Systolic Blood Pressure (mm Hg)
50 75 100 125 150 175 200 225 250

Figure A.15 Systolic blood pressures of patients who
lived or died
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A.84 Effect of Calcium on Fish In a study42 to
determine how the calcium level of water affects
respiration rate of fish, 360 fish in a sample were ran-
domly divided into three tanks with different levels
of calcium: low, medium, and high. The respiration
rate of the fish, in beats per minute, was then mea-
sured. The dataset is in FishGills3 and the two vari-
ables are Calcium and GillRate.

(a) Use technology to create side-by-side boxplots
for gill rate in the three different calcium con-
ditions. Describe the relationship between the
two variables.

(b) Use technology to obtain comparative summary
statistics for gill rate in the three different cal-
cium conditions and give the mean and the stan-
dard deviation for the gill rates in each of the
three calcium conditions.

(c) Is this study an experiment or an observational
study?

A.85 Systolic Blood Pressure: Histogram Figure
A.16 shows a histogram of the systolic blood pres-
sure (in mm Hg) for all 200 patients admitted to
the Intensive Care Unit, from the ICUAdmissions
dataset. The mean and standard deviation of these
200 numbers are x = 132.28 and s = 32.95.
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Figure A.16 Systolic blood pressure

(a) Is it appropriate to use the 95% rule with these
data? Why or why not?

(b) Use the 95% rule to give an interval that is
likely to contain about 95% of the data values.

(c) Use the data in the ICUAdmissions dataset to
count the actual number of data values, and find
the percent of data values, lying within the inter-
val given in part (b).

42Thanks to Professor Brad Baldwin of St. Lawrence University
for this dataset.

(d) Is the result for the sample close to the result
predicted by the 95% rule?

A.86 Heart Rates Figure A.17 shows a histogram
of the heart rate data, in beats per minute, from
ICUAdmissions. The values come from n = 200
patients being admitted to the Intensive Care Unit
at a hospital.

(a) Estimate the mean and the standard deviation.

(b) Estimate the 10th percentile and interpret it.

(c) Estimate the range.
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Figure A.17 Heart rate in beats per minute

A.87 Better Traffic Flow Have you ever driven
along a street where it seems that every traffic light
is red when you get there? Some engineers in Dres-
den, Germany, are looking at ways to improve traf-
fic flow by enabling traffic lights to communicate
information about traffic flow with nearby traffic
lights. The data in TrafficFlow show results of one
experiment43 that simulated buses moving along a
street and recorded the delay time (in seconds) for
both a fixed time and a flexible system of lights. The
simulation was repeated under both conditions for
a total of 24 trials.

(a) What is the explanatory variable? What is the
response variable? Is each categorical or quan-
titative?

(b) Use technology to find the mean and the stan-
dard deviation for the delay times under each of
the two conditions (Timed and Flexible). Does
the flexible system seem to reduce delay time?

43Lammer, S. and Helbing, D., “Self-Stabilizing Decentralized
Signal Control of Realistic, Saturated Network Traffic,” Santa Fe
Institute, Santa Fe, NM, working paper No. 10-09-019, Septem-
ber 2010.
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(c) The data inTrafficFlow are paired since we have
two values, timed and flexible, for each simula-
tion run. For paired data we generally compute
the difference for each pair. In this example,
the dataset includes a variable calledDifference
that stores the difference Timed − Flexible for
each simulation run. Use technology to find the
mean and standard deviation of these differ-
ences.

(d) Use technology to draw a boxplot of the differ-
ences. Are there any outliers?

A.88 Ages of Husbands and Wives Suppose we
record the husband’s age and the wife’s age for
many randomly selected couples.

(a) What would it mean about ages of couples if
these two variables had a negative relationship?

(b) What would it mean about ages of couples if
these two variables had a positive relationship?

(c) Which do you think is more likely, a negative or
a positive relationship?

(d) Do you expect a strong or a weak relationship
in the data? Why?

(e) Would a strong correlation imply there is an
association between husband age and wife age?

A.89 A Small Sample of SAT Scores A random
sample of seven statistics students were taken from
the StudentSurvey dataset. The Math and Verbal

(d) (e)

(a) (b) (c)

Figure A.18 Estimate the correlation

SAT scores for the seven students are shown in
Table A.19. We are interested in predicting scores
on the verbal section using scores on the math
section.

(a) Use technology to plot the data with a regres-
sion line to predict verbal scores based on math
scores.

(b) Use technology to find the correlation between
these seven verbal and math scores.

(c) Based on this sample, is it reasonable to use
a regression line to predict verbal scores using
math scores? Explain your answer using what
you have found in (a) and (b).

Table A.19 SAT scores

Math Verbal

720 450
650 530
670 680
660 680
550 560
620 600
680 670

A.90 Estimate the Correlation Give a rough esti-
mate of the correlation r for each of the scatterplots
shown in Figure A.18.
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A.91 Positive or Negative Association? In each
case, decide whether the relationship between the
variables is more likely to be positive or negative.
In the cases where it makes sense to view one vari-
able as an explanatory variable and the other as the
response variable, identify which is which.

(a) Number of years spent smoking cigarettes and
lung capacity

(b) Height and weight

(c) Systolic blood pressure and diastolic blood pres-
sure

A.92 Effect of Outliers For the five data points in
Table A.20:

(a) Make a scatterplot of the data.

(b) Use technology to find the correlation.

(c) Make a new scatterplot showing these five data
points together with an additional data point at
(10, 10).

(d) Use technology to find the correlation for this
larger dataset with six points.

(e) Discuss the effect of an outlier on the correla-
tion.

Table A.20 What is the correlation?

x 2 1 4 5 3
y 5 3 4 3 4

A.93 A Sample of Height and Weight Figure A.19
shows a scatterplot of height and weight for a new
sample of 105 college students.

(a) Does there appear to be a positive or a negative
relationship in the data?

(b) Describe the body shape of the individuals
whose points are labeled by A, B, C, and D.
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Figure A.19 Scatterplot of height and weight with
n = 105

A.94 Fat and Fiber and Calories The datasetNutri-
tionStudy contains information on daily calorie
consumption, fat consumption, and fiber consump-
tion for 315 healthy individuals. Figure A.20 shows
a scatterplot of fat vs calories and a scatterplot of
fiber vs calories. (In these figures, we have omitted
one extreme outlier.)

(a) Does there appear to be a positive or negative
correlation between calories and fat? Between
calories and fiber?

(b) Judging from the scatterplots, which correlation
appears to be larger: between calories and fat or
between calories and fiber?

(c) One person in the study consumed over 4000
calories daily. Approximately what was the fat
consumption for this person? The fiber con-
sumption? Is the value an extreme value for
either fat or fiber as an individual variable?

A.95 Height and Weight The quantitative vari-
ables Height (in inches) andWeight (in pounds) are
included in the StudentSurvey dataset.
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Figure A.20 Calorie consumption vs fat or fiber consumption
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(a) Whatwouldapositiveassociationmeanfor these
two variables? What would a negative associa-
tionmean?Which do you expect is more likely?

(b) Figure A.21 shows a scatterplot of the data.
Does there appear to be a positive or negative
relationship between height and weight? How
strong does the trend appear to be? Does it
appear to be approximately a linear trend?

(c) Describe the person represented by the outlier
in the lower right corner.
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Figure A.21 Student survey: height and weight

A.96 Blood Pressure and Heart Rate In Exam-
ple 2.19 on page 91 we computed z-scores for
patient #772 in the ICUAdmissions dataset, who
had a high systolic blood pressure reading of 204 but
a low pulse rate of 52 bpm.

(a) Find the point corresponding to patient #772 on
the scatterplot of blood pressure vs heart rate
shown in Figure A.22.

(b) Patient #772 has a high blood pressure read-
ing but a low pulse rate. Does the scatterplot in
Figure A.22 support a conjecture that these two
variables have a negative association?
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Figure A.22 Blood pressure vs heart rate for ICU
patients

A.97 An Outlier in Jogging Times Table A.21 gives
the times for five races in which two joggers partici-
pated.

(a) Use technology to construct a scatterplot of the
race times.

(b) Use technology to find the correlation.

(c) A sixth race is held on a very windy day, and
jogger A takes 50 minutes while jogger B takes
a whole hour to complete the race. Recalculate
the correlation with this point added.

(d) Compare correlations from parts (b) and (c).
Did adding the results from the windy day have
an effect on the relationship between the two
joggers?

Table A.21 Jogging
times

Jogger A Jogger B

44 48
45 49
43 38
48 40
45 50

A.98 Cricket Chirps and Temperature In theCrick-
etChirp dataset given in Table 2.34 on page 122, we
learn that the chirp rate of crickets is related to the
temperature of the air.

(a) Figure A.23 shows the seven points together
with the regression line. Does there appear to
be a linear relationship between these two vari-
ables? How strong is it? Is it positive or nega-
tive?

(b) Use technology to find the formula for the
regression line for the seven data points.

(c) Calculate the predicted values and the residuals
for all seven data points.
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Figure A.23 How big are these residuals?
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Table A.22 Land area (in 1000 sq km) and percent living in rural areas

Country SRB BHS SVN UZB TUN ARM ROU MKD LBN PRK

Land Area 87.46 10.01 20.14 425.40 155.36 28.47 230.08 25.22 10.23 120.41
Rural 43.9 17.0 45.5 49.5 31.1 36.9 46.0 42.0 11.4 38.1

A.99 Land Area and Rural Population Two vari-
ables in the dataset AllCountries are the size of the
country (in 1000 sq km) and the percent of the pop-
ulation living in rural areas. We are interested in
using the size of the country (LandArea) to predict
the percent rural (Rural). The values of these vari-
ables for a random sample of ten countries is shown,
with the 3-letter country codes, in Table A.22, and is
also available in TenCountries. Figure A.24 shows a
scatterplot of the data.
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Figure A.24 Scatterplot of land area and percent rural

(a) What is the explanatory variable? What is the
response variable?

(b) Without doing any calculations, which do you
think is the most likely correlation between the
two variables?

0.00, 0.50, −0.50, 50
(c) Use technology to find the regression line to

predict percent rural from land area, and inter-
pret the slope.

(d) Does the intercept make sense in this situation?

(e) Which country is the most influential on this
regression line (use the 3 letter code)?

(f) Use the regression line to predict the percent
of the US population living in rural areas, given
that the area of the US is 9147.4 thousand sq km.
Does the prediction seem reasonable? Explain
why it is not appropriate to use this regression
line to predict the percent rural for the US.

A.100 Adding One Point to Land Area and Rural
Population In Exercise A.99, we use a random sam-
ple of 10 countries to use the size of a country to
predict the percent of the population living in rural
areas. We now see how results change if we add the
United States (Land Area: 9147.4, Rural: 16.6%) to
the sample.

(a) Use technology to find the new regression line
using the 11 data points.

(b) The slope of the regression line using the orig-
inal 10 points in Exercise A.99 is about 0.05.
Compare the slope with US added to the slope
without US. Does adding US have a strong
effect on the slope?Why or why not? (Hint: Plot
the data!)

(c) Predict the percent rural for US with the new
regression line. Is this prediction better than the
prediction given in Exercise A.99 (which was
497%)?

A.101 The Effect of a Hyper-Aggressive Male If
a male wants mating success, he should not hang
out with hyper-aggressive males. They tend to scare
away all the females. At least, that is the message
from a study44 on water striders. Water striders
are common bugs that skate across the surface of
water. Water striders have different personalities
and some of the males are hyper-aggressive, mean-
ing they jump on and wrestle with any other water
strider near them. Individually, because hyper-
aggressive males are much more active, they tend
to have better mating success than more inactive
striders. This study examined the effect they have
on a group. Four males and three females were put
in each of ten pools of water. Half of the groups had
a hyper-aggressive male as one of the males and half
did not. The proportion of time females are in hid-
ing was measured for each of the 10 groups, and a
measure of mean mating activity was also measured
with higher numbers meaning more mating. Results
are shown in Table A.23 and are available inWater-
Striders.

44Sih, A. and Watters, J., “The mix matters: behavioural types
and group dynamics in water striders,” Behaviour, 2005; 142 (9–
10):1423.
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Table A.23 Effect of a hyper-aggressive male on
water striders

Aggressive Male? Females Hiding Mating Activity

No 0 0.48
No 0 0.48
No 0 0.45
No 0.09 0.30
No 0.13 0.49
Yes 0.16 0.41
Yes 0.17 0.57
Yes 0.25 0.36
Yes 0.55 0.45
Yes 0.82 0.11

(a) For the five groups with no hyper-aggressive
male, find the mean and standard deviation of
the proportion of time females stay in hiding.
Also find the same summary statistics for the
five groups with a hyper-aggressive male. Does
there seem to be a difference in the proportion
of time females are in hiding between the two
groups?

(b) Using all 10 data points, make a scatterplot of
the proportion of time females are hiding and
the mean mating activity. We consider the pro-
portion of time in hiding to be the explanatory
variable.

(c) Using all 10 points, find the regression line to
predict mean mating activity from the propor-
tion of time females spend hiding.

(d) For each of the two means found in part (a),
find the predicted mating activity for that pro-
portion of time in hiding. What is the pre-
dicted mean mating activity if there is not a
hyper-aggressive male in the group?What is the
predicted mean mating activity if there is a
hyper-aggressive male in the group?

(e) What advice would you give to a male water
strider that wants to mate?

A.102 Predicting Percent of College Grad-
uates Using High School Graduation Rates
Exercise A.42 on page 193 uses data in the
USStates dataset to examine the percent of adults
to graduate college in US states by region. The
dataset also includes information on the percent to
graduate high school in each state. We use the per-
cent to graduate high school to predict the percent
to graduate college. A scatterplot with regression
line for all 50 states is shown in Figure A.25.

(a) The formula for the regression line is ̂College =
−96.37 + 1.426 ⋅HighSchool. Interpret the slope
of the line in context.
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Figure A.25 Predicting percent to graduate college
using percent to graduate high school

(b) What is the predicted percent to graduate col-
lege if 85% graduate high school? What is it if
90% graduate high school?

(c) Massachusetts appears to have a particu-
larly large positive residual. Massachusetts has
93.3% graduating high school and 50.9% grad-
uating college. Compute the residual for Mas-
sachusetts.

A.103 Predicting Percent of College Graduates
Using Income In Exercise A.102, we used the per-
cent of the population graduating high school to
predict the percent to graduate college, using data
in USStates. It is likely that the mean household
income(in thousands) in the state might also be a
reasonable predictor. Figure A.26 shows a scatter-
plot with regression line for these two variables.

(a) Describe the scatterplot in Figure A.26. Is there
a linear trend? Is it positive or negative? Are
there any really obvious outliers?
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Figure A.26 Predicting college graduation rate from
household income
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(b) Use Figures A.25 and A.26 to decide which
variable, percent to graduate high school or
household income, is more strongly correlated
with percent to graduate college.

(c) For the state with the largest positive residual,
estimate from the graph the household income,
the percent graduating college, and the pre-
dicted percent to graduate college.

(d) For the state with the largest negative residual,
estimate from the graph the household income,
the percent graduating college, and the pre-
dicted percent to graduate college.

A.104 Investigating NBA Statistics The dataset
NBAPlayers2019 is introduced on page 100, and
includes many variables about players in the
National Basketball Association in 2018–2019. In
this exercise, we’ll use FTPct, the percent of free
throws made, to predict FGPct, the percent of field
goals made.

(a) Make a scatterplot of this relationship. Is there
a linear trend? If so, is it positive or negative?
Indicate what positive/negative means in this
situation.

(b) Are there any outliers on the scatterplot? If so,
describe them. Identify the players by name.

(c) Use technology to find the correlation between
the two variables.

(d) Use technology to find a formula for the regres-
sion line and also to plot it on the scatterplot.

(e) Find the predicted field goal percentage for a
player who has a 0.70 free throw percentage.

A.105 Investigating the Happy Planet Index In
Exercise 2.220 on page 131, we introduced the
dataset HappyPlanetIndex. This exercise asks you
to use technology to investigate more variables and
relationships in that dataset.

(a) Use technology to create a frequency table for
the number of countries in each of the differ-
ent regions. (The code for each region is given
in Exercise 2.220 on page 131).

(b) Use technology to create both a histogram and
a boxplot for any one of the quantitative vari-
ables. Describe the shape of the distribution
and indicate whether there are any outliers. In
addition, give summary statistics (mean, stan-
dard deviation, five number summary) for the
variable.

(c) For a different quantitative variable than the
one you used in part (b), create a side-by-side
boxplot for your variable by region. Discuss
what you see in the graph.

(d) Pick two quantitative variables where you
believe one might be useful to predict the other.
Create a scatterplot and discuss what you see.
Find the correlation between the variables and
find the regression line. Use the regression line
to make at least one prediction.
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In this unit, we develop the key ideas of sta-

tistical inference–estimation and testing–using

simulation methods to build understanding and

to carry out the analysis.
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“Knowing what to measure and how to measure it makes a complicated world less so. If you

learn to look at data in the right way, you can explain riddles that otherwise might have

seemed impossible. Because there is nothing like the sheer power of numbers to scrub away

layers of confusion and contradiction.”

Levitt and Dubner∗

Source: From Levitt and Dubner Freakonomics, HarperCollins, NY, 2005, p. 13.
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Here are some of the questions and issues we will discuss in this chapter:

• What proportion of college students change their major?

• What proportion of Canadian adults are married?

• What is the average number of calls per day by cell phone users?

• When studying for a test, is it better to mix up the topics or study one topic at a time?

• What proportion of those inducted into the Rock and Roll Hall of Fame are performers?

• What proportion of young adults in the US have ever been arrested?

• If a person overeats for a month and then loses the weight, are there long-term effects?

• Howmuch BPA (the chemical bisphenol A) is in your canned soup?

• Does playing action video games improve a person’s ability to make accurate quick decisions?

• Are rats compassionate? Are female rats more compassionate than male rats?

• Does drinking tea help the immune system?

• How often, on average, do people laugh in a day?

• Do people order more when splitting the bill?

• Do antibacterial products in soap actually increase infections?

• What is the effect of eating organic for one week?

• Are consumers willing to pay more for socially responsible products?

• Are fears learned as teenagers harder to unlearn?

• Do people find solitude distressing?

• What proportion of college students change their major?

• What proportion of first year college students feel homesick?

• Are students distracted by cell phones in class?
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3.1SAMPLING DISTRIBUTIONS

In Chapter 1 we discuss data collection: methods for obtaining sample data from a
population of interest. In this chapter we begin the process of going in the other
direction: using the information in the sample to understand what might be true
about the entire population. If all we see are the data in the sample, what conclusions
can we draw about the population? How sure are we about the accuracy of those
conclusions? Recall from Chapter 1 that this process is known as statistical inference.

Statistical Inference

Statistical inference is the process of drawing conclusions about the
entire population based on the information in a sample.

Data Collection

Statistical Inference

Population

Sample

Statistical inference uses sample data to understand
a population

Population Parameters and Sample Statistics
To help identify whether we are working with the entire population or just a sample,
we use the term parameter to identify a quantity measured for the population and
statistic for a quantity measured for a sample.

Parameters vs Statistics

A parameter is a number that describes some aspect of a population.

A statistic is a number that is computed from the data in a sample.

As we saw in Chapter 2, although the name (such as “mean” or “proportion”)
for a statistic and parameter is generally the same, we often use different notation to
distinguish the two. For example, we use 𝜇 (mu) as a parameter to denote the mean
for a population and x as a statistic for the mean of a sample. Table 3.1 summarizes

Table 3.1 Notation for common parameters and statistics

Population Parameter Sample Statistic

Mean 𝜇 x
Standard deviation 𝜎 s
Proportion p p̂
Correlation 𝜌 r
Slope (regression) 𝛽1 b1
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common notation for some population parameters and corresponding sample statis-
tics. The notation for each should look familiar from Chapter 2.

Example 3.1
Proportion of College Graduates

The US Census states that 27.5% of US adults who are at least 25 years old have
a college bachelor’s degree or higher. Suppose that in a random sample of n = 200
US residents who are 25 or older, 58 of them have a college bachelor’s degree or
higher. What is the population parameter? What is the sample statistic? Use correct
notation for each answer.

Solution The population parameter is the proportion with a bachelor’s degree for all US
adults who are at least 25 years old; it is p = 0.275. The sample statistic is the propor-
tion with a bachelor’s degree for all people in the sample; it is p̂ = 58∕200 = 0.29.

Sample Statistics as Estimates of Population
Parameters
On April 29, 2011, Prince William married Kate Middleton (now Duchess Cather-
ine) in London. The Pew Research Center reports that 34% of US adults watched
some or all of the royal wedding.1 How do we know that 34% of all US adults
watched? Did anyone ask you if you watched it? In order to know for sure what
proportion of US adults watched the wedding, we would need to ask all US adults
whether or not they watched. This would be very difficult to do. As we will see,
however, we can estimate the population parameter quite accurately with a sample
statistic, as long as we use a random sample (as discussed in Chapter 1). In the case
of the royal wedding, the estimate is based on a poll using a random sample of 1006
US adults.

In general, to answer a question about a population parameter exactly, we need
to collect data from every individual in the population and then compute the quan-
tity of interest. That is not feasible in most settings. Instead, we can select a sample
from the population, calculate the quantity of interest for the sample, and use this
sample statistic to estimate the value for the whole population.

Best Estimate

If we only have one sample and we don’t know the value of the pop-
ulation parameter, the sample statistic is our best estimate of the true
value of the population parameter.

Example 3.2
Fuel economy information for cars is determined by the EPA (Environmental Pro-
tection Agency) by testing a sample of cars.2 Based on a sample of n = 12 Toyota
Prius cars in 2012, the average fuel economy was 48.3 mpg. State the population and
parameter of interest. Use the information from the sample to give the best estimate
of the population parameter.

1Pew Research Center, “Too Much Coverage: Birth Certificate, Royal Wedding,” http://www
.pewresearch.org, May 3, 2011.
2http://www.epa.gov/fueleconomy/data.htm.
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Solution The population is all Toyota Prius cars manufactured in 2012. The population
parameter of interest is 𝜇, the mean fuel economy (mpg) for all 2012 Toyota Prius
cars. For this sample, x = 48.3. Unless we have additional information, the best
estimate of the population parameter is the sample statistic of 48.3. Notice that to
find 𝜇 exactly, we would have to obtain information on the fuel economy for every
2012 Toyota Prius.

Example 3.3
For each of the questions below, identify the population parameter(s) of interest and
the sample statistic we might use to estimate the parameter.

(a) What is the mean commute time for workers in a particular city?

(b) What is the correlation between the size of dinner bills and the size of tips at a
restaurant?

(c) Howmuch difference is there in the proportion of 30 to 39-year-old US residents
who have only a cell phone (no land line phone) compared to 50 to 59-year-olds
in the US?

Solution (a) The relevant parameter is 𝜇, the mean commute time for all people who work in
the city. We estimate it using x, the mean from a random sample of people who
work in the city.

(b) The relevant parameter is 𝜌, the correlation between the bill amount and tip size
for all dinner checks at the restaurant. We estimate it using r, the correlation
from a random sample of dinner checks.

(c) The relevant quantity is p1 − p2, the difference in the proportion of all 30 to
39-year-old US residents with only a cell phone (p1) and the proportion with the
same property among all 50 to 59-year-olds (p2). We estimate it using p̂1 − p̂2,
the difference in sample proportions computed from random samples taken in
each age group.

Variability of Sample Statistics
We usually think of a parameter as a fixed value3 while the sample statistic varies
from sample to sample, depending on which cases are selected to be in the sample.
We would like to know the value of the population parameter, but this usually can-
not be computed directly because it is often very difficult or impossible to collect
data from every member of the population. The sample statistic might vary depend-
ing on the sample, but at least we can compute its value.

In Example 3.3, we describe several situations where we might use a sample
statistic to estimate a population parameter. How accurate can we expect the
estimates to be? That is one of the fundamental questions of statistical inference.
Because the value of the parameter is usually fixed but unknown, while the value of
the statistic is known but varies depending on the sample, the key to addressing this
question is to understand how the value of the sample statistic varies from sample
to sample.

Consider the average fuel economy for 2012 Toyota Prius cars in Example 3.2.
The average observed in the sample is x = 48.3. Now suppose we were to take a
new random sample of n = 12 cars and calculate the sample average. A new sample

3In reality, a population may not be static and the value of a parameter might change slightly, for example,
if a new person moves into a city. We assume that such changes are negligible when measuring a quantity
for the entire population.
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average of x = 48.2 (very close to 48.3!) would suggest low variability in the statistic
from sample to sample, suggesting the original estimate of 48.3 is pretty accurate.
However, a new sample average of 56.8 (pretty far from 48.3) would suggest high
variability in the statistic from sample to sample, giving a large amount of uncer-
tainty surrounding the original estimate.

Of course, it’s hard to judge variability accurately from just two sample means.
To get a better estimate of the variability in the means we should consider many
more samples. One way to do this is to use computer simulations of samples from a
known population, as illustrated in the following examples.

Aspen Photo/Shutterstock.com

How much do baseball players get paid?

D A T A 3 . 1 Major League Baseball Salaries
The dataset BaseballSalaries2019 shows the salary (in millions of dollars) for all
877 players who were on the active roster for Major League Baseball teams at
the start of the 2019 season.4 The file also shows the team and primary position
for each player. We will treat this as the population of all MLB players at
that time. ◼

Example 3.4
What is the average salary for MLB players on opening day in 2019? Use the correct
notation for your answer.

Solution Based on the data in BaseballSalaries2019, the mean salary in 2019 was 4.51 million
dollars. Because this is the mean for the entire population of all MLB players at the
time, we have 𝜇 = 4.51 million dollars.

4Downloaded from USA Today’s Salary Database at http://www.usatoday.com/sports/mlb/salaries.
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Example 3.5
Select a random sample of 30 players from the file BaseballSalaries2019 and com-
pute the mean salary for the players in your sample. Use the correct notation for
your answer. Compare your answer to the population mean.

Solution We use StatKey, other technology, or a random number table to select the sample.
One sample is given in Table 3.2. We compute the mean salary for this sample to
be x = 4.09 million. The sample mean is similar to the population mean of 𝜇 = 4.51
million but is not exactly the same.

Table 3.2 A sample of 30 MLB salaries in 2019

Player Salary Player Salary Player Salary

Zack Britton 13.00 Tanner Roark 10.000 Yandy Diaz 0.558
Matt Wieters 1.500 Kevin Gausman 9.350 Michael Reed 0.558
Collin McHugh 5.800 Blake Snell 1.600 Brett Gardner 7.500
Jacoby Ellsbury 21.857 Tim Beckham 1.750 Carlos Martinez 11.800
Teoscar Hernandez 0.579 Trea Turner 3.725 Jose Rondon 0.560
Rafael Devers 0.615 Lou Trivino 0.558 Adam Morgan 1.100
Austin Brice 0.555 Howie Kendrick 4.000 Jacob deGrom 9.000
Eric Stamets 0.555 Luis Guillorme 0.556 David Freitas 0.559
Andrew Cashner 9.500 Framber Valdez 0.567 Steven Brault 0.575
Michael A. Taylor 3.250 Austin Wynns 0.558 Taylor Williams 0.564

That the sample statistic in Example 3.5 does not exactly match the population
parameter is not surprising: We don’t expect to get exactly the mean of the entire
population from every sample we choose, but we hope that our sample mean is
close to the population mean.

A different random sample of salaries for 30 MLB players is shown in Table 3.3.
The mean salary for this sample is x = 4.72 million. Again, the sample mean is some-
what similar to the population mean of 𝜇 = 4.51 million but is not exactly the same.
Note that this sample mean is also different from the sample mean found from the
sample in Table 3.2.

If everyone in your statistics class selects a random sample of size 30 from the
population of baseball salaries and computes the sample mean, there will be many

Table 3.3 Another sample of 30 baseball player salaries in 2019

Player Salary Player Salary Player Salary

Rosell Herrera 0.560 Frank Schwindel 0.555 Silvino Bracho 0.575
Ivan Nova 9.167 Eddie Rosario 4.190 Marco Gonzales 0.900
Kirby Yates 3.063 Mychal Givens 2.150 Eric Lauer 0.563
Mike Moustakas 10.000 Jake Cave 0.573 Jonathan Lucroy 3.350
Tony Sipp 1.250 Matt Albers 2.500 Jason Vargas 9.000
Richard Urena 0.562 Mike Leake 17.000 Trevor Williams 0.584
Domingo German 0.578 Joey Rickard 0.570 Sean Manaea 3.150
Miguel Rojas 3.155 Freddie Freeman 21.359 Matt Joyce 1.250
Daniel Stumpf 0.567 Jon Lester 27.500 Jimmy Nelson 3.700
Steven Brault 0.575 Yairo Munoz 0.562 Starlin Castro 12.000
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Figure 3.1 2,000 means
for samples of size
n = 30 from
BaseballSalaries2019
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different results. Try it! (In fact, from a population of size 877, there are 4.45 × 1055

different samples of size 30 that can be selected!) We expect these sample means
to be clustered around the true population mean of 𝜇 = 4.51. To see that this is so,
we use StatKey or other technology to take 2000 random samples of size n = 30
from our population and compute the sample mean in each case. A dotplot of the
results is shown in Figure 3.1. The sample means of x = 4.09 and x = 4.72 from the
two random samples above correspond to two of the dots in this dotplot.

Notice in Figure 3.1 that we do indeed havemany different values for the sample
means, but the distribution of sample means is fairly symmetric (despite the heav-
ily right-skewed distribution of individual salaries in the population) and centered
approximately at the population mean of 4.51. From Figure 3.1 we see that most
sample means for samples of size 30 fall between just under 2 and just over 8 mil-
lion dollars. We will see that the relatively bell-shaped curve seen in this distribution
is very predictable. The distribution of sample statistics for many samples, such as
those illustrated in Figure 3.1, is called a sampling distribution.

Sampling Distribution

A sampling distribution is the distribution of sample statistics com-
puted for different samples of the same size from the same population.

A sampling distribution shows us how the sample statistic varies from
sample to sample.

Figure 3.1 illustrates the sampling distribution for sample means based on sam-
ples of size 30 from the population of salaries of all MLB players in 2019. Of course,
we don’t show the means for all 4.45 × 1055 possible samples. However, the approx-
imation based on 2000 samples should be sufficient to give us a good sense of the
shape, center, and spread of the sampling distribution.

Sampling distributions apply to every statistic that we saw in Chapter 2 and lots
more! We look next at a sampling distribution for a proportion.
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Example 3.6
In Example 3.1 on page 215 we see that 27.5% of US adults at least 25 years old have
a college bachelor’s degree or higher. Investigate the behavior of sample proportions
from this population by using StatKey or other technology to simulate lots of random
samples of size n = 200 when the population proportion is p = 0.275. Describe the
shape, center, and spread of the distribution of sample proportions.

Solution Figure 3.2 illustrates the sampling distribution of proportions for 1000 samples, each
of size n = 200 when p = 0.275. We see that the sampling distribution of simulated
p̂ values is relatively symmetric, centered around the population proportion of
p = 0.275, ranges from about 0.175 to 0.38, and again has the shape of a bell-shaped
curve. Note that the sample statistic p̂ = 0.29 mentioned in Example 3.1 is just one
of the dots in this dotplot.

Figure 3.2 Sample
proportions when
n = 200 and p = 0.275
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The distributions of sample proportions in Figure 3.2 and sample means in
Figure 3.1 have a similar shape. Both are symmetric, bell-shaped curves centered at
the population parameter. As we will see, this is a very common pattern and can
often be predicted with statistical theory. If samples are randomly selected and the
sample size is large enough, the corresponding sample statistics will often have a
symmetric, bell-shaped distribution centered at the value of the parameter. In later
chapters we formalize the idea of a bell-shaped distribution and elaborate on how
large a sample size is “large enough.”

Shape and Center of a Sampling Distribution

For most of the parameters we consider, if samples are randomly
selected and the sample size is large enough, the sampling distribution
will be symmetric and bell-shaped and centered at the value of the
population parameter.

Measuring Sampling Variability: The Standard Error
What we really care about is the spread of the sampling distribution (the variability
of the statistic from sample to sample). Knowing how much a statistic varies from
sample to sample is key in helping us know how accurate an estimate is.

One measure of variability associated with the sample statistic can be found by
computing the standard deviation of the sample statistics in a sampling distribution.
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Although this is no different from the standard deviation of sample values we saw in
Chapter 2, the standard deviation of a sample statistic is so important that it gets its
own name: the standard error of the statistic. The different name helps to distinguish
between the variability in the sample statistics and the variability among the values
within a particular sample. We think of the standard error as a “typical” distance
between the sample statistics and the population parameter.

Standard Error

The standard error of a statistic, denoted SE, is the standard deviation
of the sample statistic.

In situations such as the mean baseball salary in Example 3.5 and the proportion
of college graduates in Example 3.6 where we can simulate values of a statistic for
many samples from a population, we can estimate the standard error of the statistic
by finding the standard deviation of the simulated statistics.

Example 3.7
Use StatKey or other technology to estimate the standard error for the sampling
distributions of the following:

(a) Mean salary for baseball players in samples of size 30 (as in Example 3.5)

(b) Proportion of college graduates in samples of size 200 (as in Example 3.6)

Solution The standard error is the standard deviation of all the simulated sample statistics.
In StatKey, this standard deviation is given in the upper right corner of the box
containing the sampling distribution (see Figure 3.1). With other technology, once
we have the sampling distribution we find the standard deviation of the values in
the same way as in Chapter 2.

(a) For the 2000 means for simulated samples of n = 30 baseball salaries shown in
Figure 3.1, we find the standard deviation of the 2000 means to be 1.146 so we
have SE = 1.146.

(b) For the 1000 proportions of college graduates in simulated samples of size 200
shown in Figure 3.2, we find the standard deviation of the 1000 proportions to
be 0.03, so we have SE = 0.03.

Since these standard errors are estimated from a set of random simulations, the val-
ues might change slightly from one simulation to another.

Recall from Section 2.3 that when distributions are relatively symmetric and
bell-shaped, the 95% rule tells us that approximately 95% of the data values fall
within two standard deviations of the mean. Applying the 95% rule to sampling
distributions, we see that about 95% of the sample statistics will fall within two stan-
dard errors of the mean. This allows us to get a rough estimate of the standard error
directly from the dotplot of the sampling distribution, even if we don’t have the
individual values for each dot.

Example 3.8
Use the 95% rule to estimate the standard error for the following sampling
distributions:

(a) Mean salary for baseball players in samples of size 30 (from Figure 3.1)

(b) Proportion of college graduates in samples of size 200 (from Figure 3.2)
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Solution (a) In Figure 3.1, we see that the middle 95% of sample means appear to range
from about 2.5 to about 7.0. This should span about two standard errors below
the mean and two standard errors above the mean. We estimate the standard
error to be about (7.0 − 2.5)∕4 = 1.125.

(b) In Figure 3.2, we see that the middle 95% of sample proportions appear to range
from about 0.21 to 0.34, or about 0.065 above and below the mean of p = 0.275.
We estimate the standard error to be about 0.065∕2 = 0.0325.

These rough estimates from the graphs match what we calculated in Example 3.7.

A low standard error means statistics vary little from sample to sample, so we
can be more certain that our sample statistic is a reasonable estimate. In Section 3.2,
we will learn more about how to use the standard error to quantify the uncertainty
in an estimate.

The Importance of Sample Size

Example 3.9
In Example 3.1, we learn that the population proportion of college graduates in
the US is p = 0.275, and Figure 3.2 on page 220 shows the sampling distribution for
the sample proportion of college graduates when repeatedly taking samples of size
n = 200 from the population. How does this distribution change for other sample
sizes? Figure 3.3 shows the distributions of sample proportions for many (simulated)
random samples of size n = 50, n = 200, and n = 1000. Discuss the effect of sample
size on the center and variability of the distributions.

Solution The center appears to be close to the population proportion of p = 0.275 in all three
distributions, but the variability is quite different. As the sample size increases, the
variability decreases and a sample proportion is likely to be closer to the popu-
lation proportion. In other words, as the sample size increases, the standard error
decreases.

Figure 3.3 What effect
does sample size have on
the distributions?
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We see in Example 3.9 that the larger the sample size the lower the variabil-
ity in the sampling distribution, so the smaller the standard error of the sample
statistic. This makes sense: A larger sample allows us to collect more information
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and estimate a population parameter more precisely. If the sample were the entire
population, then the sample statistic would match the population parameter exactly
and the sampling distribution would be one stack of dots over a single value!

Sample Size Matters!

As the sample size increases, the variability of sample statistics tends
to decrease and sample statistics tend to be closer to the true value of
the population parameter.

Example 3.10
Here are five possible standard errors for proportions of college graduates using
different size samples:

SE = 0.005 SE = 0.014 SE = 0.032 SE = 0.063 SE = 0.120

For each of the three sample sizes shown in Figure 3.3, use the 95% rule to
choose the most appropriate standard error from the five options listed.

Solution Since each of the distributions is centered near p = 0.275, we consider the interval
0.275 ± 2 ⋅ SE and see which standard error gives an interval that contains about
95% of the distribution of simulated p̂’s shown in Figure 3.3.

n=1000: It appears that SE = 0.014 is the best choice, since the interval on either
side of p = 0.275 would go from 0.275 ± 2(0.014) which is 0.247 to 0.303. This
looks like a reasonable interval to contain the middle 95% of the values in
the dotplot shown in the top panel of Figure 3.3, when the sample size is
n = 1000.

n=200: It appears that SE = 0.032 is the best choice, since the interval on either
side of p = 0.275 would go from 0.275 ± 2(0.032) which is 0.211 to 0.339. This
looks like a reasonable interval to contain the middle 95% of the values in
the dotplot shown in the middle panel of Figure 3.3, when the sample size is
n = 200.

n=50: It appears that SE = 0.063 is the best choice, since the interval on either side
of p = 0.275 would go from 0.275 ± 2(0.063) which is 0.149 to 0.401. This looks
like a reasonable interval to contain the middle 95% of the values in the dot-
plot shown in the bottom panel of Figure 3.3, when the sample size is n = 50.

The standard error of SE = 0.005 is too small for any of these plots, and SE = 0.120
would give an interval that is too large.

We see again in Example 3.10 that as the sample size increases, the standard
error decreases, so the sample statistic generally becomes a better estimate of the
population parameter.

Importance of Random Sampling
So far, the sampling distributions we have looked at have all been centered around
the population parameter. It is important that samples were selected at random in
each of these cases. Too often this is overlooked. Random sampling will generally
yield a sampling distribution centered around the population parameter, but, as we
learned in Section 1.2, non-random samples may be biased, in which case the sam-
pling distribution may be centered around the wrong value.
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Figure 3.4 Sample
means: Which color
shows a biased sampling
method?

9 12 15 18 21

HoursStudy
24 27 30

Example 3.11
Suppose that students at one college study, on average, 15 hours a week. Two
different students, Judy and Mark, are curious about sampling. They each sample
n = 50 students many times, ask each student the number of hours they study a
week, and record the mean of each sample. Judy takes many random samples of
50 students from the entire student body, while Mark takes many samples
of 50 students by asking students in the library. The sampling distributions gener-
ated by Mark and Judy are shown with different colors in Figure 3.4. Which set of
sample means (red or black) were produced by Judy? Why did Mark and Judy get
such different results?

Solution Judy was utilizing random sampling, so we expect her sample means to be centered
around the true average of 15 hours a week. Therefore, we can conclude that her
sample means correspond to the black dots. Mark chose to take a convenient sam-
pling approach, rather than take a random sample. Due to this fact his samples are
not representative of the population (students sampled in the library are likely to
study more), so his sample means are biased to overestimate the average number of
hours students study.

Inference Caution

Statistical inference is built on the assumption that samples are
drawn randomly from a population. Collecting the sample data in a
way that biases the results can lead to false conclusions about the
population.

In this section, we’ve learned that statistics vary from sample to sample, and
that a sample statistic can be used as an estimate for an unknown fixed popula-
tion parameter. However, a sample statistic will usually not match the population
parameter exactly, and a key question is how accurate we expect our estimate to be.
We explore this by looking at many statistics computed from many samples of the
same size from the same population, which together form a sampling distribution.
The standard deviation of the sampling distribution, called the standard error, is a
common way of measuring the variability of a statistic. Knowing how much a statis-
tic varies from sample to sample will allow us to determine the uncertainty in our
estimate, a concept we will explore in more detail in the next section.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between a population parameter and a sample statistic,
recognizing that a parameter is fixed while a statistic varies from sam-
ple to sample

• Compute an estimate for a parameter using an appropriate statistic
from a sample

• Recognize that a sampling distribution shows how sample statistics
tend to vary

• Recognize that statistics from random samples tend to be centered at
the population parameter

• Estimate the standard error of a statistic from its sampling distribution

• Explain how sample size affects a sampling distribution

Exercises for Section 3.1

SKILL BUILDER 1
In Exercises 3.1 to 3.5, state whether the quantity
described is a parameter or a statistic and give the
correct notation.

3.1 Average household income for all houses in
the US, using data from the US Census.

3.2 Correlation between height and weight for
players on the 2020 Brazil World Cup Team, using
data from all players on the roster.

3.3 Proportion of people who use an electric
toothbrush, using data from a sample of 300 adults.

3.4 Proportion of registered voters in a county
who voted in the last election, using data from the
county voting records.

3.5 Average number of television sets per house-
hold in North Carolina, using data from a sample of
1000 households.

SKILL BUILDER 2
In Exercises 3.6 to 3.11, give the correct notation for
the quantity described and give its value.

3.6 Proportion of families in the US who were
homeless in 2010. The number of homeless
families5 in 2010 was about 170,000 while the total
number of families is given in the 2010 Census as 78
million.

3.7 Average enrollment in charter schools in Illi-
nois. In 2014, there were 148 charter schools in the

5Luo, M, “Number of Families in Shelters Rises,” New York
Times, September 12, 2010.

state of Illinois6 and the total number of students
attending the charter schools was 59,388.

3.8 Proportion of US adults who own a cell phone.
In a survey of 1502 US adults in 2019, 98% said they
had a cell phone.7

3.9 Correlation between age and heart rate for
patients admitted to an Intensive Care Unit. Data
from the 200 patients included in the file ICUAd-
missions gives a correlation of 0.037.

3.10 Mean number of cell phone calls made or
received per day by cell phone users. In a survey
of 1917 cell phone users, the mean was 13.10 phone
calls a day.8

3.11 Correlation between points and penalty min-
utes for all 26 regular players (at least 20 games
played) on the 2018–2019 Ottawa Senators9 NHL
hockey team. The data are given in Table 3.4 and
the full data are available in the file OttawaSena-
tors2019.

6Data obtained from www.incschools.org, October 2015.
7“Mobile Technology and Home Broadband 2019,” Pew
Research Center, pewresearch.org, June 13, 2019.
8“Spring Change Assessment Survey 2010,” Princeton Sur-
vey Research Associates International, 6/4/10, accessed via
“Cell Phones and American Adults,” Amanda Lenhart,
Pew Research Center’s Internet and American Life Project,
accessed at http://pewinternet.org/Reports/2010/Cell-Phones-and-
American-Adults/Overview.aspx.
9Data obtained from http://www.hockey-reference.com/teams/
OTT/2019.html.
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Table 3.4 Points and penalty minutes for the 2018–2019 Ottawa Senators NHL team

Points 48 19 42 22 26 45 41 35 55 28 10 62 44
Pen mins 26 6 35 32 18 75 24 6 32 81 27 22 29

Points 15 5 5 58 12 2 14 12 14 14 9 8 2
Pen mins 20 89 56 6 14 2 10 6 2 4 6 4 4

SKILL BUILDER 3
Exercises 3.12 to 3.15 refer to the sampling distribu-
tions given in Figure 3.5. In each case, estimate the
value of the population parameter and estimate the
standard error for the sample statistic.

3.12 Figure 3.5(a) shows sample proportions from
samples of size n = 40 from a population.

3.13 Figure 3.5(b) shows sample means from sam-
ples of size n = 30 from a population.

3.14 Figure 3.5(c) shows sample means from sam-
ples of size n = 100 from a population.

3.15 Figure 3.5(d) shows sample proportions from
samples of size n = 180 from a population.

SKILL BUILDER 4
Exercises 3.16 to 3.19 refer to the sampling distribu-
tions given in Figure 3.5. Several possible values are
given for a sample statistic. In each case, indicate
whether each value is (i) reasonably likely to occur
from a sample of this size, (ii) unusual but might

0.02 0.09 0.16 0.23 0.30

(a)

0.37 0.44 0.51 0.58

(b)
25 45 65 85 105 125 145

(c)

285 290 295 300 305 310 315

(d)
0.71 0.74 0.77 0.80 0.83 0.86 0.89

Figure 3.5 Four sampling distributions

occur occasionally, or (iii) extremely unlikely to
ever occur.

3.16 Using the sampling distribution shown in
Figure 3.5(a), how likely are these sample propor-
tions:

(a) p̂ = 0.1 (b) p̂ = 0.35 (c) p̂ = 0.6

3.17 Using the sampling distribution shown in
Figure 3.5(b), how likely are these sample means:

(a) x = 70 (b) x = 100 (c) x = 140

3.18 Using the sampling distribution shown in
Figure 3.5(c), how likely are these sample means:

(a) x = 250 (b) x = 305 (c) x = 315

3.19 Using the sampling distribution shown in
Figure 3.5(d), how likely are these sample propor-
tions:

(a) p̂ = 0.72 (b) p̂ = 0.88 (c) p̂ = 0.95
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3.20 Downloading Apps for Your Smartphone A
random sample of n = 461 smartphone users in
the US in January 2015 found that 355 of them
have downloaded an app.10

(a) Give notation for the parameter of interest, and
define the parameter in this context.

(b) Give notation for the quantity that gives the
best estimate and give its value.

(c) What would we have to do to calculate the
parameter exactly?

3.21 How Many Apps for Your Smartphone?
Exercise 3.20 describes a study about smartphone
users in the US downloading apps for their smart-
phone. Of the n = 355 smartphone users who had
downloaded an app, the average number of apps
downloaded was 19.7.

(a) Give notation for the parameter of interest, and
define the parameter in this context.

(b) Give notation for the quantity that gives the
best estimate and give its value.

(c) What would we have to do to calculate the
parameter exactly?

3.22 Socially Conscious Consumers In March 2015,
a Nielsen global online survey “found that con-
sumers are increasingly willing to pay more
for socially responsible products.”11 Over 30,000
people in 60 countries were polled about their pur-
chasing habits, and 66% of respondents said that
they were willing to pay more for products and
services from companies who are committed to pos-
itive social and environmental impact. We are inter-
ested in estimating the proportion of all consumers
willing to pay more. Give notation for the quantity
we are estimating, notation for the quantity we are
using to make the estimate, and the value of the best
estimate. Be sure to clearly define any parameters in
the context of this situation.

3.23 Florida Lakes Florida has over 7700 lakes.12

We wish to estimate the correlation between the pH
levels of all Florida lakes and the mercury levels of
fish in the lakes. We see in Data 2.4 on page 80 that
the correlation between these two variables for a
sample of n = 53 of the lakes is −0.575.
(a) Give notation for the quantity we are estimat-

ing, notation for the quantity we use to make
the estimate, and the value of the best estimate.

10Olmstead, K. and Atkinson, M., “Apps Permissions in the
Google Play Store,” pewresearch.org, November 10, 2015.
11“Sustainable Selections: How Socially Responsible Companies
Are Turning a Profit,” www.nielsen.com, October 12, 2015.
12www.stateofflorida.com/florquicfac.html.

(b) Why is an estimate necessary here?What would
we have to do to calculate the exact value of the
quantity we are estimating?

3.24 Topical Painkiller Ointment The use of topi-
cal painkiller ointment or gel rather than pills for
pain relief was approved just within the last few
years in the US for prescription use only.13 Insur-
ance records show that the average copayment for
a month’s supply of topical painkiller ointment for
regular users is $30. A sample of n = 75 regular
users found a sample mean copayment of $27.90.

(a) Identify each of 30 and 27.90 as a parameter or
a statistic and give the appropriate notation for
each.

(b) If we take 1000 samples of size n = 75 from
the population of all copayments for a month’s
supply of topical painkiller ointment for regular
users and plot the sample means on a dotplot,
describe the shape you would expect to see in
the plot and where it would be centered.

(c) How many dots will be on the dotplot you
described in part (b)? What will each dot rep-
resent?

3.25 Don’t Text and Drive! The US National High-
way Traffic Safety Administration reports that at
least 14% of distracted-driving traffic fatalities are
clearly linked to the use of a cell phone.14 If
we examine the records of 500 randomly-selected
distracted-driving traffic fatalities and record the
proportion of the deaths caused by cell phone
use while driving, we obtain the sampling distribu-
tion shown in Figure 3.6. The sampling distribution
shows what values of the sample statistic are likely
to occur just by sampling variability. In each case
below, we give possible results from some samples
of size 500. In each case, give the notation and value
of the sample statistic, and use the sampling dis-
tribution to indicate whether that sample statistic
is likely to occur just by random variation, or very
unlikely to occur.

(a) 38 of the deaths were caused by cell phone use

(b) 64 of the deaths were caused by cell phone use

(c) 76 of the deaths were caused by cell phone use

(d) 105 of the deaths were caused by cell phone use

13Tarkan, L., “Topical Gel Catches up with Pills for Relief,”
The New York Times, September 6, 2010.
14Schweber N and Tully T, “She Texted About Dinner While
Driving. Then a Pedestrian Was Dead,” The New York Times,
November 22, 2019.



228 CHA P T E R 3 Confidence Intervals

0

20

40

60

80

100

120

0.09 0.10 0.11 0.12 0.140.13 0.15 0.16 0.17 0.18 0.19 0.20

Figure 3.6 Proportion of traffic fatalities caused by cell phone use: A sampling distribution

3.26 What Proportion of Canadian Adults Gradu-
ate High School? Canada conducts a census every
five years. The 2016 Canadian Census shows that
81.7% of Canadian adults have a secondary or
equivalent degree.15

(a) Give the correct notation for this value and
write the value as a proportion without a per-
cent sign.

(b) Use StatKey or other technology to take a sam-
ple of size n = 500 and give the notation and
value of the sample proportion you get.

(c) Take four more samples of the same size and
give the values of the sample proportions you
get.

(d) Use technology to take thousands of samples
of this size to create a sampling distribution.
Where is the distribution centered? What is the
standard error?

3.27 Average Household Size The latest US Census
lists the average household size for all households in
the US as 2.61. (A household is all people occupying
a housing unit as their primary place of residence.)
Figure 3.7 shows possible distributions of means for
1000 samples of household sizes. The scale on the
horizontal axis is the same in all four cases.

15https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/index.cfm?Lang=E. Accessed January 2020.

(a) Assume that two of the distributions show
results from 1000 random samples, while two
others show distributions from a sampling
method that is biased. Which two dotplots
appear to show samples produced using a
biased sampling method? Explain your reason-
ing. Pick one of the distributions that you listed
as biased and describe a sampling method that
might produce this bias.

(b) For the two distributions that appear to show
results from random samples, suppose that one
comes from 1000 samples of size n = 100 and
one comes from 1000 samples of size n = 500.
Which distribution goes with which sample
size? Explain.

2.61

A

B

C

D

Figure 3.7 Sets of 1000 sample means



3.1 Sampling Distributions 229

3.28 Proportion of US Residents Less Than 25
Years Old The US Census indicates that 35% of US
residents are less than 25 years old. Figure 3.8 shows
possible sampling distributions for the proportion
of a sample less than 25 years old, for samples of
size n = 20, n = 100, and n = 500.

(a) Which distribution goes with which sample
size?

(b) If we use a proportion p̂, based on a sample of
size n = 20, to estimate the population parame-
ter p = 0.35, would it be very surprising to get
an estimate that is off by more than 0.10 (that
is, the sample proportion is less than 0.25 or
greater than 0.45)? How about with a sample of
size n = 100? How about with a sample of size
n = 500?

(c) Repeat part (b) if we ask about the sample pro-
portion being off by just 0.05 or more.

(d) Using parts (b) and (c), comment on the effect
that sample size has on the precision of an
estimate.

0.2 0.3 0.4 0.5 0.6 0.70.1

A

B

C

0.0

Figure 3.8 Match the dotplots with the sample size

3.29 Mix It Up for Better Learning In preparing for
a test on a set of material, is it better to study one
topic at a time or to study topics mixed together?
In one study,16 a sample of fourth graders were
taught four equations. Half of the children learned
by studying repeated examples of one equation at
a time, while the other half studied mixed prob-
lem sets that included examples of all four types of
calculations grouped together. A day later, all the
students were given a test on the material. The stu-
dents in the mixed practice group had an average
grade of 77, while the students in the one-at-a-
time group had an average grade of 38. What is

16Rohrer, D. and Taylor, K., “The Effects of Interleaved Prac-
tice,” Applied Cognitive Psychology, 2010;24(6):#837–848.

the best estimate for the difference in the average
grade between fourth-grade students who study
mixed problems and those who study each equation
independently? Give notation (as a difference with
a minus sign) for the quantity we are trying to esti-
mate, notation for the quantity that gives the best
estimate, and the value of the best estimate. Be sure
to clearly define any parameters in the context of
this situation.

3.30 What Proportion of Adults and Teens Text
Message? A study of n = 2252 adults age 18 or
older found that 72% of the cell phone users send
and receive text messages.17 A study of n = 800
teens age 12 to 17 found that 87% of the teen
cell phone users send and receive text messages.
What is the best estimate for the difference in the
proportion of cell phone users who use text mes-
sages, between adults (defined as 18 and over) and
teens? Give notation (as a difference with a minus
sign) for the quantity we are trying to estimate,
notation for the quantity that gives the best esti-
mate, and the value of the best estimate. Be sure to
clearly define any parameters in the context of this
situation.

3.31 HollywoodMoviesData 2.7 on page 105 intro-
duces the dataset HollywoodMovies, which con-
tains information on almost 1300 movies that came
out of Hollywood between 2012 and 2018.18 One
of the variables is the budget (in millions of dol-
lars) to make the movie. Figure 3.9 shows two box-
plots. One represents the budget data for one ran-
dom sample of size n = 30. The other represents the
values in a sampling distribution of 1000 means of
budget data from samples of size 30.

(a) Which is which? Explain.

(b) From the boxplot showing the data from one
random sample, what does one value in the sam-
ple represent? How many values are included
in the data to make the boxplot? Estimate the
minimum and maximum values. Give a rough
estimate of the mean of the values and use
appropriate notation for your answer.

(c) From the boxplot showing the data from a sam-
pling distribution, what does one value in the
sampling distribution represent? How many
values are included in the data to make the

17Lenhart A., “Cell Phones and American Adults,” Pew
Research Center’s Internet and American Life Project,
accessed at http://pewinternet.org/Reports/2010/Cell-Phones-and-
American-Adults/Overview.aspx.
18Movie data obtained from www.boxofficemojo.com, www.the-
numbers.com/, and rottentomatoes.com.
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(a) Boxplot A

10 20 30 40 50 60 70 80 90 100

(b) Boxplot B

0 50 100 150 200 250

*** * ***

Figure 3.9 One sample and one sampling distribution: Which is which?

boxplot? Estimate the minimum and maximum
values. Give a rough estimate of the value of
the population parameter and use appropriate
notation for your answer.

3.32 What Percent of the US Population Are
Senior Citizens? People 65 years and older are
the fastest growing segment of the US population,
and constituted 13% of the population in 2010.19

Figure 3.10 shows sample proportions from two
sampling distributions of the proportion 65 years
and older in the US: One shows samples of size 100,
and the other shows samples of size 1000.

(a) What is the center of both distributions?

(b) What is the approximate minimum and maxi-
mum of each distribution?

(c) Give a rough estimate of the standard error in
each case.

(d) Suppose you take onemore sample in each case.
Would a sample proportion of 0.17 (that is, 17%
senior citizens in the sample) be surprising to
see from a sample of size 100? Would it be sur-
prising from a sample of size 1000?

0.05 0.07 0.09 0.11 0.13 0.15
Proportion Age 65+ (n=100)

0.17 0.19 0.21 0.23 0.25

0.05 0.07 0.09 0.11 0.13 0.15
Proportion Age 65+ (n=1000)

0.17 0.19 0.21 0.23 0.25

Figure 3.10 Sampling distributions for n = 100 and
n = 1000

19www.census.gov.

3.33 Enrollment at Two-Year Colleges Exer-
cise 1.25 on page 16 introduces data from the
Department of Education’s College Scorecard.
The dataset CollegeScores2yr contains information
for all 1141 two-year colleges (where the primary
degree is an Associate’s degree). The Enrollment
variable shows the number of students enrolled at
each of these schools.

(a) Use StatKey or other technology to select a ran-
dom sample of 10 of the 1141 enrollment values.
Indicate which values you selected and compute
the sample mean.

(b) Repeat part (a) by taking a second sample and
calculating the mean.

(c) Find the mean enrollment for the entire pop-
ulation of these 1141 two-year colleges. Use
correct notation for your answer. Comment on
the accuracy of using the sample means found
in parts (a) and (b) to estimate the population
mean.

(d) Suppose we were to calculate many sample
means taking samples of size n = 10 from this
population of enrollment values. Where would
you expect the distribution to be centered?

3.34 Average Salary of NFL Players The dataset
NFLContracts2019 contains the yearly salary (in
millions of dollars) from the contracts of all play-
ers on a National Football League (NFL) roster at
the start of the 2019 season.20

(a) Use StatKey or other technology to select a ran-
dom sample of 5 NFL contractYearlySalary val-
ues. Indicate which players you’ve selected and
compute the sample mean.

(b) Repeat part (a) by taking a second sample of
5 values, again indicating which players you
selected and computing the sample mean.

202019 NFL Contract information was collected in September
2019 fromOverTheCap.com.
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(c) Find the mean for the entire population of play-
ers. Include notation for this mean. Comment
on the accuracy of using the sample means
found in parts (a) and (b) to estimate the popu-
lation mean.

3.35 A Sampling Distribution for Two-Year Col-
lege Enrollments Exercise 3.33 introduces the
dataset CollegeScores2yr, which gives enrollment
for all 1141 two-year colleges in the US in 2019. Use
StatKey or other technology to generate a sampling
distribution of sample means using a sample size of
n = 10 from the Enrollment values in this dataset.

(a) What shape does the distribution have?
Approximately where is it centered? What is
the standard error (in other words, what is the
standard deviation of the sample means)?

(b) What happens if we increase the size of each
sample to n = 60?

3.36 A Sampling Distribution for Average Salary
of NFL Players Use StatKey or other technology to
generate a sampling distribution of sample means
using a sample of size n = 5 from the YearlySalary
values in the dataset NFLContracts2019, which
gives the total and yearly money values from the
contracts of all NFL players in 2019.

(a) What are the smallest and largest YearlySalary
values in the population?

(b) What are the smallest and largest sample means
in the sampling distribution?

(c) What is the standard error (that is, the standard
deviation of the sample means) for the sampling
distribution for samples of size n = 5?

(d) Generate a new sampling distribution with sam-
ples of size n = 50. What is the standard error
for this sampling distribution?

3.37 What Is an Average Budget for a Hollywood
Movie?Data 2.7 on page 105 introduces the dataset
HollywoodMovies, which contains information on
almost 1300 movies that came out of Hollywood
between 2012 and 2018. We will consider this the
population of all movies produced in Hollywood
during this time period.

(a) Find the mean and standard deviation for the
budgets (in millions of dollars) of all Hollywood
movies between 2012 and 2018. Use the correct
notation with your answers.

(b) Use StatKey or other technology to generate
a sampling distribution for the sample mean
of budgets of Hollywood movies during this

period using a sample size of n = 20. Give the
shape and center of the sampling distribution
and give the standard error.

3.38 College Graduates In Example 3.1 on page
215, we see that 27.5% of US adults are college
graduates.

(a) Use StatKey or other technology to generate
a sampling distribution for the sample propor-
tion of college graduates using a sample size of
n = 50. Generate at least 1000 sample propor-
tions. Give the shape and center of the sampling
distribution and give the standard error.

(b) Repeat part (a) using a sample size of n = 500.

3.39 Females in the Rock and Roll Hall of Fame
From its founding through 2019, the Rock and Roll
Hall of Fame has inducted 329 groups or individu-
als. Fifty-two of the inductees have been female or
have included female members.21 The full dataset is
available in RockandRoll2019.
(a) What proportion of inductees have been female

or have included female members? Use the cor-
rect notation with your answer.

(b) If we took many samples of size 50 from the
population of all inductees and recorded the
proportion female or with female members
for each sample, what shape do we expect the
distribution of sample proportions to have?
Where do we expect it to be centered?

3.40 Performers in the Rock and Roll Hall of Fame
From its founding through 2019, the Rock and Roll
Hall of Fame has inducted 329 groups or individu-
als, and 230 of the inductees have been performers
while the rest have been related to the world of
music in some way other than as a performer. The
full dataset is available in RockandRoll2019.
(a) What proportion of inductees have been per-

formers? Use the correct notation with your
answer.

(b) If we took many samples of size 50 from the
population of all inductees and recorded the
proportion who were performers for each sam-
ple, what shape do we expect the distribution
of sample proportions to have? Where do we
expect it to be centered?

3.41 A Sampling Distribution for Females in the
Rock and Roll Hall of Fame Exercise 3.39 tells us
that 52 of the 329 inductees to the Rock and Roll
Hall of Fame have been female or have included

21Rock and Roll Hall of Fame website: rockhall.com/inductees.
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female members. The data are given in Rockan-
dRoll2019. Using all inductees as your population:

(a) Use StatKey or other technology to take many
random samples of size n = 10 and compute
the sample proportion that are female or with
female members. What is the standard error for
these sample proportions? What is the value of
the sample proportion farthest from the popu-
lation proportion of p = 0.158? How far away
is it?

(b) Repeat part (a) using samples of size n = 20.

(c) Repeat part (a) using samples of size n = 50.

(d) Use your answers to parts (a), (b), and (c) to
comment on the effect of increasing the sample
size on the accuracy of using a sample propor-
tion to estimate the population proportion.

3.42 A Sampling Distribution for Performers in the
Rock and Roll Hall of Fame Exercise 3.40 tells us

that 230 of the 329 inductees to the Rock and Roll
Hall of Fame have been performers. The data are
given in RockandRoll2019. Using all inductees as
your population:

(a) Use StatKey or other technology to take many
random samples of size n = 10 and compute the
sample proportion that are performers. What is
the standard error of the sample proportions?
What is the value of the sample proportion
farthest from the population proportion of
p = 0.699? How far away is it?

(b) Repeat part (a) using samples of size n = 20.

(c) Repeat part (a) using samples of size n = 50.

(d) Use your answers to parts (a), (b), and (c) to
comment on the effect of increasing the sample
size on the accuracy of using a sample propor-
tion to estimate the population proportion.

3.2UNDERSTANDING AND INTERPRETING CONFIDENCE
INTERVALS

We can use a sample statistic to estimate a population parameter, but we know that
sample statistics vary from sample to sample. Because of this variation, we usually
give a range of plausible values for the population parameter rather than just a single
best estimate. Whether we are using a single best estimate or a range of plausible
values, however, the first step is to correctly identify the parameter that is being
estimated.

Identifying the Parameter of Interest
In Chapter 1, we see that variables can be classified as categorical or quantitative,
and in Chapter 2, we explore summary statistics and graphs for each type of variable
individually and for each possible relationship between two variables. The parame-
ters that we focus on in this chapter correspond to these same variables and relation-
ships. Table 3.5 summarizes the different situations, and reviews the notation for the
population parameter being estimated and the sample statistic that gives the best
estimate.

Table 3.5 Identifying the correct parameter and statistic

Variable(s) Estimating: Parameter Statistic

Single categorical variable Proportion p p̂
Single quantitative variable Mean 𝜇 x
Two categorical variables Difference in proportions p1 − p2 p̂1 − p̂2
One categorical and one quantitative Difference in means 𝜇1 − 𝜇2 x1 − x2
Two quantitative variables Correlation 𝜌 r
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Estimating with an Interval: Margin of Error
We use the value of a statistic computed from a sample to give an estimate for a
parameter of a population. However, since statistics vary from sample to sample,
a single estimate is often not sufficient. We need some measure of accuracy associ-
ated with our estimate. Thankfully, we can use knowledge about how sample statis-
tics vary to find a margin of error for the estimate. This allows us to construct an
interval that gives a range of plausible values for the population parameter.

Example 3.12
Is a Television Set a Necessity?

The percent of Americans saying that a television set is a necessity has dropped dra-
matically in recent years. In a nationwide survey of 1484 people ages 18 and older
living in the continental United States, only 42% say that a television set is a neces-
sity rather than a luxury.22 The article goes on to say “the margin of sampling error
is plus or minus 3.0 percentage points.” Use the information from this article to find
an interval that gives a range of plausible values for the proportion of people 18
and older living in the continental United States who believe that a television set is
a necessity.

Solution We are estimating a proportion so the notation for the thing we are estimating is the
population proportion p. The proportion who believe a television set is a necessity
in the sample is p̂ = 0.42. The phrase “margin of sampling error is plus or minus
3.0 percentage points” indicates that the true proportion for the entire population
of all American adults is probably within 3% (or 0.03) on either side of this estimate.
Thus an interval giving plausible values for the population proportion is

0.42 ± 0.03

Since 0.42 − 0.03 = 0.39 and 0.42 + 0.03 = 0.45, the interval is 0.39 to 0.45, or from
39% to 45%.

Let’s take a minute to think about the information in Example 3.12. There are
about 240,000,000 people age 18 and older living in the continental United States,
and we only asked 1484 of them the question. It is remarkable that we can be rela-
tively confident that our estimate will be off by at most ±0.03 even though we only
asked a very small portion of the entire population. This is part of the amazing power
of statistics!

We often use interval notation to denote an interval. For example, for the inter-
val from 0.39 to 0.45 in Example 3.12, we write (0.39, 0.45).

Using a Margin of Error to Give a Range of Plausible Values

Recall that the best estimate for a population parameter is the relevant
sample statistic. We can expand this idea to give a range of plausible
values for the population parameter using:

Sample statistic ±margin of error

where themargin of error is a number that reflects the precision of the
sample statistic as an estimate for this parameter.

22Taylor, P. and Wang, W., “The Fading Glory of the Television and Telephone,” Pew Research
Center, August 19, 2010, http://pewsocialtrends.org/pubs/762/fading-glory-television-telephone-luxury-
necessity#prc-jump.
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Example 3.13
Suppose the results of an election poll show the proportion supporting a particular
candidate is p̂ = 0.54. We would like to know how close the true p is to p̂. Two possi-
ble margins of error are shown. In each case, indicate whether we can be reasonably
sure that this candidate will win the majority of votes and win the election.

(a) Margin of error is 0.02

(b) Margin of error is 0.10

Solution (a) If the margin of error is 0.02, then our interval giving plausible values for p is
0.54 ± 0.02, which gives an interval of 0.52 to 0.56. All plausible values of the
true proportion are greater than one-half, so we can be reasonably sure that this
candidate will win the election.

(b) If the margin of error is 0.10, then our interval is 0.54 ± 0.10, which gives an
interval of 0.44 to 0.64. Since this interval contains values of p that are less than
one-half, we would be less certain about the result of the election.

Confidence Intervals
The “range of plausible values” interpretation for an interval estimate can be refined
with the notion of a confidence interval. A confidence interval is an interval, com-
puted from a sample, that has a predetermined chance of capturing the value of the
population parameter. Remember that the parameter is a fixed value; it is the sam-
ple that is prone to variability. The method used to construct a confidence interval
should capture the parameter for a predetermined proportion of all possible sam-
ples. Some (hopefully most) samples will give intervals that contain the parameter
and some (hopefully just a few) will give intervals that miss the target.

Confidence Interval

A confidence interval for a parameter is an interval computed from
sample data by a method that will capture the parameter for a speci-
fied proportion of all samples.

The success rate (proportion of all samples whose intervals contain
the parameter) is known as the confidence level.

Recall that for a symmetric, bell-shaped distribution, roughly 95% of the values
fall within two standard deviations of the center. Therefore, we can assume that the
sample statistic will be within two standard errors of the parameter about 95% of
the time. Thus the interval Statistic ± 2 ⋅ SE, where SE stands for the standard error,
will contain the population parameter for about 95% of all samples. If we have a way
to estimate the standard error (SE), and if the sampling distribution is relatively
symmetric and bell-shaped, this is one way to construct an approximate 95%
confidence interval.

95% Confidence Interval Using the Standard Error

If we can estimate the standard error SE and if the sampling distribu-
tion is relatively symmetric and bell-shaped, a 95% confidence interval
can be estimated using

Statistic ± 2 ⋅ SE
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Example 3.14
The salaries for a random sample of 30 Major League Baseball players at the start of
the 2019 season are given in Table 3.2 on page 218. For this sample, we have n = 30
with x = 4.09 million and s = 5.21 million.

In Example 3.7 on page 221, we estimate that the standard error for means
based on samples of size n = 30 from this population is about 1.146.

(a) Use the information in this one sample and the estimated standard error of
1.146 to find a 95% confidence interval for the average salary in 2019 for Major
League Baseball players. Also give the best estimate, the margin of error, and
give notation for the parameter we are estimating.

(b) For these data, we know that the true population parameter is 𝜇 = 4.51. Does
the confidence interval generated from this one sample contain the true value of
the parameter?

(c) The standard deviation of 5.21 and the standard error of 1.146 are quite different.
Explain the distinction between them.

Solution (a) We are estimating a mean 𝜇, where 𝜇 represents the average salary for all base-
ball players in 2019. The best estimate for 𝜇 using this one sample is x, so a 95%
confidence interval is given by

Statistic ± 2 ⋅ SE

x ± 2 ⋅ SE

4.09 ± 2(1.146)
4.09 ± 2.292

1.798 to 6.382

A 95% confidence interval for the mean baseball salary goes from 1.798 to
6.382 million. Since the confidence interval is 4.09 ± 2.292, the best estimate
using this one sample is 4.09 million dollars and the margin of error is 2.292.

(b) The population mean 4.51 falls within the interval from 1.798 to 6.382, so in
this case, the confidence interval generated from one sample of 30 values does
contain the population parameter.

(c) The standard deviation of 5.21 is the standard deviation of the 30 individual
salaries in our sample. We see in Table 3.2 that the individual salaries are quite
spread out. The standard error of 1.146 is the standard deviation of the sample
means if we sampled 30 player salaries at a time and computed the sample means
over and over (as shown in the sampling distribution in Figure 3.1). These means
are much less spread out than the individual values.

Margin of error, standard error, and standard deviation of a sample are all different!
Be careful to distinguish correctly between them. The margin of error is the amount
added and subtracted in a confidence interval. The standard error is the standard
deviation of the sample statistics if we could take many samples of the same size.
The standard deviation of a sample is the standard deviation of the individual values
in that one sample.

Understanding Confidence Intervals
In Section 3.1, we see that the proportion of US adults with a college degree is
0.275. Figure 3.11 shows the sampling distribution (the same one as in Figure 3.2
on page 220) of the proportion of adults with a college degree for 1000 samples
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of size 200. Each of the dots in Figure 3.11 represents the proportion with a college
degree for a different possible random sample of size n = 200 from a population with
parameter p = 0.275. Any one of those dots represents a sample statistic we might
actually see, and we could find a separate confidence interval for each of the dots in
that sampling distribution. How many of these intervals will contain the parameter
value of p = 0.275?

Figure 3.11 Sample
proportions for samples
of size n = 200 when
p = 0.275

0.16 0.18 0.20 0.22 0.24 0.26

SampleProportion
0.28 0.30 0.32 0.34 0.36 0.38

Example 3.15
Each of the three values listed below is one of the sample proportions shown in the
dotplot in Figure 3.11. Find a 95% confidence interval using the sample proportion
and the fact that the standard error is approximately 0.03 (SE = 0.03). In each case,
also locate the sample proportion on the sampling distribution and indicate whether
the 95% confidence interval captures the true population proportion.

(a) p̂ = 0.26

(b) p̂ = 0.32

(c) p̂ = 0.20

Solution We use the sample proportion p̂ as our best estimate for the population proportion,
so in each case, we find a 95% confidence interval using

p̂ ± 2 ⋅ SE

(a) For p̂ = 0.26 the interval is 0.26 ± 2 ⋅ 0.03 = (0.20, 0.32). We see in Figure 3.11
that a sample proportion of p̂ = 0.26 is close to the center of the sampling distri-
bution. The confidence interval (0.20, 0.32) does include the population propor-
tion of 0.275.

(b) For p̂ = 0.32 the interval is 0.32 ± 2 ⋅ 0.03 = (0.26, 0.38). We see in Figure 3.11
that a sample proportion of p̂ = 0.32 is farther from the center of the sam-
pling distribution, but not way out in one of the tails. The confidence interval
(0.26, 0.38) does include the population proportion of 0.275.
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(c) For p̂ = 0.20 the interval is 0.20 ± 2 ⋅ 0.03 = (0.14, 0.26). We see in Figure 3.11
that a sample proportion of p̂ = 0.20 is quite far out in the left tail of the sampling
distribution and is not very close to the center. In fact, this sample proportion
is outside of the middle 95% of values, so it is more than 2 ⋅ SE away from the
center. The confidence interval (0.14, 0.26) does not include the population pro-
portion of 0.275.

Note that two of the confidence intervals found in Example 3.15 successfully
capture the population parameter of p = 0.275, but the third interval, the one gen-
erated from p̂ = 0.20, fails to contain p = 0.275. Remember that a 95% confidence
interval should work only about 95% of the time. The sample proportion p̂ = 0.20
is in a pretty unusual place of the sampling distribution in Figure 3.11. Any of the
(rare) samples that fall this far away will produce intervals that miss the parameter.
This will happen about 5% of the time—precisely those samples that fall in the most
extreme tails of the sampling distribution.

Figure 3.12 shows the sampling distribution for the proportion of college gradu-
ates in samples of size n = 200 (it should look very similar to Figure 3.11), although
now the dots (statistics) are colored according to how far they are from the true pop-
ulation proportion of p = 0.275. Notice that all the statistics colored blue are within
two standard errors of p = 0.275, and these comprise about 95% of all statistics.
The more extreme statistics, those farther than two standard errors from p = 0.275,
are colored red and comprise about 5% of all statistics. The blue statistics, those
closer to the true parameter, will lead to confidence intervals that contain the truth,
p = 0.275, while the red statistics, those farther from p = 0.275, will lead to confi-
dence intervals that miss the true parameter.

Figure 3.13(a) on the left shows the three 95% confidence intervals from
Example 3.15, with samples 1, 2, and 3 corresponding to those computed in parts
(a), (b), and (c), respectively. Each horizontal line represents one of the confidence
intervals (with a black dot showing the sample proportion), while the vertical line
represents the population parameter of p = 0.275. The confidence interval that fails
to capture the parameter value is shown in red.

Extending this idea to more sample proportions, Figure 3.13(b) shows confi-
dence intervals for 100 of the sample proportions from Figure 3.12. Again, each
horizontal line represents a confidence interval and we can see which intervals

Figure 3.12 Sampling
distribution for
proportion of college
graduates in samples of
size n = 200. Statistics
within 2 × SE of the true
proportion p = 0.275 are
colored blue, and
statistics not within this
range are colored red.

0.20 0.25

Sample Proportion

2 SE 2 SE

0.30 0.35
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Figure 3.13 Plots
showing 95% confidence
intervals for many
samples
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(b) One hundred samples

0.400.350.300.250.200.15

(shown in red) fail to capture the parameter value of p = 0.275. In this instance 6 of
the 100 intervals miss the mark, while the other 94 are successful. Notice that the
intervals are changing from sample to sample, while the parameter value (p = 0.275)
stays fixed. Over the long run, for many such intervals, about 95% will successfully
contain the parameter, while about 5% will miss it. That is what we mean by “95%
confidence.”

The parallelism in colors between Figures 3.12 and 3.13 is not a coincidence;
any of the 5% of statistics colored red in the tails of the sampling distribution, those
farther than 2 × SE from the parameter, will lead to a confidence interval colored
red that misses the true parameter. Likewise, any of the 95% of statistics colored
blue in the middle of the sampling distribution will lead to a confidence interval
colored blue that captures the true parameter.

Interpreting Confidence Intervals
We usually only have one sample and we do not know what the population param-
eter is. Referring to Figure 3.13(b), we don’t know if our sample is one of the ones
producing a “blue” confidence interval (successfully capturing the true population
parameter) or one of the few producing a “red” confidence interval (and missing
the mark). That is why we use words such as “95% confident” or “95% sure” when
we interpret a confidence interval.

Interpreting Confidence Level

The confidence level indicates how sure we are that our interval
contains the population parameter. For example, we interpret a 95%
confidence interval by saying we are 95% sure that the interval
contains the population parameter.

2000 20101990

2010

No Data 15%–19%10%–14% 20%–24% 25%–29%<10% ≥30%

Obesity rates in the US over time
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D A T A 3 . 2 Obesity in America

Obesity is one of the most serious public health concerns of the 21st century,
and has become one of the leading preventable causes of death worldwide.23

Besides being a health issue, obesity is an important economic concern. It is
estimated that in 2008, medical care costs due to obesity totaled about $147
billion.24 Moreover, obesity rates are increasing at an alarming rate (see
animation at http://www.cdc.gov/obesity/data/trends.html which includes the
obesity maps shown). The Centers for Disease Control and Prevention (CDC)
annually conducts a large national survey, based on a random sample of adults
living in US states and territories, called the Behavioral Risk Factor Surveillance
System.25 Height and weight, from which we calculate body mass index (used
to categorize “obese”), are among hundreds of variables collected on over
450,000 people in 2010. ◼

Example 3.16
Average BMI

Body mass index (BMI) is calculated as weight in pounds
(height in inches)2 × 703. For the sample

described in Data 3.2, the sample mean BMI for those surveyed is x = 27.655, with
a standard error of SE = 0.009.

(a) Give a 95% confidence interval for the average BMI for all adults living in the
US, and interpret this interval.

(b) A BMI ≥ 25 is classified as overweight. Is it plausible that America’s overall
average BMI would not be classified as overweight?

Solution (a) Let 𝜇 represent the mean BMI for all adults living in the US. A 95% confidence
interval is given by

Statistic ± 2 ⋅ SE

x ± 2 ⋅ SE

27.655 ± 2(0.009)
27.655 ± 0.018

27.637 to 27.673

A 95% confidence interval for 𝜇 is (27.637, 27.673). We are 95% sure that the
mean BMI for all adults living in the US in 2010 is between 27.637 and 27.673.

(b) Because the entire interval is above 25, we are (unfortunately) confident that
America’s average BMI in 2010 is considered overweight.

23Barness, L.A., Opitz, J.M., and Gilbert-Barness, E. “Obesity: Genetic, Molecular, and Environmental
Aspects,” Am. J. Med. Genet. A 2007; 143(24): 3016–34.
24Finkelstein, E.A., Trogdon, J.G., Cohen, J.W., and Dietz, W., “Annual Medical Spending Attributable
to Obesity: Payer- and Service-Specific Estimates,” Health Affairs 2009; 28(5): w822–w831.
25Centers for Disease Control and Prevention (CDC), Behavioral Risk Factor Surveillance System Survey
Data, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention,
Atlanta, 2010.
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Notice that the interval in Example 3.16 is extremely narrow. This is because
of the extremely large sample size (n = 451, 075). Remember, the larger the sample
size, the lower the variability in the sample statistics, so the smaller the standard
error. The fact that we can be 95% sure that the average BMI of all 250 million
plus American adults is between 27.63 and 27.67 is quite remarkable! Sampling only
a small fraction of the population (chances are no one asked you your height and
weight for a national survey), we can get a very accurate estimate of the average for
the entire population.

Example 3.17
BMI and Exercise

The survey in Data 3.2 also asked people whether they had exercised in the past
30 days, to which p̂ = 0.726 of the people, with SE = 0.0007, responded yes. We
expect that people who exercise have lower BMIs, but by how much? The sam-
ple difference in mean BMI between those who said they had exercised in the past
30 days and those who said they hadn’t is xE − xN = −1.915, with a standard error
of 0.016. Give and interpret a 95% confidence interval for the difference in mean
BMI between people who exercise and those who don’t for the entire US adult pop-
ulation. Is it plausible that there is no difference in average BMI between exercisers
and non-exercisers?

Solution We are estimating a difference in means, so notation for the thing we are estimating
(using meaningful subscripts)is 𝜇E − 𝜇N . Let 𝜇E − 𝜇N be the mean BMI in 2010 for
all adults living in the US who had exercised in the past 30 days minus the mean
BMI in 2010 for all adults living in the US who had not exercised in the past 30 days.
The relevant statistic is xE − xN . A 95% confidence interval for 𝜇E − 𝜇N is

Statistic ± 2 ⋅ SE

(xE − xN) ± 2 ⋅ SE

−1.915 ± 2(0.016)
−1.915 ± 0.032

−1.947 to −1.883

We are 95% confident that people living in the US in 2010 who exercise (at least
once in 30 days) have mean BMI between 1.883 and 1.947 lower than people living
in the US in 2010 who do not exercise. Because this interval does not contain 0, we
can be confident that there is a difference in average BMI between exercisers and
non-exercisers.

Example 3.18
Obesity Prevalence

The CDC classifies an adult as “obese” if BMI ≥ 30. Based on the data from the
2010 survey, a 95% confidence interval for the proportion of all adults living in the
US that were obese in 2010, p2010, is (0.276, 0.278). Based on the data from the 2000
survey, a 95% confidence interval for the proportion of all adults living in the US
that were obese in 2000, p2000, is (0.195, 0.199).

(a) Interpret both confidence intervals.

(b) Do you think the sample size for the 2000 survey was smaller or larger than the
sample size for the 2010 survey? Why?

(c) The confidence interval for the difference in proportions, p2010 − p2000, based on
the two sets of survey data is (0.049, 0.111). Interpret this interval.
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Solution (a) We are 95% confident that the proportion of all adults living in the US who were
obese in 2010 is between 0.276 and 0.278. We are also 95% confident that the
proportion of all adults living in the US who were obese in 2000 is between 0.195
and 0.199.

(b) The sample size for the 2000 survey was smaller, because the margin of error
for the 2000 interval is larger, meaning the standard error is larger, and smaller
sample sizes correspond to larger standard errors. (In fact, the 2000 sample size
was 184,450.)

(c) We are 95% sure that the proportion of adults living in the US that were obese
increased by anywhere from 0.049 to 0.111 from 2000 to 2010. (This is a very
large increase in the obesity rate over the span of just 10 years!)

Common Misinterpretations of Confidence Intervals
Misinterpretation 1 A 95% confidence interval contains 95% of the data in the
population.

This is a common mistake! The 95% confidence interval for the mean BMI of
US adults computed in Example 3.16 goes from 27.637 to 27.673. It certainly isn’t
true that 95% of all adults living in the US have a BMI within the narrow range of
27.637 and 27.673! Remember that the confidence interval is built to try and capture a
parameter (in this case the mean) of the population, not individual cases. The correct
statement is that we are 95% confident that the population mean is in the interval.

Misinterpretation 2 I am 95% sure that the mean of a sample will fall within a
95% confidence interval for the mean.

Again, this is a false statement. The correct statement is that we are 95% sure
that the mean of the population will fall within a 95% confidence interval for the
mean. In fact, we are 100% sure that the mean of our sample falls within the confi-
dence interval since we constructed the confidence interval around the samplemean.
A confidence interval gives us information about the population parameter, not
about means of other samples. Remember that the interval is making a statement
about where the population parameter is likely to be found.

Misinterpretation 3 The probability that the population parameter is in this partic-
ular 95% confidence interval is 0.95.

False! Remember that what varies are the statistics from sample to sample, not
the population parameter. Once we have constructed an interval such as 27.637 to
27.673 for the mean BMI, it either does or does not contain the true average BMI for
all US adults. The actual mean doesn’t bounce around and fall within that interval
some proportion of the time. That is why we use language such as “we are 95% con-
fident that ...” or “we are 95% sure that ...” rather than making an explicit probability
statement. This helps distinguish between the method of constructing the interval
working 95% of the time (or for 95% of all samples), rather than a success rate for
a particular interval.

But How Can We Construct a Confidence Interval?
We now know how to interpret a confidence interval and how to construct a 95%
confidence interval if we know the standard error. But how can we find the standard
error if we only have one sample? And how do we construct intervals for confidence
levels other than 95%? If we had a sampling distribution, we could get a good idea
of how far the sample statistic tends to vary from the parameter. But in reality we
only have the data in our original sample to work with! We do not know the true
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value of the parameter, and do not have the funds to sample thousands of times from
the population to generate a sampling distribution. How can we know how accurate
our estimate is?

Youmay have detected this subtle impracticality in our approach so far: in order
to understand the variability of the sample statistic, we need to know the population
parameter or be able to take thousands of real samples from the population. How-
ever, this would defeat the point of using a sample statistic to estimate a population
parameter! In most real situations we only have the information from just one sam-
ple, just one of the dots in the sampling distribution dotplots shown. How can we
possibly determine how much a statistic varies from sample to sample if we only
have one sample?!?

Amazingly, it is possible to assess variability of a sample statistic using just the
data from one sample, and we will see how to do it in the next section.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify the parameter being estimated and the sample statistic that
gives the best estimate

• Construct a confidence interval for a parameter based on a sample
statistic and a margin of error

• Use a confidence interval to recognize plausible values of the popula-
tion parameter

• Construct a confidence interval for a parameter given a sample statistic
and an estimate of the standard error

• Interpret (in context) what a confidence interval says about a population
parameter

Exercises for Section 3.2

SKILL BUILDER 1
In Exercises 3.43 to 3.46, data from a sample is
being used to estimate something about a popula-
tion. In each case:

(a) Give notation for the quantity that is being
estimated.

(b) Give notation for the quantity that gives the
best estimate.

3.43 A random sample of registered voters in the
US is used to estimate the proportion of all US reg-
istered voters who voted in the last election.

3.44 A random sample of maple trees in a forest is
used to estimate the mean base circumference of all
maple trees in the forest.

3.45 Random samples of organic eggs and eggs that
are not organic are used to estimate the difference
in mean protein level between the two types of eggs.

3.46 Random samples of people in Canada and
people in Sweden are used to estimate the differ-
ence between the two countries in the proportion of
people who have seen a hockey game (at any level)
in the past year.

SKILL BUILDER 2
In Exercises 3.47 to 3.50, construct an interval giv-
ing a range of plausible values for the given param-
eter using the given sample statistic and margin of
error.

3.47 For 𝜇, using x = 25 with margin of error 3.
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3.48 For p, using p̂ = 0.37 with margin of error 0.02.

3.49 For 𝜌, using r = 0.62 with margin of error 0.05.

3.50 For 𝜇1 − 𝜇2, using x1 − x2 = 5 with margin of
error 8.

SKILL BUILDER 3
In Exercises 3.51 and 3.52, a 95% confidence inter-
val is given, followed by possible values of the
population parameter. Indicate which of the values
are plausible values for the parameter and which
are not.

3.51 A 95% confidence interval for a mean is 112.1
to 128.2. Is the value given a plausible value of 𝜇?

(a) 𝜇 = 121

(b) 𝜇 = 113.4

(c) 𝜇 = 105.3

3.52 A 95% confidence interval for a proportion
is 0.72 to 0.79. Is the value given a plausible value
of p?

(a) p = 0.85

(b) p = 0.75

(c) p = 0.07

SKILL BUILDER 4
In Exercises 3.53 to 3.58, information about a sam-
ple is given. Assuming that the sampling distribu-
tion is symmetric and bell-shaped, use the informa-
tion to give a 95% confidence interval, and indicate
the parameter being estimated.

3.53 p̂ = 0.32 and the standard error is 0.04.

3.54 x = 55 and the standard error is 1.5.

3.55 r = 0.34 and the standard error is 0.02.

3.56 r = −0.46 and the margin of error for 95%
confidence is 0.05.

3.57 x1 − x2 = 3.0 and the margin of error for 95%
confidence is 1.2.

3.58 p̂1 − p̂2 = 0.08 and the margin of error for 95%
confidence is ±3%.
3.59 What Proportion of College Students Change
Their Major? Exercise 2.16 introduces a survey of
5204 first-year full-time college students in the US.
The survey was administered at the end of the first
year, and 35.6% of the students said that they had
changed their choice of major over the course of the
year.

(a) Is the information given from a sample or a pop-
ulation?

(b) Is the 35.6% a parameter or a statistic? Give the
correct notation.

(c) If we want to use this value to estimate a
parameter, give notation and define the relevant
parameter.

(d) Give a 95% confidence interval for the quan-
tity being estimated, if the standard error for the
estimate is 0.007.

3.60 Do You Ever Feel Homesick? According to a
survey by the UCLA Higher Education Institute,26

69 percent of the first year college students in the
sample reported feeling homesick. If we use this
sample to generalize to a population, the margin of
error for the estimate is ±2%, using a 95% confi-
dence level.

(a) Is the 69 percent a parameter or statistic? Give
the correct notation for the quantity.

(b) Is the quantity we are estimating a parameter
or a statistic? Give correct notation and clearly
define it.

(c) Use the margin of error to give a 95% confi-
dence interval for the parameter. Interpret it in
context.

3.61 Adolescent Brains Are Different Researchers
continue to find evidence that brains of adoles-
cents behave quite differently than either brains of
adults or brains of children. In particular, adoles-
cents seem to hold on more strongly to fear asso-
ciations than either children or adults, suggesting
that frightening connections made during the teen
years are particularly hard to unlearn. In one study,27

participants first learned to associate fear with a
particular sound. In the second part of the study, par-
ticipants heard the sound without the fear-causing
mechanism, and their ability to “unlearn” the con-
nection was measured. A physiological measure of
fear was used, and larger numbers indicate less fear.
We are estimating the difference in mean response
between adults and teenagers. The mean response
for adults in the study was 0.225 and the mean
response for teenagers in the studywas 0.059.Weare
told that the standard error of the estimate is 0.091.

(a) Give notation for the quantity being estimated.

(b) Give notation for the quantity that gives the
best estimate, and give its value.

(c) Give a 95% confidence interval for the quantity
being estimated.

(d) Is this an experiment or an observational study?

26Wong K, “Freshman Homesickness: What You Can Do to
Combat This CommonMalady,”www.nbcnews.com, October 23,
2015.
27Sanders, L., “Adolescent brains open to change,” Science News,
October 31, 2015.
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3.62 Do You Find Solitude Distressing? “For many
people, being left alone with their thoughts is a most
undesirable activity,” says a psychologist involved
in a study examining reactions to solitude.28 In the
study, 146 college students were asked to hand over
their cell phones and sit alone, thinking, for about
10 minutes. Afterward, 76 of the participants rated
the experience as unpleasant. Use this information
to estimate the proportion of all college students
who would find it unpleasant to sit alone with their
thoughts. (This reaction is not limited to college
students: in a follow-up study involving adults ages
18 to 77, a similar outcome was reported.)

(a) Give notation for the quantity being estimated,
and define any parameters used.

(b) Give notation for the quantity that gives the
best estimate, and give its value.

(c) Give a 95% confidence interval for the quantity
being estimated, given that the margin of error
for the estimate is 8%.

3.63 Do You Prefer Pain over Solitude?
Exercise 3.62 describes a study in which college
students found it unpleasant to sit alone and think.
The same article describes a second study in which
college students appear to prefer receiving an elec-
tric shock to sitting in solitude. The article states
that “when asked to spend 15 minutes in solitary
thought, 12 of 18 men and 6 of 24 women voluntar-
ily gave themselves at least one electric shock.” Use
this information to estimate the difference between
men and women in the proportion preferring
pain over solitude. The standard error of the esti-
mate is 0.154.

(a) Give notation for the quantity being estimated,
and define any parameters used.

(b) Give notation for the quantity that gives the
best estimate, and give its value.

(c) Give a 95% confidence interval for the quantity
being estimated.

(d) Is “no difference” between males and females
a plausible value for the difference in propor-
tions?

3.64 Moose Drool Makes Grass More Appetizing
Different species can interact in interesting ways.
One type of grass produces the toxin ergovaline
at levels about 1.0 part per million in order to keep

28Bower, B., “People will take pain over being left alone with
their thoughts,” Science News, 186(3), August 9, 2014, p. 12.

grazing animals away. However, a recent study29

has found that the saliva from a moose counteracts
these toxins and makes the grass more appetizing
(for the moose). Scientists estimate that, after treat-
ment with moose drool, mean level of the toxin
ergovaline (in ppm) on the grass is 0.183. The stan-
dard error for this estimate is 0.016.

(a) Give notation for the quantity being estimated,
and define any parameters used.

(b) Give notation for the quantity that gives the
best estimate, and give its value.

(c) Give a 95% confidence interval for the quan-
tity being estimated. Interpret the interval in
context.

3.65 Have You Ever Been Arrested? According to
a recent study of 7335 young people in the US, 30%
had been arrested30 for a crime other than a traf-
fic violation by the age of 23. Crimes included such
things as vandalism, underage drinking, drunken
driving, shoplifting, and drug possession.

(a) Is the 30% a parameter or a statistic? Use the
correct notation.

(b) Use the information given to estimate a param-
eter, and clearly define the parameter being
estimated.

(c) The margin of error for the estimate in part (b)
is 0.01. Use this information to give a range of
plausible values for the parameter.

(d) Given the margin of error in part (c), if we
asked all young people in the US if they have
ever been arrested, is it likely that the actual
proportion is less than 25%?

3.66 Employer-Based Health Insurance A report
from a Gallup poll31 started by saying, “Forty-
five percent of American adults reported get-
ting their health insurance from an employer. . . .”
Later in the article we find information on the
sampling method, “a random sample of 147,291
adults, aged 18 and over, living in the US,” and
a sentence about the accuracy of the results, “the
maximum margin of sampling error is ±1 percent-
age point.”

29Tanentzap, A.J., Vicari, M., Bazely, D.R., “Ungulate saliva
inhibits a grass-endophyte mutualism,” Biology Letters, 10(7),
July 2014.
30From a study in USA Today, quoted in The Week, 2012; 11:
547–548.
31http://www.gallup.com/poll/148079/Employer-Based-Health-
Insurance-Declines-Further.aspx.
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(a) What is the population? What is the sample?
What is the population parameter of interest?
What is the relevant statistic?

(b) Use the margin of error32 to give an interval
showing plausible values for the parameter of
interest. Interpret it in terms of getting health
insurance from an employer.

3.67 Subtle Language Changes Impact Conflict
Resolution Exercise 2.82 introduces a study exam-
ining whether phrasing controversial statements
using either nouns or verbs affects anger levels
in conflict situations. The study was conducted in
Israel, and an example of the noun form is “the
division of Jerusalem” rather than the verb form as
“dividing Jerusalem.” Participants were randomly
divided into two groups, where Group 1 heard state-
ments in noun form and Group 2 heard statements
in verb form. After hearing each statement, partic-
ipants indicated on a 1 – 6 scale how much anger
they felt, with higher numbers indicating more
anger. A 90% confidence interval for the difference
in mean anger rating (mean for Group 1 −mean for
Group 2) is -0.86 to -0.06.

(a) Give notation for the quantity being estimated,
and define any parameters used.

(b) Give notation for the quantity that gives the
best estimate.

(c) Is it plausible (at a 90% level) that using the
noun form or using the verb form give basically
the same mean anger reactions? Use the confi-
dence interval to answer yes or no and explain
your reasoning. If your answer is no, which lan-
guage form has higher mean anger levels?

(d) If the answer to part (c) is no, can we determine
that the language structure caused the differ-
ence in mean anger levels? Why or why not?

(e) If you are working toward conflict resolution
and want to keep levels of emotion and anger
low, does it matter which type of phrasing you
use, and, if so, which type of phrasing should
you use?

3.68 Soda Consumption and Mortality in Europe
A hazard ratio quantifies how much greater the
risk is in one group relative to another, with a
hazard ratio of 1 indicating that there is no discern-
able difference between the groups, a hazard ratio
greater than 1 indicating greater risk for the first
group, and a hazard ratio less than 1 indicating less

32Actually, the margin of error is significantly less than ±1% for
this sample, but the Gallup Poll rounded up to the nearest whole
number.

risk for the first group. A large study33 conducted
in Europe examines whether higher consumption
of soft drinks (of any type) is associated with an
increased risk of death. In the study, the hazard
ratio for mortality for people drinking two or more
glasses of soda per day relative to those drink-
ing less than one glass a month was 1.17, with a
95% confidence interval for the hazard ratio of 1.11
to 1.22.

(a) Can we conclude, with 95% confidence, that
high soda consumption is associated with an
increased risk of death? Justify your answer
using the confidence interval.

(b) Can we conclude that increased soda consump-
tion causes a greater risk of death? Why or why
not?

3.69 Is a Car a Necessity? A random sample of
n = 1483 adults in the US were asked whether they
consider a car a necessity or a luxury,34 and we find
that a 95% confidence interval for the proportion
saying that it is a necessity is 0.83 to 0.89. Explain
themeaning of this confidence interval in the appro-
priate context.

3.70 Number of Text Messages a Day A random
sample of n = 755 US cell phone users age 18 and
older in May 2011 found that the average number
of text messages sent or received per day is 41.5
messages,35 with standard error about 6.1.

(a) State the population and parameter of interest.
Use the information from the sample to give the
best estimate of the population parameter.

(b) Find and interpret a 95% confidence interval for
the mean number of text messages.

3.71 What Proportion Believe in One True Love?
In Data 2.1 on page 54, we describe a study in
which a random sample of 2625 US adults were
asked whether they agree or disagree that there is
“only one true love for each person.” The study
tells us that 735 of those polled said they agree
with the statement. The standard error for this sam-
ple proportion is 0.009. Define the parameter being

33Mullee A, Romaguera D, Pearson-Stuttard J, “Association
Between Soft Drink Consumption and Mortality in Europe,”
JAMA Internal Medicine, September 3, 2019.
34Taylor, P. and Wang, W., “The Fading Glory of the Televi-
sion and Telephone,” Pew Research Center, http://pewsocial
trends.org/pubs/762/fading-glory-television-telephone-luxury-
necessity#prc-jump, accessed August 19, 2010.
35Smith, A., “Americans and Text Messaging,” Pew Research
Center, http://www.pewinternet.org/Reports/2011/Cell-Phone-
Texting-2011/Main-Report/How-Americans-Use-Text-Messaging
.aspx, accessed September 19, 2011.
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estimated, give the best estimate, the margin of
error, and find and interpret a 95% confidence
interval.

3.72 Males vs Females and One True Love In
Data 2.1 on page 54, we describe a study in which
a random sample of 2625 US adults were asked
whether they agree or disagree that there is “only
one true love for each person.” The response and
sex of the participants is shown in Table 3.6. Use
the information in the table to construct and inter-
pret a 95% confidence interval for the difference
in the proportion who agree, between males and
females, using the fact that the standard error for
the difference is 0.018. Is it plausible that there
is no difference between males and females in the
proportion who agree that each person has only one
true love?

Table 3.6 Is there one true love for each person?

Male Female Total
Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78
Total 1213 1412 2625

3.73 Playing Video Games A new study provides
some evidence that playing action video games
strengthens a person’s ability to translate sen-
sory information quickly into accurate decisions.
Researchers had 23 male volunteers with an aver-
age age of 20 look at moving arrays on a computer
screen and indicate the direction in which the dots
were moving.36 Half of the volunteers (11 men)
reported playing action video games at least five
times a week for the previous year, while the other
12 reported no video game playing in the previ-
ous year. The response time and the accuracy score
were both measured. A 95% confidence interval for
the mean response time for game players minus the
mean response time for non-players is −1.8 to −1.2
seconds, while a 95% confidence interval for mean
accuracy score for game players minus mean accu-
racy score for non-players is −4.2 to +5.8.
(a) Interpret the meaning of the 95% confi-

dence interval for difference in mean response
time.

36Green, et al., “Improved probabilistic inference as a general
learning mechanism with action video games,” Current Biology,
2010; 20(September 14): 1.

(b) Is it plausible that game players and non-game
players are basically the same in response time?
Why or why not? If not, which group is faster
(with a smaller response time)?

(c) Interpret the meaning of the 95% confidence
interval for difference in mean accuracy score.

(d) Is it plausible that game players and non-game
players are basically the same in accuracy? Why
orwhynot? If not,whichgroup ismoreaccurate?

3.74 Bisphenol A in Your Soup Cans Bisphenol
A (BPA) is in the lining of most canned goods,
and recent studies have shown a positive association
between BPA exposure and behavior and health
problems. How much does canned soup consump-
tion increase urinary BPA concentration? That was
the question addressed in a recent study37 in which
consumption of canned soup over five days was
associated with a more than 1000% increase in uri-
nary BPA. In the study, 75 participants ate either
canned soup or fresh soup for lunch for five days.
On the fifth day, urinary BPA levels were measured.
After a two-day break, the participants switched
groups and repeated the process. The difference in
BPA levels between the two treatments was mea-
sured for each participant. The study reports that a
95% confidence interval for the difference in means
(canned minus fresh) is 19.6 to 25.5 𝜇g/L.

(a) Is this a randomized comparative experiment or
a matched pairs experiment? Why might this
type of experiment have been used?

(b) What parameter are we estimating?

(c) Interpret the confidence interval in terms of
BPA concentrations.

(d) If the study had included 500 participants
instead of 75, would you expect the confidence
interval to be wider or narrower?

3.75 Predicting Election Results Throughout the
US presidential election of 2016, polls gave regular
updates on the sample proportion supporting each
candidate and the margin of error for the estimates.
This attempt to predict the outcome of an election is
a common use of polls. In each case below, the pro-
portion of voters who intend to vote for each of two
candidates is given as well as a margin of error for
the estimates. Indicate whether we can be relatively
confident that candidate A would win if the election
were held at the time of the poll. (Assume the can-
didate who gets more than 50% of the vote wins.)

37Carwile, J., Ye, X., Zhou, X., Calafat, A., and Michels, K.,
“Canned Soup Consumption and Urinary Bisphenol A: A
Randomized Crossover Trial,” Journal of the American Medical
Association, 2011; 306(20): 2218–2220.
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(a) Candidate A: 54% Candidate B: 46%
Margin of error: ±5%

(b) Candidate A: 52% Candidate B: 48%
Margin of error: ±1%

(c) Candidate A: 53% Candidate B: 47%
Margin of error: ±2%

(d) Candidate A: 58% Candidate B: 42%
Margin of error: ±10%

3.76 Effect of Overeating for One Month: Average
Long-Term Weight Gain Overeating for just four
weeks can increase fat mass and weight over two
years later, a Swedish study shows.38 Researchers
recruited 18 healthy and normal-weight people with
an average age of 26. For a four-week period, par-
ticipants increased calorie intake by 70% (mostly
by eating fast food) and limited daily activity to a
maximum of 5000 steps per day (considered seden-
tary). Not surprisingly, weight and body fat of the
participants went up significantly during the study
and then decreased after the study ended. Partici-
pants are believed to have returned to the diet and
lifestyle they had before the experiment. However,
two and a half years after the experiment, the mean
weight gain for participants was 6.8 lbs with a stan-
dard error of 1.2 lbs. A control group that did not
binge had no change in weight.

(a) What is the relevant parameter?

(b) How could we find the actual exact value of the
parameter?

(c) Give a 95% confidence interval for the parame-
ter and interpret it.

(d) Give the margin of error and interpret it.

3.77 Fluoride Exposure in Pregnant Women
Exercise 2.250 introduces a study showing that flu-
oride in the drinking water of pregnant women
might lead to lower IQ scores for their children.
The regression lines to predict children’s IQ scores
based on maternal fluoride concentration were cal-
culated separately for boys and girls, and the study
concluded that the effect seems to be true for boys
but is inconclusive for girls. The 95% confidence
interval for the slope of the regression line is −2.53
to 7.33 in one case and is−8.38 to−0.60 in the other.
Which confidence interval goes with boys and which
goes with girls?

38Ernersson, A., Nystrom, F., and Linsstrrom, T., “Long-term
Increase of Fat Mass after a Four Week Intervention with a Fast-
food Hyper-alimentation and Limitation of Physical Activity,”
Nutrition & Metabolism, 2010; 7: 68. Some of the data is esti-
mated from available information.

3.78 What Proportion of Canadian Adults Are
Married? Canada conducts a census every five
years, and the 2016 Canadian Census shows that
p = 0.457 of Canadian adults are married.39

(a) Use the Sampling Distribution for a Proportion
option on StatKey or other technology to find
a sample proportion using a sample of size n =
100. Give the notation and value of the sample
proportion you found.

(b) Construct a 95% confidence interval using the
sample statistic in part (a) and the fact that the
standard error for the estimate is 0.050.

(c) Is the population proportion of p = 0.457
included in your confidence interval (Yes or
No)?

(d) Repeat parts (a), (b), and (c) for a second sam-
ple proportion.

3.79 StudentMisinterpretations Suppose that a stu-
dent is working on a statistics project using data
on pulse rates collected from a random sample of
100 students from her college. She finds a 95% con-
fidence interval for mean pulse rate to be (65.5,
71.8). Discuss how each of the statements below
would indicate an improper interpretation of this
interval.

(a) I am 95% sure that all students will have pulse
rates between 65.5 and 71.8 beats per minute.

(b) I am 95% sure that the mean pulse rate for this
sample of students will fall between 65.5 and
71.8 beats per minute.

(c) I am 95% sure that the confidence interval for
the average pulse rate of all students at this col-
lege goes from 65.5 to 71.8 beats per minute.

(d) I am sure that 95% of all students at this col-
lege will have pulse rates between 65.5 and 71.8
beats per minute.

(e) I am 95% sure that the mean pulse rate for all
US college students is between 65.5 and 71.8
beats per minute.

(f) Of the mean pulse rates for students at this col-
lege, 95% will fall between 65.5 and 71.8 beats
per minute.

(g) Of random samples of this size taken from stu-
dents at this college, 95% will have mean pulse
rates between 65.5 and 71.8 beats per minute.

39https://www12.statcan.gc.ca/census-recensement/2016/dp-
pd/prof/index.cfm?Lang=E. Accessed January 2020.
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3.3CONSTRUCTING BOOTSTRAP CONFIDENCE INTERVALS

The distributions of sample statistics considered so far in this chapter require us to
either already know the value of the population parameter or to have the resources
to take thousands of different samples. In most situations, neither of these is an
option.

In this section we introduce a method for estimating the variability of a statistic
that uses only the data in the original sample. This clever technique, called bootstrap-
ping,40 allows us to approximate a sampling distribution and estimate a standard
error using just the information in that one sample.

Paha_L/iStock/Getty Images

What is the average commute time in Atlanta?

D A T A 3 . 3 Commuting in Atlanta
What is the average commuting time for people who live and work in the
Atlanta metropolitan area? It’s not very feasible to contact all Atlanta residents
and ask about their commutes, but the US Census Bureau regularly collects
data from carefully selected samples of residents in many areas. One such data
source is the American Housing Survey (AHS), which contains information
about housing and living conditions for samples from the country as a whole
and certain metropolitan areas. The data in CommuteAtlanta includes cases
where the respondent worked somewhere other than home in the Atlanta
metropolitan area.41 Among the questions asked were the time (in minutes) and
distance (in miles) that respondents typically traveled on their commute to work
each day. ◼

The commute times for this sample of 500 Atlantans are shown in the dotplot
of Figure 3.14. The sample mean is x = 29.11 minutes and the standard deviation
in the sample is s = 20.7 minutes. The distribution of commute times is somewhat

40The term bootstrap was coined by Brad Efron and Robert Tibsharani to reflect the phrase “pulling
oneself up by one’s own bootstraps.”
41Sample chosen using DataFerret at http://www.thedataweb.org/index.html.
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right skewed with clusters at regular intervals that reflect many respondents round-
ing their estimates to the nearest 5 or 10 minutes. Based on this sample we have
a best estimate of 29.11 minutes for 𝜇, the mean commute time for all workers in
metropolitan Atlanta. How accurate is that estimate likely to be?

Figure 3.14 Sample of
500 Atlanta commute
times

CommuteAtlanta
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Time

Dot Plot

To get a range of plausible values for the mean commute time of all Atlantans
it would help to see a sampling distribution of means for many samples of size 500.
However, we don’t have data for the population of all Atlanta commuters, and if we
did we could easily find the population mean exactly! We only have the commuting
times for the single sample of 500 workers. How can we use the information in that
sample to assess how much the means for other samples of 500 Atlantans might
vary?

Bootstrap Samples
Ideally, we’d like to sample repeatedly from the population to create a sampling
distribution. How can we make the sample data look like data from the entire
population? The key idea is to assume for the moment that the population of all
commuters in Atlanta is basically just many, many copies of the commuters in our
original sample. See Figure 3.15, which illustrates this concept for a very small sam-
ple of six stick figures, in which we assume the population is just many copies of the
sample. If we make lots of copies of the sample and then sample repeatedly from
this hypothetical “population,” we are coming as close as we can to mimicking the
process of sampling repeatedly from the population.

In practice, instead of actually making many copies of the sample and sam-
pling from that, we use a sampling technique that is equivalent: we sample with
replacement from the original sample. Sampling with replacement means that once a
commuter has been selected for the sample, he or she is still available to be selected
again. This is because we’re assuming that each commuter in the original sample
actually represents many fellow Atlantans with a similar commute time. Each sam-
ple selected in this way, with replacement from the original sample, is called a boot-
strap sample.

Recall from Section 3.1 that the variability of a sample statistic depends on the
size of the sample. Because we are trying to uncover the variability of the sample
statistic, it is important that each bootstrap sample is the same size as the original
sample. For the Atlanta commuters, each bootstrap sample will be of size n = 500.
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Figure 3.15 Using a sample to represent a population

For each bootstrap sample, we compute the statistic of interest, giving us a boot-
strap statistic. For the Atlanta commuters, we compute a bootstrap statistic as the
sample mean commute time for a bootstrap sample. If we take many bootstrap sam-
ples and compute a bootstrap statistic from each, the distribution of these bootstrap
statistics will help us understand the distribution of the sample statistic. Table 3.7
shows the sample means for 10 different bootstrap samples of size 500 taken with
replacement from the original commute times in CommuteAtlanta.

Bootstrap Distribution
Based on just the 10 bootstrap statistics in Table 3.7, we can begin to get some feel
for how accurately we can estimate the mean commute time based on a sample of
size 500. Note that, for the hypothetical population we simulate when sampling with
replacement from the original sample, we know that the “population” mean is the
sample mean, 29.11 minutes. Thus the bootstrap sample means give us a good idea
of how close means for samples of size 500 should be to a “true” mean. For the
10 samples in Table 3.7 the biggest discrepancy is the seventh sample mean (30.57),
which is still within 1.46 minutes of 29.11.

Of course, with computer technology, we aren’t limited to just 10 bootstrap
samples. We can get a much better picture of the variability in the means for sam-
ples of size 500 by generating many such samples and collecting the sample means.
Figure 3.16 shows a dotplot of the sample means for 1000 samples of size 500, taken
with replacement, from the original sample of Atlanta commute times. This gives a
good representation of the bootstrap distribution for mean Atlanta commute times.
We see that the distribution is relatively symmetric, bell-shaped, and centered near
the original sample mean of 29.11.

Table 3.7 Mean commute times for 10 bootstrap samples of n = 500 Atlantans

28.06 29.21 28.43 28.97 29.95 28.67 30.57 29.22 27.78 29.58
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Figure 3.16 Commuting
time means for 1000
bootstrap samples of size
n = 500
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Generating a Bootstrap Distribution

To generate a bootstrap distribution, we:

• Generate bootstrap samples by sampling with replacement from
the original sample, using the same sample size.

• Compute the statistic of interest, called a bootstrap statistic, for
each of the bootstrap samples.

• Collect the statistics for many bootstrap samples to create a boot-
strap distribution.

This process is illustrated in Figure 3.17.

Figure 3.17 Generating
a bootstrap distribution
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Assuming the original sample is chosen randomly from the population, the
bootstrap distribution generally gives a good approximation to a sampling distri-
bution that we might see if we were able to collect lots of samples from the entire
population, but is centered around the sample statistic rather than the population
parameter. This allows us to get a good idea of how variable our sample statistic is,
and how close we can expect it to be to the population parameter. In Figure 3.16 we
see that none of the 1000 sample means are more than three minutes away from
the center of the bootstrap distribution. Thus, we are quite confident that a sample
of 500 Atlanta commuters will give an estimate that is within three minutes of the
mean commute time for the entire population.
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Example 3.19
Mixed Nuts with Peanuts

Containers of mixed nuts often contain peanuts as well as cashews, pecans, almonds,
and other nuts. For one brand, we want to estimate the proportion of mixed nuts
that are peanuts. We get a jar of the nuts and assume that the nuts in that container
represent a random sample of all the mixed nuts sold by that company. We open the
jar and count 100 nuts of which 52 are peanuts. The estimated proportion of peanuts
is p̂ = 52∕100 = 0.52.

(a) How could we physically use the jar of nuts to construct one bootstrap sample?
What would we record to find the bootstrap statistic?

(b) If we create a bootstrap distribution by collecting many bootstrap statistics,
describe the center and anticipated shape of the distribution.

(c) Use StatKey or other technology to create a bootstrap distribution.

Solution (a) To find a bootstrap sample we need to select 100 nuts from the original sample
with replacement. To accomplish this we could shake the nuts in the jar, reach in
and pick one at random, record whether or not it is a peanut, and put it back in
the jar. (This is what sampling with replacement means.) Repeat this process 99
more times to simulate a new sample of 100 nuts. The bootstrap statistic is the
proportion of peanuts among the 100 nuts selected.

(b) Since the bootstrap statistics come from the original sample with a sample pro-
portion of 0.52, we expect the bootstrap distribution to be centered at 0.52. Since
we are simulating a sampling distribution, we think it is likely that the distribu-
tion will be bell-shaped.

(c) While it would be time consuming to repeat the physical sampling process
described in part (a) many times, it is relatively easy to use StatKey or other
technology to simulate the process automatically. Figure 3.18 shows a dotplot of
the bootstrap distribution of sample proportions for 1000 samples of size 100,
simulated from the original sample with 52 peanuts out of 100. As expected, we
see a symmetric, bell shape distribution, centered near the value of the statistic
in the original sample (0.52).

Figure 3.18 Bootstrap
proportions for 1000
samples simulated from a
sample with p̂ = 0.52 and
n = 100
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Example 3.20
Laughter in Adults

How often do you laugh? Estimates vary greatly in how often, on average, adults
laugh in a typical day. (Different sources indicate that the average is 10, or 15, or 40,
depending on the source, although all studies conclude that adults laugh significantly
less than children.) Suppose that one study randomly selects six adults and records
how often these adults laugh in a day, with the results given in Table 3.8.

(a) Define the parameter we are estimating and find the best estimate from this
sample.

(b) Describe how to use cards to generate one bootstrap sample. What statistic
would we record for this sample?

(c) Generate several bootstrap samples this way, and compute the mean for each.

(d) If we generated many such bootstrap statistics, where will the bootstrap distri-
bution be centered?

Table 3.8 Number of laughs in a day

16 22 9 31 6 42

Solution (a) We are estimating 𝜇, the average number of laughs in a typical day for all adults.
The best estimate is the mean from our sample, which we calculate to be x =
21.0.

(b) Since there are six values in the sample, we use six cards and put the six values
on the cards. We then mix them up, pick one, and write down the value. (Since
there are six values, we could also roll a six-sided die to randomly select one of
the numbers.) Then we put the card back (since we are sampling with replace-
ment), mix the cards up, and draw out another. We do this six times to obtain a
bootstrap sample of size 6. Since we are interested in the mean, the statistic we
record is the mean of the six values.

(c) Several bootstrap samples are shown in Table 3.9. Answers will vary, but all
bootstrap samples will have the same sample size, n = 6, and will only include
values already present in the original sample.

(d) If we calculated many bootstrap statistics to generate a bootstrap distribution, it
would be centered at the value of the original sample statistic, which is x = 21.0.

Table 3.9 Three bootstrap samples

Bootstrap Sample 1: 16 31 9 16 6 42 Mean = 20.0
Bootstrap Sample 2: 31 16 16 6 31 22 Mean = 20.33
Bootstrap Sample 3: 42 31 42 9 42 22 Mean = 31.33

Estimating Standard Error from a Bootstrap Distribution
The variability of bootstrap statistics is similar to the variability of sample statistics
if we were to sample repeatedly from the population, so we can use the standard
deviation of the bootstrap distribution to estimate the standard error of the sample
statistic.
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Standard Error from a Bootstrap Distribution

The standard deviation of the bootstrap statistics in a bootstrap
distribution gives a good approximation of the standard error of the
statistic.

Example 3.21
Use the information in Figure 3.18 to find the standard error of the sample pro-
portion when estimating the proportion of peanuts in mixed nuts with a sample of
size 100.

Solution The information in the upper corner of Figure 3.18 indicates that the standard devia-
tion of those 1000 bootstrap proportions is 0.050, so we use that value as an estimate
of the standard error for the proportion.

The 1000 bootstrap means for Atlanta commute times in Figure 3.16 have a
standard deviation of 0.915 minutes, so we have SE = 0.915 for the sample mean
commute time based on samples of size n = 500. The standard error depends on the
size and variability of the original sample, but not on the number of bootstrap sam-
ples (provided we use enough bootstrap samples to obtain a reasonable estimate).

Because the estimated SE is based on simulated bootstrap samples, it will vary
slightly from simulation to simulation. A different set of 1000 commute bootstrap
means produced a standard error estimate of 0.932 (similar to the previous estimate
of 0.915), and 1000 new simulated mixed nut samples gave an estimated standard
error of 0.048 (also similar to the previous estimate of SE = 0.050.) In practice, these
subtle differences are almost always negligible. However, a more accurate estimate
can easily be achieved by simulating more bootstrap samples: The more bootstrap
samples, the more accurate the estimated SE will be. In this text we often use 1000
bootstrap samples so that the individual bootstrap statistics are visible in plots, but
10,000 or more bootstrap samples are more often used in practice.42 If we create
100,000 bootstrap samples for the Atlanta commute times, the SE is 0.927 in one
simulation, 0.928 in another simulation, and 0.927 in a third simulation: We are now
estimating within 1 one-thousandth of a minute.

95% Confidence Interval Based on a Bootstrap
Standard Error
Recall from Section 3.2 that we can use the standard error to construct a 95% con-
fidence interval by going two standard errors on either side of the original statistic.
Now, we can use this idea more practically by using the bootstrap distribution to
estimate the standard error.

A 95% Confidence Interval Using a Bootstrap Standard Error

When a bootstrap distribution for a sample statistic is symmetric and
bell-shaped, we estimate a 95% confidence interval using

Statistic ± 2 ⋅ SE

where SE denotes the standard error of the statistic estimated from
the bootstrap distribution.

42The number of bootstrap samples you find may depend on the speed of your technology.
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Example 3.22
Use the standard errors found in previous examples to find and interpret 95% con-
fidence intervals for

(a) the mean Atlanta commute time, and

(b) the proportion of peanuts in mixed nuts.

In addition, give the margin of error for both intervals.

Solution (a) The sample mean from the original sample of 500 Atlanta commuters is x =
29.11 minutes and the estimated standard error for this mean from the bootstrap
distribution in Figure 3.16 is 0.915. Going two standard errors on either side of
the sample statistic gives

x ± 2 ⋅ SE

29.11 ± 2(0.915)
29.11 ± 1.83

or an interval from 29.11 − 1.83 = 27.28 minutes to 29.11 + 1.83 = 30.94 minutes.
The margin of error is 1.83 minutes, and we are 95% confident that the mean
commute time for all Atlanta commuters is between 27.28 minutes and 30.94
minutes.

(b) The original sample has a proportion of p̂ = 0.52 peanuts, and the estimated
standard error for this proportion from Example 3.21 is 0.050. Going two stan-
dard errors on either side of the estimate gives

p̂ ± 2 ⋅ SE

0.52 ± 2(0.050)
0.52 ± 0.10

or an interval from 0.52 − 0.10 = 0.42 to 0.52 + 0.10 = 0.62. The margin of error
is 0.10, and we are 95% confident that between 42% and 62% of all mixed nuts
from this company are peanuts.

We now have a very powerful technique for constructing confidence intervals
for a wide variety of parameters. As long as we can do the following:

• Find a sample statistic to serve as a best estimate for the parameter.

• Compute bootstrap statistics for many samples with replacement from the original
sample.

• Estimate the standard error from the bootstrap distribution.

• Check that the bootstrap distribution is reasonably symmetric and bell-shaped.

Then we can use statistic ± 2 ⋅ SE to estimate a 95% confidence interval for the
parameter.

But what about other confidence levels, like 90% or 99%? We explore an alter-
nate method for obtaining a confidence interval from a bootstrap distribution in the
next section, which will address this question and provide even more general results.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Describe how to select a bootstrap sample to compute a bootstrap
statistic

• Recognize that a bootstrap distribution tends to be centered at the value
of the original statistic

• Use technology to create a bootstrap distribution

• Estimate the standard error of a statistic from a bootstrap distribution

• Construct a 95% confidence interval for a parameter based on a sample
statistic and the standard error from a bootstrap distribution

Exercises for Section 3.3

SKILL BUILDER 1
In Exercises 3.80 and 3.81, a sample is given. Indi-
cate whether each option is a possible bootstrap
sample from this original sample.

3.80 Original sample: 17, 10, 15, 21, 13, 18.
Do the values given constitute a possible bootstrap
sample from the original sample?

(a) 10, 12, 17, 18, 20, 21

(b) 10, 15, 17

(c) 10, 13, 15, 17, 18, 21

(d) 18, 13, 21, 17, 15, 13, 10

(e) 13, 10, 21, 10, 18, 17

3.81 Original sample: 85, 72, 79, 97, 88.
Do the values given constitute a possible bootstrap
sample from the original sample?

(a) 79, 79, 97, 85, 88

(b) 72, 79, 85, 88, 97

(c) 85, 88, 97, 72

(d) 88, 97, 81, 78, 85

(e) 97, 85, 79, 85, 97

(f) 72, 72, 79, 72, 79

SKILL BUILDER 2
In Exercises 3.82 to 3.85, use the bootstrap distri-
butions in Figure 3.19 to estimate the value of the
sample statistic and the standard error, and then use
this information to give a 95% confidence interval.
In addition, give notation for the parameter being
estimated.

3.82 The bootstrap distribution in Figure 3.19(a),
generated for a sample proportion

3.83 The bootstrap distribution in Figure 3.19(b),
generated for a sample mean

3.84 The bootstrap distribution in Figure 3.19(c),
generated for a sample correlation

3.85 The bootstrap distribution in Figure 3.19(d),
generated for a difference in sample means

SKILL BUILDER 3
Exercises 3.86 to 3.89 give information about the
proportion of a sample that agrees with a cer-
tain statement. Use StatKey or other technology to
estimate the standard error from a bootstrap dis-
tribution generated from the sample. Then use the
standard error to give a 95% confidence interval
for the proportion of the population to agree with
the statement. StatKey tip: Use “CI for Single Pro-
portion” and then “Edit Data” to enter the sample
information.

3.86 In a random sample of 100 people, 35 agree.

3.87 In a random sample of 250 people, 180 agree.

3.88 In a random sample of 400 people, 112 agree
and 288 disagree.

3.89 In a random sample of 1000 people, 382 peo-
ple agree, 578 disagree, and 40 are undecided.

3.90 Hitchhiker Snails A type of small snail is
very widespread in Japan, and colonies of the snails
that are genetically similar have been found very
far apart. Scientists wondered how the snails could
travel such long distances. A recent study43 provides

43Yong, E., “The Scatological Hitchhiker Snail,” Discover,
October 2011, 13.
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Figure 3.19 Four bootstrap distributions

the answer. Biologist Shinichiro Wada fed 174 live
snails to birds and found that 26 of the snails were
excreted live out the other end. The snails appar-
ently are able to seal their shells shut to keep the
digestive fluids from getting in.

(a) What is the best estimate for the proportion of
all snails of this type to live after being eaten by
a bird?

(b) Figure 3.20 shows a bootstrap distribution
based on this sample. Estimate the standard
error.
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Figure 3.20 Bootstrap distribution of the sample
proportion of snails that live

(c) Use the standard error from part (b) to find and
interpret a 95% confidence interval for the pro-
portion of all snails of this type to live after
being eaten by a bird.

(d) Using your answer to part (c), is it plausible that
20% of all snails of this type live after being
eaten by a bird?

3.91 Are You Distracted by Off-Task Technology
in Class? Technology can be a wonderful resource
in education, but when technology such as laptops
or phones are used by students during class for rea-
sons not related to class (called off-task use), its use
can hurt learning and be distracting.44 In a study45

conducted at a Canadian university, students were
asked if they were often distracted during class by
the off-task use of technology.We are estimating the
proportion of students to answer yes to this ques-
tion, and a bootstrap distribution created from the
sample results is shown in Figure 3.21. Using this
bootstrap distribution:

(a) What is the best estimate of the proportion of
all students who would answer yes to this ques-
tion?

(b) Estimate the standard error for the estimate.

44We investigate the impact of off-task technology use on learn-
ing in Exercise 6.237.
45Neiterman E and Zaza C, “A Mixed Blessing? Students’ and
Instructors’ Perspectives about Off-Task Technology Use in the
Academic Classroom,” The Canadian Journal for the Scholarship
of Teaching and Learning, 10(1), May 31, 2019.



258 CHA P T E R 3 Confidence Intervals

0.49

25

0

50

75

100

125

150

200

175

0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58

Figure 3.21 What proportion are distracted by laptops and phones?

(c) Use the results of parts (a) and (b) to find
and interpret a 95% confidence interval for the
proportion of students who feel they are often
distracted during class by the off-task use of
technology. (Although students in the study rec-
ognize that this has a negative impact on learn-
ing, most say they continue to use laptops and
phones for off-task purposes regardless.)

3.92 Can You Tell a Story about Your Parents?
“More than 90% of teenagers and young adults
can retell family stories when asked, even if they
seemed uninterested when the stories were told.”46

The quote refers to a study47 in which young adults
in the US were asked to recall a story a parent had
told them about a time when the parent was young.
Of the 260 young adults (around age 18) who were
asked, 244 of them were able to recall such a story.

(a) Use StatKey or other technology to find the
standard error from a bootstrap distribution,
and then use the standard error to find and

46Shellenbarger S, “The Secret Benefits of Retelling Family Sto-
ries,” The Wall Street Journal, November 2019.
47Merrill N, “Functions of Parental Intergenerational Narratives
Told by Young People,” Topics in Cognitive Science, June 21,
2018.

interpret a 95% confidence interval for the pro-
portion of US young adults who can recall a
story a parent told them about when the parent
was young.

(b) The quote at the start of this exercise claims
that the proportion who can recall such a family
story is “more than 90%.” Given the plausible
values of the proportion in the confidence inter-
val from part (a), can we be confident that this
claim is correct?

3.93 Survey on Biggest Problems for US Teens
A recent study48 found that anxiety/depression
topped the list of problems teens see among their
peers. In the representative sample of 920 US teens
(ages 13 to 17), 644 said that anxiety/depression is
a major problem among people their age in the
community where they live. Use StatKey or other
technology to find the standard error from a boot-
strap distribution, and then use the standard error
to find and interpret a 95% confidence interval for
the proportion of US teens who believe anxiety and
depression are major problems for their peers.

48Horowitz JM and Graf N, “Most U.S. Teens See Anxiety and
Depression as a Major Problem Among Their Peers,” pewre-
search.org, February 20, 2019.
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3.94 Do Teen Problems Differ Based on Income
Level? Exercise 3.93 introduces a survey that asked
US teens whether they consider anxiety/depression
a major problem among their peers. Table 3.10
shows the results of whether teens said it was a
major problem or not, based on household income
level of the teens. We are interested in estimating
the difference in proportion who think it is a major
problem, between the two groups.

(a) What proportion of teens in households with
income below $75,000 think it is a major prob-
lem? What proportion of teens in households
making more than $75,000 think it is a major
problem?

(b) Give notation and the value of the relevant sam-
ple statistic.

(c) Use StatKey or other technology to find the
standard error for this statistic using a bootstrap
distribution.

(d) Use the standard error to find a 95% confidence
interval for the difference in proportions.

(e) Can we conclude that there is a difference
in the proportion believing anxiety/depression
is a major problem for their peers, between
those with household income below $75,000
and those with income above that level? Justify
your answer using the confidence interval.

Table 3.10 Are anxiety and depression
major problems for teens?

Income Major Not major Total
problem problem

Less than $75,000 386 150 536
More than $75,000 258 126 384
Total 644 276 920

3.95 Ants on a Sandwich How many ants will
climb on a piece of a peanut butter sandwich left on
the ground near an ant hill? To study this, a student
in Australia left a piece of a sandwich for several
minutes, then covered it with a jar and counted the
number of ants. He did this eight times, and the
results are shown in Table 3.11. (In fact, he also con-
ducted an experiment to see if there is a difference
in number of ants based on the sandwich filling. The
details of that experiment are given in Chapter 8,
and the full dataset is in SandwichAnts.)49

49Mackisack, M., “Favourite Experiments: An Addendum to
What Is the Use of Experiments Conducted by Statistics
Students?,” Journal of Statistics Education, 1994, http://www
.amstat.org/publications/jse/v2n1/mackisack.supp.html.

Table 3.11 Number of ants on a sandwich

Number of ants 43 59 22 25 36 47 19 21

(a) Find the mean and standard deviation of the
sample.

(b) Describe how we could use eight slips of paper
to create one bootstrap statistic. Be specific.

(c) What do we expect to be the shape and center
of the bootstrap distribution?

(d) What is the population parameter of interest?
What is the best estimate for that parameter?

(e) A bootstrap distribution of 5000 bootstrap
statistics gives a standard error of 4.85. Use the
standard error to find and interpret a 95% con-
fidence interval for the parameter defined in
part (d).

3.96 Brain Hippocampal Size Exercise 2.165
introduces a study examining the relationship
between football playing and hippocampal volume,
in 𝜇L, in the brain. We use the n = 25 participants
in the control group to estimate average brain
hippocampus volume for all non-football playing
people. Use the dotplots in Figure 3.22 to answer
the following questions.

(a) Two dotplots are shown: one shows the origi-
nal data and one shows a bootstrap distribution
from the data. Which is which?

(b) Estimate the samplemean hippocampal volume
based on the graphs. Give the correct notation
and the value.

(c) Use the graphs to roughly estimate the standard
error if we use this sample mean to estimate hip-
pocampal volume.

(d) Does the standard deviation of the original data
appear to be larger or smaller than the standard
error?

(e) Use the estimated mean and the estimated stan-
dard error to find and interpret a rough 95%
confidence interval for the mean hippocampal
volume.

3.97 Rats with Compassion The phrase “You dirty
rat” does rats a disservice. In a recent study,50

rats showed compassion that surprised scientists.
Twenty-three of the 30 rats in the study freed
another trapped rat in their cage, even when
chocolate served as a distraction and even when
the rats would then have to share the chocolate

50Bartal, I.B., Decety, J., and Mason, P., “Empathy and Pro-
Social Behavior in Rats,” Science, 2011; 224(6061):1427–30.
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Figure 3.22 Which is the bootstrap distribution?

with their freed companion. (Rats, it turns out, love
chocolate.) Rats did not open the cage when it was
empty or when there was a stuffed animal inside,
only when a fellow rat was trapped. We wish to use
the sample to estimate the proportion of rats that
would show empathy in this way. The data are avail-
able in the dataset CompassionateRats.

(a) Give the relevant parameter and its best
estimate.

(b) Describe how to use 30 slips of paper to create
one bootstrap statistic. Be specific.

(c) Use StatKey or other technology to create a
bootstrap distribution. Describe the shape and
center of the bootstrap distribution. What is the
standard error?

(d) Use the standard error to find and interpret a
95% confidence interval for the proportion of
rats likely to show empathy.

3.98 Are Female Rats More Compassionate Than
Male Rats? Exercise 3.97 describes a study in which
rats showed compassion by freeing a trapped rat. In
the study, all six of the six female rats showed com-
passion by freeing the trapped rat while 17 of the 24
male rats did so. Use the results of this study to give
a best estimate for the difference in proportion of
rats showing compassion, between female rats and
male rats. Then use StatKey or other technology to
estimate the standard error51 and use it to compute
a 95% confidence interval for the difference in pro-
portions. Use the interval to determine whether it
is plausible that male and female rats are equally
compassionate (i.e., that the difference in propor-
tions is zero). The data are available in the dataset
CompassionateRats.

3.99 Teens Are More Likely to Send Text Mes-
sages Exercise 3.30 on page 229 compares studies
which measure the proportions of adult and teen

51In practice we should raise a caution here, since the proportion
for female rats will be p̂ = 1 for every bootstrap sample.

cell phone users that send/receive text messages.
The summary statistics are repeated below:

Group Sample Size Proportion
Teen nt = 800 p̂t = 0.87
Adult na = 2252 p̂a = 0.72

Figure 3.23 shows a distribution for the differences
in sample proportions (p̂t − p̂a) for 5000 bootstrap
samples (taking 800 values with replacement from
the original teen sample and 2252 from the adults).
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Figure 3.23 Bootstrap difference in sample
proportions of teen and adult cell phone users who text

(a) Based on the bootstrap distribution, which is
the most reasonable estimate of the standard
error for the difference in proportions: SE =
0.015, 0.030, 0.050, 0.10, or 0.15? Explain the
reason for your choice.

(b) Using your choice for the SE estimate in
part (a), find and interpret a 95% confidence
interval for the difference in proportion of teen
and adult cell phone users who send/receive text
messages.

3.100 Tea, Coffee, and Your Immune System
Researchers suspect that drinking tea might
enhance the production of interferon gamma,
a molecule that helps the immune system fight
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bacteria, viruses, and tumors. A recent study52

involved 21 healthy people who did not normally
drink tea or coffee. Eleven of the participants were
randomly assigned to drink five or six cups of tea a
day, while 10 were asked to drink the same amount
of coffee. After two weeks, blood samples were
exposed to an antigen and production of interferon
gamma was measured.53 The results are shown in
Table 3.12 and are available in ImmuneTea. We are
interested in estimating the effect size, the increase
in average interferon gamma production for drink-
ing tea when compared to coffee. Use StatKey or
other technology to estimate the difference in mean
production for tea drinkers minus coffee drinkers.
Give the standard error for the difference and a
95% confidence interval. Interpret the result in
context.

Table 3.12 Immune system response in tea and
coffee drinkers

Tea 5 11 13 18 20 47
48 52 55 56 58

Coffee 0 0 3 11 15 16
21 21 38 52

3.101 Automobile Depreciation For a random sam-
ple of 20 automobile models, we record the value
of the model as a new car and the value after the
car has been purchased and driven 10 miles.54 The
difference between these two values is a measure
of the depreciation on the car just by driving it
off the lot. Depreciation values from our sample of
20 automobile models can be found in the dataset
CarDepreciation.
(a) Find the mean and standard deviation of the

Depreciation amounts in CarDepreciation.
(b) Use StatKey or other technology to create a

bootstrap distribution of the sample mean of
depreciations. Describe the shape, center, and
spread of this distribution.

(c) Use the standard error obtained in your boot-
strap distribution to find and interpret a 95%

52Adapted from Kamath et. al., “Antigens in Tea-Beverage
Prime Human V𝛾2V𝛿2 T Cells in vitro and in vivo for Memory
and Non-memory Antibacterial Cytokine Responses,” Proceed-
ings of the National Academy of Sciences, May 13, 2003.
53To be specific, peripheral blood mononuclear cells were cul-
tured with the antigen alkylamine ethylalamine in an enzyme
linked immunospot assay to the frequency of interferon-gamma-
producing cells.
54New and used automobile costs were determined using 2015
models on kellybluebook.com.

confidence interval for the mean amount a new
car depreciates by driving it off the lot.

3.102 Correlation between Price and Depreciation
in Automobiles The data in CarDepreciation given
in Exercise 3.101 contains information on bothNew
price and Depreciation for a sample of 20 automo-
bile models.

(a) Find the correlation between New price and
Depreciation from the original sample of 20
automobiles.

(b) Use StatKey or other technology to create
a bootstrap distribution of correlations and
report the standard error.

(c) Using the standard error, create and interpret
a 95% confidence interval for the correlation
between New price and Depreciation of auto-
mobile models.

3.103 Headaches and Handedness A study was
conducted to investigate the relationship between
severe headaches and being left- or right-handed.55

(Incidentally, Lisa Kudrow, who played Phoebe
Buffay on the hit sitcom “Friends,” is an author
on this study.) Of 273 participants with cluster
headaches, 24 were left-handed. Of 477 participants
with migraine headaches, 42 were left-handed.

(a) Give an estimate for the proportion of cluster
headache sufferers who are left-handed.

(b) Use StatKey or other technology to construct
and interpret a 95% confidence interval for the
proportion of cluster headache sufferers who
are left-handed.

(c) Give an estimate for the proportion of migraine
sufferers who are left-handed.

(d) Use StatKey or other technology to construct
and interpret a 95% confidence interval for the
proportion of migraine sufferers who are left-
handed.

(e) Compare your confidence intervals in parts (b)
and (d). Which is more narrow? Explain why.

SYNCHRONIZED DANCING, ANYONE?
Exercises 3.104 to 3.109 use data from a study
designed to examine the effect of doing synchro-
nizedmovements (such as marching in step or doing
synchronized dance steps) and the effect of exertion
on many different variables, such as pain tolerance
and attitudes toward others. In the study, 264 high
school students in Brazil were randomly assigned to

55Messinger, H.B., Messinger, M.I., Kudrow, L., and Kudrow,
L.V. “Handedness and headache.” Cephalalgia, 1994; 14:64–67
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one of four groups reflecting whether or not move-
ments were synchronized (Synch= yes or no) and
level of activity (Exertion= high or low).56 Partici-
pants ratedhowclose theyfelt toothers in theirgroup
bothbefore (CloseBefore) andafter (CloseAfter) the
activity, using a 7-point scale (1=least close to 7=most
close).Participantsalsohadtheirpaintolerancemea-
sured using pressure from a blood pressure cuff, by
indicating when the pressure became too uncom-
fortable (up to a maximum pressure of 300 mmHg).
Highernumbers for thisPainTolerancemeasure indi-
cate higher pain tolerance. The full dataset is avail-
able in SynchronizedMovement. For each of the fol-
lowing problems:
(a) Give notation for the quantity we are estimat-

ing, and define any relevant parameters.

(b) Use StatKey or other technology to find the
value of the sample statistic. Give the correct
notation with your answer.

(c) Use StatKey or other technology to find the
standard error for the estimate.

(d) Use the standard error to give a 95% confidence
interval for the quantity we are estimating.

(e) Interpret the confidence interval in context.

3.104 How Close Do You Feel to Others? Use the
closeness ratings before the activity (CloseBefore)
to estimate the mean closeness rating one person
would assign to others in a group.

3.105 Does Synchronization Increase Feelings of
Closeness?Use the closeness ratings given after the
activity (CloseAfter) to estimate the difference in
mean rating of closeness between those who have
just done a synchronized activity and those who do
a non-synchronized activity.

3.106 Does Synchronization Boost Pain Tolerance?
Use the pain tolerance ratings (PainTolerance) after
the activity to estimate the difference in mean
pain tolerance between those who just completed
a synchronized activity and those who did a non-
synchronized activity.

3.107 Does Exertion Boost Pain Tolerance? Use
the pain tolerance ratings after the activity to esti-
mate the difference in mean pain tolerance between
those who just completed a high exertion activity
and those who completed a low exertion activity.

3.108 What Proportion Go to Maximum Pressure?
We see that 75 of the 264 people in the study
allowed the pressure to reach its maximum level of
300 mmHg, without ever saying that the pain was

56Tarr, B., Launay, J., Cohen, E., and Dunbar, R., “Synchrony
and exertion during dance independently raise pain thresh-
old and encourage social bonding,” Biology Letters, 11(10),
October 2015.

too much (MaxPressure=yes). Use this information
to estimate the proportion of people who would
allow the pressure to reach its maximum level.

3.109 Are Males or Females More Likely to Go to
Maximum Pressure? The study recorded whether
participants were female or male (Sex= F orM), and
we see that 33 of the 165 females and 42 of the 99
males allowed the pressure to reach its maximum
level of 300 mmHg after treatment, without ever
saying that the pain was too much. Use this infor-
mation to estimate the difference in proportion of
people who would allow the pressure to reach its
maximum level after treatment, between females
and males.

3.110 NHL Penalty Minutes Table 3.4 on page 226
shows the number of points scored and penalty
minutes for 26 ice hockey players on the Ottawa
Senators NHL team for the 2018–2019 season.
The data are also stored in OttawaSenators2019.
Assume that we consider these players to be a sam-
ple of all NHL players.

(a) Create a dotplot of the distribution of penalty
minutes (PenMin) for the original sample of
26 players. Comment on the shape, paying par-
ticular attention to skewness and possible out-
liers.

(b) Find the mean and standard deviation of the
penalty minute values for the original sample.

(c) Use StatKey or other technology to construct
a bootstrap distribution for the mean penalty
minutes for samples of size n = 26 NHL players.
Comment on the shape of this distribution,
especially compared to the shape of the original
sample.

(d) Compute the standard deviation of the boot-
strap means using the distribution in part (c).
Compare this value to the standard deviation of
the penalty minutes in the original sample.

(e) Construct a 95% confidence interval for the
mean penalty minutes of NHL players.

(f) Give a reason why it might not be reasonable to
use the players on one team as a sample of all
players in a league.

3.111 Standard Deviation of NHL Penalty
Minutes Exercise 3.110 describes data on the num-
ber of penalty minutes for Ottawa Senators NHL
players. The sample has a fairly large standard devi-
ation, s = 24.92 minutes. Use StatKey or other tech-
nology to create a bootstrap distribution, estimate
the standard error, and give a 95% confidence inter-
val for the standard deviation of penalty minutes for
NHL players. Assume that the data in OttawaSen-
ators2019 can be viewed as a reasonable sample of
all NHL players.
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3.4BOOTSTRAP CONFIDENCE INTERVALS USING
PERCENTILES

Confidence Intervals Based on Bootstrap Percentiles
If we were only concerned with 95% confidence intervals and always had a sym-
metric, bell-shaped bootstrap distribution, the rough Statistic ± 2 ⋅ SE interval we
computed in Section 3.3 would probably be all that we need. But we might have a
bootstrap distribution that is symmetric but subtly flatter (or steeper) so that more
(or less) than 95% of bootstrap statistics are within two standard errors of the cen-
ter. Or we might want more (say 99%) or less (perhaps 90%) confidence that the
method will produce a successful interval.

Fortunately, the bootstrap distribution provides a method to address both of
these concerns. Rather than using the 95% rule and ±2 ⋅ SE as a yardstick to esti-
mate the middle 95% of the bootstrap statistics, we can use the percentiles of the
bootstrap distribution to locate the actual middle 95%! If we want the middle 95%
of the bootstrap distribution (the values that are most likely to be close to the
center), we can just chop off the lowest 2.5% and highest 2.5% of the bootstrap
statistics to produce an interval.

Example 3.23
Figure 3.16 on page 251 shows a bootstrap distribution of sample means based on
a sample of commute times (in minutes) for 500 residents of metropolitan Atlanta.
That figure is reproduced in Figure 3.24 where we also indicate the boundaries for
the middle 95% of the data, leaving 2.5% of the values in each tail. Use these bound-
aries to find and interpret a 95% confidence interval for Atlanta commute times.

Solution The 2.5%-tile of the bootstrap distribution is at 27.43 minutes and the 97.5%-tile
is at 31.05 minutes. Thus the 95% confidence interval for mean commute time in
Atlanta, based on the original sample, goes from 27.43 to 31.05 minutes. We are 95%
sure that the mean commute time for all Atlanta commuters is between 27.43 and
31.05 minutes.

Figure 3.24 Middle
95% of a bootstrap
distribution for means of
Atlanta commute times
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27.43 31.05

28 29

SampleMean
30 31 32

95%

If we could actually poll every single commuter in Atlanta and find the commute
times and calculate the population mean, the resulting value would either lie within
the 95% confidence interval of 27.43 to 31.05 or it would not. Remember that when
we say we are “95% sure,” we just mean that 95% of intervals constructed using this
method will contain the population parameter.

The 95% confidence interval calculated based on percentiles in Example 3.23
is similar to the 95% confidence interval based on two standard error bounds cal-
culated in Example 3.22 that went from 27.28 to 30.94 minutes. If the bootstrap
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distribution is symmetric and bell-shaped, the two methods give approximately the
same results for a 95% confidence interval.

Example 3.24
Use the bootstrap distribution in Figure 3.24 to estimate 99% and 90% confidence
intervals for the mean Atlanta commute time.

Solution Since the bootstrap distribution used 1000 samples, the middle 99% of the values
would include 990 bootstrap means, leaving just five values in each of the tails.
In Figure 3.24 this would put boundaries near 27.0 and 31.6. For a 90% confidence
interval we need the 5%-tile and 95%-tile, leaving roughly 50 values in each tail. This
gives a 90% confidence interval for mean commute times between about 27.7 and
30.7 minutes. More precise values for the percentiles found with computer software
are shown in Figure 3.25.

Figure 3.25 99% and
90% confidence intervals
for mean commute time
in Atlanta
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Figures 3.24 and 3.25 make it clear that to get more confidence that our interval
contains the true mean, we need to use a wider interval. This is generally the case
for any particular sample.

Why don’t we look for a 100% confidence interval?Wemight be 100% sure that
the mean commute time in Atlanta is between 0 and 200 minutes, but is that interval
of any practical use? In general we need to balance a reasonable chance of capturing
the parameter of interest with a need to narrow in on where the parameter might be.
That is why we commonly use confidence levels like 90%, 95%, or 99% depending
on the trade-off we are willing to make between a precise, narrow interval and a
good chance that it succeeds.

Constructing a Confidence Interval from the Percentiles of a
Bootstrap Distribution

If the bootstrap distribution is approximately symmetric, we construct
a confidence interval by finding the percentiles in the bootstrap dis-
tribution so that the proportion of bootstrap statistics between the
percentiles matches the desired confidence level.

Finding Confidence Intervals for Many Different
Parameters
These procedures for finding bootstrap confidence intervals are quite flexible and
can be applied in a wide variety of different situations and with many different
parameters. The basic procedure is very straightforward. As long as we can construct
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a reasonable bootstrap distribution, we can use it to estimate a confidence interval.
The tools in StatKey automate this process, as do many statistical software packages.

The process of creating bootstrap samples can require a bit more thought when
the sampling process is more involved. We should always create bootstrap statistics
as similar as possible to the relevant statistic from the original data, as illustrated in
the next two examples.

Example 3.25
Who Exercises More: Males or Females?

Fifty students were asked how many hours a week they exercise, and the results are
included in the dataset ExerciseHours. Figure 3.26 shows comparative boxplots of
the number of hours spent exercising, and we compute the summary statistics to
be xM = 12.4 and sM = 8.80 with nM = 20 for the males and xF = 9.4 and sF = 7.41
with nF = 30 for the females. How big might the difference in mean hours spent
exercising be, between males and females?

(a) Use the sample to give a best estimate for the difference in mean hours spent
exercising between males and females.

(b) Describe the process we would use to compute one bootstrap statistic from the
sample.

(c) Use StatKey or other technology to find and interpret a 95% confidence interval
for the difference in mean number of hours spent exercising.

Figure 3.26 Number of
hours a week spent
exercising: males and
females
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Solution (a) We estimate the difference in mean exercise times between males and females
(𝜇M − 𝜇F) with the difference in the sample means, xM − xF = 12.4 − 9.4 = 3.0
hours per week. In other words, we estimate that males spend, on average, three
more hours a week exercising than females spend.

(b) To match the original data as closely as possible, for each bootstrap sample we
take 20 male times with replacement from the original 20 male values and 30
female times with replacement from the original 30 female values. To compute
the bootstrap statistic, we compute the sample means for males and females, and
find the difference in the two means, mimicking the statistic found in the original
sample.
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Figure 3.27 Bootstrap
distribution for difference
in mean time spent
exercising
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(c) Figure 3.27 displays a dotplot from StatKey showing these differences in means
based on 3000 bootstrap samples.

Using the 2.5%-tile and 97.5%-tiles from the bootstrap distribution in
Figure 3.27 we get a 95% confidence interval for the difference in mean exercise
hours between men and women from −1.717 hours to 7.633 hours.

Since the bootstrap distribution is relatively symmetric and bell-shaped, we
can also (or instead) use its standard error to find a 95% confidence interval.
The standard deviation for the bootstrap statistics, found in the upper corner of
Figure 3.27, is 2.341, so we estimate the standard error of the statistic xM − xF to
be SE = 2.341. We find an interval estimate for the difference in the population
means with

Statistic ± 2 ⋅ SE

(xM − xF ) ± 2 ⋅ SE

(12.4 − 9.4) ± 2 ⋅ (2.341)
3.0 ± 4.68

−1.68 to 7.68

While this is not exactly the same as the interval we obtained from the per-
centiles, there is not much practical difference between them.

To interpret the percentile interval, we are 95% sure that the difference in
mean time spent exercising between males and females is between −1.72 and
7.63 hours per week. To make the direction of the difference more explicit,
we might revise the interpretation to say that we are 95% sure that the mean
exercise time for males is between 1.72 hours less and 7.63 hours more than
mean exercise time for females. Since 0 is within this interval and thus a
plausible value for 𝜇M − 𝜇F , it is plausible that there is no difference in mean
exercise times between males and females.
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How do price and mileage correlate for used Mustangs?

D A T A 3 . 4 Mustang Prices
A statistics student, Gabe McBride, was interested in prices for used Mustang
cars being offered for sale on an Internet site. He sampled 25 cars from the
website and recorded the age (in years), mileage (in thousands of miles), and
asking price (in $1000s) for each car in his sample. The data are stored in
MustangPrice and the scatterplot in Figure 3.28 shows the relationship between
theMiles on each car and the Price. Not surprisingly, we see a strong negative
association showing the price of a used Mustang tends to be lower if it has been
driven for more miles. The correlation between Price andMiles for this sample
is r = −0.825. ◼

Figure 3.28 Price (in
$1000s) and mileage (in
1000s) for a sample of
25 used Mustang cars
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Example 3.26
(a) Describe how we might create one bootstrap statistic for the correlation

between price and mileage of used Mustang cars, using the data described in
Data 3.4.

(b) Figure 3.29 shows a dotplot of the correlations between Price andMiles for each
of 5000 bootstrap samples from the MustangPrice data, and Table 3.13 gives
some percentiles from this bootstrap distribution. Use this information to cre-
ate a 98% confidence interval for the correlation between Price and Miles for
the population of all Mustangs for sale at this website. Interpret the interval in
context.

Figure 3.29 Bootstrap
correlations between
Price and Miles for 5000
samples of size 25

–1.00 –0.95 –0.90 –0.85 –0.80
r

–0.75 –0.70 –0.65 –0.60

Table 3.13 Percentiles from a bootstrap distribution of Mustang correlations

0.5% 1.0% 2.0% 2.5% 5.0% 95.0% 97.5% 98.0% 99.0% 99.5%

Percentile −0.945 −0.940 −0.931 −0.928 −0.919 −0.741 −0.723 −0.717 −0.705 −0.689

Solution (a) Because the correlation is based on ordered pairs of data (price and mileage),
we compute a bootstrap statistic by sampling (with replacement) ordered pairs
from the original sample. We select 25 ordered pairs in this way (to match the
original sample size) and compute the correlation of the 25 ordered pairs for one
bootstrap statistic.

(b) For a 98% confidence interval we need to take 1% from each tail of the boot-
strap distribution, so we use the 1%-tile and 99%-tile from Table 3.13. This gives
us an interval from −0.940 to −0.705. Based on this sample of 25 Mustangs, we
are 98% sure that the correlation between price and mileage for all used Mus-
tangs for sale at this Internet site is somewhere between −0.940 and −0.705.

Another Look at the Effect of Sample Size
In Example 3.22, we calculated a 95% confidence interval for the proportion of
peanuts in mixed nuts based on a sample proportion of p̂ = 0.52 and a sample size of
n = 100. The next example investigates how the result changes if we have the same
sample proportion but a larger sample size.



3.4 Bootstrap Confidence Intervals Using Percentiles 269

Example 3.27
Suppose a sample of size n = 400 mixed nuts contains 208 peanuts, so the proportion
of peanuts is p̂ = 0.52. Use this sample data to compute a 95% confidence interval
for the proportion of peanuts. Compare your answer to the 95% confidence interval
of 0.42 to 0.62 based on a sample of size n = 100 given in Example 3.22.

Solution Figure 3.30 shows a dotplot of the bootstrap proportions for 1000 simulated samples
of size 400. We see that a 95% confidence interval for the proportion of peanuts goes
from 0.472 to 0.568. This confidence interval for a sample size of 400 is considerably
narrower than the interval based on a sample size of 100; in fact, it is about half the
width. The margin of error has gone from about 0.10 to about 0.05.

Figure 3.30 Bootstrap
proportions for 1000
samples simulated from a
sample with p̂ = 0.52 and
n = 400
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At first glance the bootstrap distribution for proportions based on samples of
size n = 400 might look similar to Figure 3.18, which used samples of size n = 100.
However, pay close attention to the scale for the horizontal axis. As we saw with
the sampling distribution, when the sample size is larger, the bootstrap propor-
tions tend to be closer to the center proportion of 0.52. This is consistent with the
fact that the estimated standard error of the proportion based on the larger sam-
ples is SE = 0.024, about half of the standard error when n = 100. We improve
the precision of our estimate, and reduce the width of our interval, by taking a
larger sample.

Larger Sample Size Increases Precision

A larger sample size tends to increase the precision of the estimate,
giving a smaller standard error and reducing the width of a confidence
interval.



270 CHA P T E R 3 Confidence Intervals

One Caution on Constructing Bootstrap Confidence
Intervals

Example 3.28
Bootstrap Intervals Don’t Always Work Well

Use StatKey or other technology to create a bootstrap distribution for the median
price of Mustangs using the sample of 25 cars inMustangPrice. Explain why it would
not be appropriate to use the bootstrap distribution to construct a 95% confidence
interval for the median price of mustangs.

Solution We create 5000 bootstrap samples, each with 25 cars selected from the original sam-
ple, and find the median price for each sample. Figure 3.31 shows a dotplot of the
5000 bootstrap medians. While the mechanics of constructing a confidence inter-
val from this bootstrap distribution appear very straightforward, it is important to
always pause first and take a good look at the bootstrap distribution. This plot looks
quite different from the bootstrap distributions we have seen in other examples.
Notice that the median for 25 data points is always one of the data values, so the
choices for bootstrap medians are limited to the original 25 prices. For example,
a percentile can be at prices of 16 or 21, but never in between. When using the
percentiles of the bootstrap distribution or using the ±2 ⋅ SE method, we need to
make sure that the bootstrap distribution is reasonably symmetric around the origi-
nal statistic and reasonably bell-shaped. In this case, it is not appropriate to use this
bootstrap distribution to find a confidence interval.

Figure 3.31 Bootstrap
medians for Mustang
prices (n = 25)
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You should always look at a plot of the bootstrap distribution. If the plot is poorly
behaved (for example, heavily skewed or isolated clumps of values), you should
not have much confidence in the intervals it produces. Fortunately, for most of the
statistics we consider, the bootstrap distributions work well.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Construct a confidence interval based on the percentiles of a bootstrap
distribution

• Describe the process of constructing a bootstrap statistic for many dif-
ferent parameters

• Explain how the width of an interval is affected by the desired level of
confidence and the sample size

• Recognize when it is appropriate to construct a bootstrap confidence
interval using percentiles or the standard error
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Exercises for Section 3.4

SKILL BUILDER 1
3.112 To create a confidence interval from a boot-
strap distribution using percentiles, we keep the
middle values and chop off a certain percent from
each tail. Indicate what percent of values must be
chopped off from each tail for each confidence level
given.
(a) 95%

(b) 90%

(c) 98%

(d) 99%

SKILL BUILDER 2
3.113 To create a confidence interval from a boot-
strap distribution using percentiles, we keep the
middle values and chop off some number of the low-
est values and the highest values. If our bootstrap
distribution contains values for 1000 bootstrap sam-
ples, indicate how many we chop off at each end for
each confidence level given.

(a) 95%

(b) 90%

(c) 98%

(d) 99%

SKILL BUILDER 3
In estimating the mean score on a fitness exam, we
use an original sample of size n = 30 and a bootstrap
distribution containing 5000 bootstrap samples to
obtain a 95% confidence interval of 67 to 73. In
Exercises 3.114 to 3.119, a change in this process is
described. If all else stays the same, which of the fol-
lowing confidence intervals (A, B, or C) is the most
likely result after the change:

A. 66 to 74 B. 67 to 73 C. 67.5 to 72.5

3.114 Using the data to find a 99% confidence
interval.

3.115 Using the data to find a 90% confidence
interval.

3.116 Using an original sample of size n = 45.

3.117 Using an original sample of size n = 16.

3.118 Using 10,000 bootstrap samples for the
distribution.

3.119 Using 1000 bootstrap samples for the
distribution.

SKILL BUILDER 4
Exercises 3.120 to 3.123 give information about the
proportion of a sample that agree with a certain
statement. Use StatKey or other technology to find
a confidence interval at the given confidence level
for the proportion of the population to agree, using
percentiles from a bootstrap distribution. StatKey
tip: Use “CI for Single Proportion” and then “Edit
Data” to enter the sample information.

3.120 Find a 95% confidence interval if 35 agree in
a random sample of 100 people.

3.121 Find a 95% confidence interval if 180 agree in
a random sample of 250 people.

3.122 Find a 90% confidence interval if 112 agree
and 288 disagree in a random sample of 400 people.

3.123 Find a 99% confidence interval if, in a ran-
dom sample of 1000 people, 382 agree, 578 disagree,
and 40 can’t decide.

3.124 IQ ScoresA sample of 10 IQ scores was used
to create the bootstrap distribution of samplemeans
in Figure 3.32.

(a) Estimate the mean of the original sample of IQ
scores.

(b) The distribution was created using 1000 boot-
strap statistics. Use the distribution to estimate
a 99% confidence interval for the mean IQ
score for the population. Explain your reason-
ing.
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Figure 3.32 Bootstrap distribution of sample means of
IQ scores
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Table 3.14 Percentiles for a bootstrap distribution of penalty minutes

0.5% 1.0% 2.0% 2.5% 5.0% 95.0% 97.5% 98.0% 99.0% 99.5%

Percentile 13.7 14.3 15.3 15.6 16.9 32.8 34.4 35.0 36.7 37.8

3.125 Average Penalty Minutes in the NHL In
Exercise 3.110 on page 262, we construct a 95%
confidence interval for mean penalty minutes given
to NHL players in a season using data from play-
ers on the Ottawa Senators as our sample. Some
percentiles from a bootstrap distribution of 5000
sample means are shown in Table 3.14. Use this
information to find and interpret a 98% confidence
interval for the mean penalty minutes of NHL play-
ers. Assume that the players on this team are a rea-
sonable sample from the population of all players.

3.126 How Important Is Regular Exercise? In a
recent poll57 of 1000 American adults, the number
saying that exercise is an important part of daily life
was 753. Use StatKey or other technology to find
and interpret a 90% confidence interval for the pro-
portion of American adults who think exercise is an
important part of daily life.

3.127 HowDoYour Instructors Feel about Student
Off-Task Technology Use?Exercise 3.91 introduces
a study investigating student perception of whether
the use of laptops and phones during class for off-
task use is distracting. The same study also asked for
instructor reaction to student off-task technology
use during class. Twenty-five out of the 36 instruc-
tors surveyed said that they are bothered by student
cell phone use during class. Use StatKey or other
technology to create a bootstrap distribution and
find and interpret a 90% confidence interval for the
proportion of all college instructors who are both-
ered by student phone use during class.

3.128 What Proportion of Americans Say They
Are Poor?A survey58 of 1000 USAdults conducted
in October 2019 found that 182 of them described
themselves as poor. Use StatKey or other technol-
ogy to find and interpret a 90% confidence inter-
val for the proportion of all US adults who would
describe themselves as poor.

3.129 Many Europeans Don’t Recognize Signs of
Stroke or Heart Attack Across nine European
countries in a large-scale survey, people had a
hard time identifying signs of a stroke or heart

57Rasmussen Reports, “75% Say Exercise is Important in Daily
Life,” March 26, 2011.
58“18% of Americans Say They Are Poor” Rasmussen Reports,
October 29, 2019.

attack. The survey59 included 10,228 inhabitants of
Austria, France, Germany, Italy, the Netherlands,
Poland, Russia, Spain, and the United Kingdom.
Participants ages ranged from 14 to 98. Of those sur-
veyed, less than half (4910) linked arm or shoulder
pain to heart attacks. Use StatKey to find and inter-
pret a 99% confidence interval for the proportion of
Europeans (from these nine countries) who can
identify arm or shoulder pain as a symptom of a
heart attack. Can we be 99% confident that the pro-
portion is less than half?

THE ORGANIC EFFECT
Exercises 3.130 to 3.133 pertain to a 2015 study60

which took a Swedish family that ate a conven-
tional diet (non-organic), and then had them eat
only organic for two weeks. Pesticide concentra-
tions for several different pesticides were measured
in 𝜇g/g creatinine by testingmorning urine.Multiple
measurements61 were taken for each person before
the switch to organic foods, and then again after
participants had been eating organic for at least
one week. The results are pretty compelling, and
are summarized in a short video62 which as of this
writing has had over 30 million views online. The
data are visualized in Figure 3.33 for eight different
detected pesticides, and can be found inOrganicEf-
fect. How do pesticide levels in the body differ after
eating organic versus non-organic?

3.130 Eating Organic and 3-PBA Levels We first
study 3-PBA, a commonly used insecticide found in
grains, fruits, and vegetables. How much higher are
3-PBA concentrations while not eating organic ver-
sus eating organic? A bootstrap distribution based
on 1000 samples of the mean concentration before
the switch minus the mean concentration after
switching to organic is shown in Figure 3.34.

59Mata, J., Frank, R., and Gigerenza, G., “Symptom Recogni-
tion of Heart Attack and Stroke in Nine European Countries:
A Representative Aurvey”, Health Expectations, 2012; doi:
10.1111/j.1369-7625.2011.00764.x.
60Magner, J., Wallberg, P., Sandberg, J., and Cousins, A.P.
(2015). “Human exposure to pesticides from food: A pilot
study,” IVL Swedish Environmental Research Institute. https://
www.coop.se/PageFiles/429812/Coop%20Ekoeffekten_Report%
20ENG.pdf, January 2015.
61For illustrative purposes we will assume the measurements
were far enough apart to be unrelated.
62www.youtube.com/watch?v=oB6fUqmyKC8.
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Figure 3.33 Concentrations of eight different pesticides while eating non-organic versus eating organic

(a) Define a relevant parameter of interest, using
correct notation.

(b) Use the bootstrap distribution to estimate the
sample statistic, including correct notation.

(c) Use the bootstrap distribution to estimate a
99% confidence interval.

(d) Interpret this interval in context.

(e) Does this interval provide evidence that con-
centrations of the pesticide 3-PBA are lower
while eating organic? Why or why not?

(f) Can we conclude that eating organic causes
lower concentrations of 3-PBA? Why or why
not?

15 20 25 30 35
24.518

Figure 3.34 Bootstrap distribution based on 1000
simulations for Exercise 3.130

Table 3.15 Table of percentiles for the bootstrap distribution for Exercise 3.131

0.5% 1.0% 2.5% 5.0% 10% Ě 90% 95% 97.5% 99% 99.5%

Percentile 15.8 16.6 17.5 18.7 19.9 Ě 28.9 30.0 30.9 31.8 32.4

3.131 Using the Paired Nature of the Data This is
actually a paired data situation (since each person
was measured before and after eating organic), so
we create a new variable, the differences in pesticide
concentration, by taking pesticide concentration for
a particular pesticide before eating organic (on say,
the first day of the week) minus pesticide concen-
tration after eating organic. Because this is now a
single quantitative variable to analyze, we are inter-
ested in inference for just a single mean, the average
difference in pesticide concentration. A bootstrap
distribution for the mean of the differences for the
pesticide 3-PBA was created, and some of the per-
centiles for this distribution are given in Table 3.15.

(a) Give the 99% confidence interval.

(b) Interpret this interval in context.

3.132 Investigating the Width of a Confidence
Interval Comparing Exercise 3.130 to Exercise
3.131, you should have found that the confidence
interval when utilizing the paired structure of the
data was narrower than the confidence interval
ignoring this structure (this will generally be the
case, and is the primary reason for pairing). How
else could we change the width of the confidence
interval? More specifically, for each of the following
changes, would the width of the confidence interval
likely increase, decrease, or remain the same?
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(a) Increase the sample size.

(b) Simulate more bootstrap samples.

(c) Decrease the confidence level from 99% to
95%.

3.133 What Proportion Have Pesticides Detected?
In addition to the quantitative variable pesticide
concentration, the researchers also report whether
or not the pesticide was detected in the urine (at
standard detection levels). Before the participants
started eating organic, 111 of the 240 measurements
(combining all pesticides and people) yielded a pos-
itive pesticide detection. While eating organic, only
24 of the 240 measurements resulted in a positive
pesticide detection.

(a) Calculate the sample difference in proportions:
proportion of measurements resulting in pesti-
cide detection while eating non-organic minus
proportion of measurements resulting in pesti-
cide detection while eating organic.

(b) Figure 3.35 gives a bootstrap distribution for the
difference in proportions, based on 1000 sim-
ulated bootstrap samples. Approximate a 98%
confidence interval.

(c) Interpret this interval in context.

0.25 0.30 0.35 0.40 0.45

Figure 3.35 Bootstrap distribution for the difference in
proportions

3.134 Donating Blood to Grandma? There is some
evidence that “young blood” might improve the
health, both physically and cognitively, of elderly
people (or mice). Exercise 2.83 on page 85 intro-
duces one study in which old mice were randomly
assigned to receive transfusions of blood from
either young mice or old mice. Researchers then
measured the number of minutes each of the old
mice was able to run on a treadmill. The data are
stored in YoungBlood. We wish to estimate the dif-
ference in the mean length of time on the treadmill,
between those mice getting young blood and those
mice getting old blood. Use StatKey or other tech-
nology to find and interpret a 90% confidence inter-
val for the difference in means.

3.135 Does a Common Ingredient in Soap Increase
Staph Infections? Triclosan is a compound often
added to products such as soaps, lotions, and tooth-
paste. It is antimicrobial, so we expect it to lower
one’s chance of having a staph infection. However,
the opposite was found in a recent study.63 Micro-
biologists swabbed the noses of 90 people, and
recorded which had detectable levels of triclosan
and which had evidence of carrying the staph bac-
teria, which greatly increases one’s chance of hav-
ing a serious staph infection. The results are shown
in Table 3.16. Use the results of this study to esti-
mate the difference in the proportion of people with
staph bacteria, between those with triclosan in their
system and those without. (As a result of this study
and others, the US Food and Drug Administration
is investigating whether adding triclosan to personal
care products is safe and effective.)

Table 3.16 Does triclosan increase staph
infections?

Staph No Staph Total
Triclosan 24 13 37
No Triclosan 15 38 53
Total 39 51 90

(a) Give notation for the parameter we are
estimating.

(b) Give notation for the best estimate and give its
value.

(c) Use StatKey or other technology to find a 99%
confidence interval.

(d) Interpret this interval in context. Can we con-
clude that people with triclosan in their systems
are more likely to have staph infections? Can
we conclude that triclosan causes the increase
in staph infections?

3.136 Heads or Tails? Purple or Orange? When
given a binary choice, research shows that adults
are more likely to select the first of the two options.
In Exercise 1.63, we see that when people are asked
to mentally simulate ten tosses of a fair coin, the
first thing they write down is influenced by the
order in which they are given the options. In the
study, participants were asked to write down a
sequence of “Heads and Tails” or “Tails andHeads”

63Mole, B., “Triclosan aids nasal invasions by staph,” Science
News, April 15, 2014.
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or (for an imaginary coin that has colors on each
side) “Purple and Orange” or “Orange and Purple”.
In the study, they consider only the first thing par-
ticipants wrote down in their sequence, and we use
the results of that study (given for each case below)
to estimate p = the proportion of times people will
write down the first option. Use StatKey or other
technology to give the sample statistic and a 90%
confidence interval in each case.

(a) Presented with “Heads or Tails,” 118 out of 140
put Heads.

(b) Presented with “Tails or Heads,” 57 out of 85
put Tails.

(c) Presented with “Purple or Orange,” 89 out of 99
put Purple.

(d) Presented with “Orange or Purple,” 79 out of 98
put Orange.

3.137 Teen Vaping Surges The US Centers for Dis-
ease Control conducts the National Youth Tobacco
Survey each year. The preliminary results64 of 2019
show that e-Cigarette use is up among US teens
while cigarette use is down. In the sample of 1582
teens, 435 reported using an e-cigarette or vape
product in the last 30 days. We wish to use this sam-
ple data to construct a 99% confidence interval.

(a) Give notation and define the parameter we are
estimating.

(b) Use StatKey or other technology to find the
99% confidence interval.

(c) Based on the confidence interval, can we be
99% confident that less than 1/3 of all US teens
used e-cigarettes in the last 30 days?

3.138 Average Tip for a Waitress Data 2.12 on
page 137 describes information from a sample of
157 restaurant bills collected at the First Crush
bistro. The data is available in RestaurantTips. Cre-
ate a bootstrap distribution using this data and find
and interpret a 95% confidence interval for the
average tip left at this restaurant. Find the confi-
dence interval two ways: using the standard error
and using percentiles. Compare your results.

3.139 Daily Tip Revenue for a Waitress Data 2.12
on page 137 describes information from a sample
of 157 restaurant bills collected at the First Crush
bistro. The data is available in RestaurantTips. Two
intervals are given for the average tip left at a
restaurant; one is a 90% confidence interval and one
is a 99% confidence interval.

64LaVito A, “CDC says teen vaping surges to more than 1 in 4
high school students,” CNBC Health and Science, September 12,
2019.

Interval A: 3.55 to 4.15 Interval B: 3.35 to 4.35
(a) Which one is the 90% confidence interval?

Which one is the 99% confidence interval?

(b) One waitress generally waits on 20 tables in an
average shift. Give a range for her expected
daily tip revenue, using both 90% and 99% con-
fidence. Interpret your results.

3.140 Who SmokesMore:Male Students or Female
Students? Data 1.1 on page 4 includes lots of infor-
mation on a sample of 362 college students. The
complete dataset is available at StudentSurvey.
We see that 27 of the 193 males in the sample smoke
while 16 of the 169 females in the sample smoke.

(a) What is the best estimate for the difference
in the proportion of smokers, using male pro-
portion minus female proportion? Which sex
smokes more in the sample?

(b) Find and interpret a 99% confidence interval for
the difference in proportions.

3.141 Home Field Advantage Is there a home field
advantage in soccer? We are specifically interested
in the Football Association (FA) premier league, a
football (soccer) league in Great Britain known for
having especially passionate fans. We took a sample
of 120 matches (excluding all ties) and found that
the home team was victorious in 70 cases.65

(a) What is the population of interest? What is the
specific population parameter of interest?

(b) Estimate the population parameter using the
sample.

(c) Using StatKey or other technology, construct
and interpret a 90% confidence interval.

(d) Using StatKey or other technology, construct
and interpret a 99% confidence interval.

(e) Based on this sample and the results in parts (c)
and (d), are we 90% confident a home field
advantage exists? Are we 99% confident?

3.142 Using Percentiles to Estimate Tea vs Coffee
Immune Response In Exercise 3.100, we introduce
a study to estimate the difference in mean immune
response (as measured in the study) between tea
drinkers and coffee drinkers. The data are given
in Table 3.12 on page 261 and are available in
ImmuneTea.

(a) Give a best estimate for the difference in means:
tea drinkers mean immune response minus cof-
fee drinkers mean immune response.

65https://www.premierleague.com/results
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(b) What quantity are we estimating? Give the cor-
rect notation.

(c) Using StatKey or other technology, construct
and interpret a 90% confidence interval.

(d) Using StatKey or other technology, construct
and interpret a 99% confidence interval.

(e) Based on this sample and the results in parts (c)
and (d), are we 90% confident that tea drinkers
have a stronger immune response? Are we 99%
confident?

3.143 Effect of Splitting the Bill Exercise 2.177 on
page 116 describes a study on the cost of restau-
rant meals when groups pay individually or split the
bill equally. In the experiment 24 subjects ordered
meals in groups which paid individually and 24 were
in groups which agreed to split the costs. The data
in SplitBill includes the cost of what each person
ordered (in Israeli shekels) and the type of pay-
ment (Individual or Split). Use this information to
construct a bootstrap distribution and find a 95%
confidence interval for the difference in means
(Individualminus Split) between the two situations.

3.144 St. Louis vs Atlanta Commute Times The
datafile CommuteAtlanta contains a sample of
commute times for 500 workers in the Atlanta area
as described in Data 3.3 on page 248. The data in
CommuteStLouis has similar information on the
commuting habits of a random sample of 500
residents from metropolitan St. Louis. Figure 3.36
shows comparative boxplots of the commute times
for the two samples. We wish to estimate the differ-
ence in mean commute time between Atlanta and
St. Louis.

(a) Discuss and compare the boxplots in
Figure 3.36. Which city appears to have the
longer average commute time?
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* * ** * **

*** **
******

0

St. Louis

Atlanta

50 100 150 200

Commute Time

C
it

y

Figure 3.36 Commute times for samples in Atlanta
and St. Louis

(b) Give notation for the parameter we are estimat-
ing and give the best estimate from the data.

(c) Describe how to compute one bootstrap statis-
tic from this data.

(d) Use StatKey or other technology to create
a bootstrap distribution for the difference in
mean commute times between the two cities
and use the standard error to find and interpret
a 95% confidence interval.

3.145 Cost of Two-Year Colleges The dataset Sam-
pColleges2yr contains information for a sample of
50 US two-year colleges, selected from the popu-
lation data in CollegeScores2yr. The Cost variable
gives the average total cost for tuition, room, board,
etc. at each school.

(a) Use the Cost data in SampColleges2yr to find
(and interpret) a 90% confidence interval for
the average total cost at two-year colleges in the
US.

(b) Use the Cost data in CollegeScores2yr to find
the mean cost for the population of all two-year
colleges in the US. Does your 90% confidence
interval from part (a) contain this mean cost?

3.146 Cost of Four-Year Colleges Repeat
Exercise 3.145 for the costs in a sample of 50
four-year colleges and universities found in Sam-
pColleges4yr. The data for the full population of
four-year schools is in CollegeScores4yr.

3.147 Effect of Overeating for One Month: Corre-
lation between Short-Term and Long-Term Weight
Gain In Exercise 3.76 on page 247, we describe a
study in which participants ate significantly more
and exercised significantly less for a month. Two
and a half years later, participants weighed an aver-
age of 6.8 pounds more than at the start of the
experiment (while the weights of a control group
had not changed). Is the amount of weight gained
over the following 2.5 years directly related to how
much weight was gained during the one-month
period? For the 18 participants, the correlation
between increase of body weight during the one-
month intervention and increase of body weight
after 30 months is r = 0.21. We want to estimate, for
the population of all adults, the correlation between
weight gain over one month of bingeing and the
effect of that month on a person’s weight 2.5 years
later.

(a) What is the population parameter of interest?
What is the best estimate for that parameter?

(b) To find the sample correlation r = 0.21, we used
a dataset containing 18 ordered pairs (weight
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gain over the one month and weight gain 2.5
years later for each individual in the study).
Describe how to use this data to obtain one
bootstrap sample.

(c) What statistic is recorded for the bootstrap
sample?

(d) Suppose that we use technology to calculate
the relevant statistic for 1000 bootstrap samples.
Describe how to find the standard error using
those bootstrap statistics.

(e) The standard error for one set of bootstrap
statistics is 0.14. Calculate a 95% confidence
interval for the correlation.

(f) Use the confidence interval from part (e) to
indicate whether you are confident that there
is a positive correlation between amount of
weight gain during the one-month intervention
and amount of weight gained over the next 2.5
years, or whether it is plausible that there is no
correlation at all. Explain your reasoning.

(g) Will a 90% confidence interval most likely be
wider or narrower than the 95% confidence
interval found in part (e)?

3.148 Mustang Prices and Car Sales Figure 3.37
shows bootstrap distributions for the standard devi-
ation of two different datasets. In each case, if
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# sample = 3000
mean = 157.722
st.dev. = 42.933

Left Tail Two-Tail Right Tail Left Tail Two-Tail Right Tail# sample = 3000
mean = 10.721
st.dev. = 1.743

Figure 3.37 Bootstrap distributions for standard deviation

appropriate, use the bootstrap distribution to esti-
mate and interpret a 95% confidence interval for
the population standard deviation. If not appropri-
ate, explain why not.

(a) Standard deviation of prices of used Mustang
cars (in thousands of dollars), introduced in
Data 3.4 on page 267, with bootstrap distribu-
tion in Figure 3.37(a).

(b) Standard deviation of monthly sales of new cars,
using the following sales figures for a sample of
five months: 658, 456, 830, 696, 385, with boot-
strap distribution in Figure 3.37(b).

3.149 Small Sample Size and Outliers As we have
seen, bootstrap distributions are generally symmet-
ric and bell-shaped and centered at the value of the
original sample statistic. However, strange things
can happen when the sample size is small and there
is an outlier present. Use StatKey or other tech-
nology to create a bootstrap distribution for the
standard deviation based on the following data:

8 10 7 12 13 8 10 50

Describe the shape of the distribution. Is it appro-
priate to construct a confidence interval from this
distribution? Explain why the distribution might
have the shape it does.
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C H A P T E R 4

Hypothesis
Tests

“Few things mislead us more than failing to grasp simple statistical principles. Understanding

what counts as evidence should trump memorizing the structural formulas for alkanes.”

Sharon Begley, Science Editor for Newsweek Magazine1

1Begley, S., “Wanted: BS Detectors, What Science Ed Should Really Teach,” Newsweek, November 8, 2010, p. 26.
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4.4 A Closer Look at Testing 333

4.5 Making Connections 349

Here are some of the questions and issues we will discuss in this chapter:

• Does leaving a light on at night affect weight gain?

• Does just imagining moving a muscle strengthen it?

• Do males or females play more video games?

• Does playing football affect brain size?

• Is there a relationship between owning a cat and mental illness?

• Does a high fat diet affect memory in children?

• Do sports teams wearing aggressive-looking uniforms tend to get more penalties?

• Is ADHDmore likely if pesticide exposure is high?

• Are mosquitoes more attracted to someone who has been drinking beer?

• If you want to remember something, should you take a nap or have some caffeine?

• If you get called before a disciplinary panel, should you smile or maintain a serious expression?

• We know exercise is good for the body. Is it also good for the brain?

• Does the price you pay for something impact your sense of how effective it is?

• Does massage help muscles recover from exercise stress?

• Are lions more likely to attack after a full moon?

• What percent of couples say that they are “In a relationship” on Facebook?

• Do people read faster using a printed book or a Kindle or iPad?
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4.1 INTRODUCING HYPOTHESIS TESTS

In statistical inference, we use data from a sample tomake conclusions about a popu-
lation. The two main areas of statistical inference are estimation and testing. In
Chapter 3, we see how to estimate with a confidence interval. In this chapter, we
see how to use a hypothesis test to answer questions such as:

• Does radiation from cell phones affect brain activity?

• Are mosquitoes more attracted to someone who has been drinking beer?

• If you want to remember something, should you take a nap or have some caffeine?

• Does leaving a light on at night affect weight gain?

In every case, we use data from a sample to answer a specific question about a
population.

iStock.com/CamiloTorres

Does light at night make mice fatter?

D A T A 4 . 1 Does Light at Night Affect Weight Gain?
Numerous studies have shown that exposure to light at night is harmful to
human health. A recent study2 examines the effect of light at night on body
mass gain in mice. Eighteen mice were randomly assigned to one of two
groups: the Dark group had a normal light/dark cycle with darkness at night and
the Light group had a dim light on at night, equivalent to having a television set
on in a room.3 The body mass gain (BMGain), in grams, was recorded after
three weeks, and the results are given in LightatNight and in Table 4.1. Do the
data in this study provide convincing evidence that having a light on at night
increases weight gain in mice? ◼

Table 4.1 Body mass gain with Light or Dark at night

Light 9.17 6.94 4.99 1.71 5.43 10.26 4.67 11.67 7.15 5.33
Dark 2.83 4.60 6.52 2.27 5.95 4.21 4.00 2.53

2Fonken, L., et al., “Light at night increases body mass by shifting time of food intake,” Proceedings of
the National Academy of Sciences, October 26, 2010; 107(43): 18664–18669.
3Additional results from this study are given in the datasets LightatNight4Weeks and
LightatNight8Weeks. Both include three groups (with the third group having a bright light on at
night), and many additional variables.
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Example 4.1
In Data 4.1:

(a) Is the study an experiment or an observational study? What are the cases?
What are the variables?

(b) Use appropriate summary statistics and a graph to compare the two groups.

Solution (a) Since the mice were randomly assigned to the two groups, this is an experiment.
The cases are the 18 mice. There are two variables: whether the mouse is
assigned to the Light or Dark group (which is categorical) and the body mass
gain for that mouse (which is quantitative).

(b) The sample means are

xL = 6.732 and xD = 4.114,

where xL is mean body mass gain (in grams) for the mice with a light on at night
and xD is mean body mass gain for the mice with darkness at night. Figure 4.1
shows side-by-side dotplots.

Figure 4.1 Body mass
gain with Dark or Light
at night
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We see that, in the sample, the mice in the light group gained more weight, on
average, than the mice in the dark group. The question of interest is whether this
effect holds in the population. To address this question, let’s think about what might
happen if light condition has no effect on weight gain in mice.

We know from Chapter 3 that sample statistics vary, so we know that there will
be random variation in the sample means. Even if light condition doesn’t matter,
we don’t expect the two sample means to be exactly identical. Thus, there are two
possible reasons for the difference in sample means: one is that the difference really
is due to the effect of light at night and the other is that the difference is just due
to random variation. Which is correct? How extreme does the difference in sample
means have to be in order to argue against random chance? These are the types of
questions we’ll be discussing in this chapter.

In Data 4.1, we’re using data from the sample (xL = 6.732 compared to
xD = 4.114) to assess a claim about a population (light at night increases weight
gain in mice). This is the essence of all statistical tests: using data from a sample to
assess a claim about a population.

Statistical Tests

A statistical test is used to determine whether results from a sample
are convincing enough to allow us to conclude something about the
population.
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Null and Alternative Hypotheses
In Chapter 3, we use data from a sample to create a confidence interval for a popula-
tion parameter. In this chapter, we use data from a sample to help us decide between
two competing hypotheses about a population. In Data 4.1, one hypothesis is that
light at night really does increase weight gain in mice, and the competing hypothesis
is that light condition does not affect weight gain in mice. We make these hypothe-
ses more concrete by specifying them in terms of the population parameter(s) of
interest.

In this case, we are interested in the difference in population means 𝜇L and
𝜇D, where 𝜇L is mean body mass gain for mice with a light on at night and 𝜇D is
mean body mass gain for mice with darkness at night. If light condition doesn’t affect
weight gain, we have 𝜇L = 𝜇D. However, if a light at night does increase weight gain,
we have 𝜇L > 𝜇D. Which is correct: 𝜇L = 𝜇D or 𝜇L > 𝜇D? We use the data in the
sample to try to answer this question.

We refer to the competing claims about the population as the null hypoth-
esis, denoted by H0, and the alternative hypothesis, denoted by Ha. The roles of
these two hypotheses are not interchangeable. The claim for which we seek signifi-
cant evidence (𝜇L > 𝜇D in the light at night example) is assigned to the alternative
hypothesis. Usually, the null hypothesis is a claim that there really is “no effect”
or “no difference.” In testing whether light at night affects weight gain in mice, the
hypotheses are

Null Hypothesis (H0) ∶ 𝜇L = 𝜇D

Alternative Hypothesis (Ha) ∶ 𝜇L > 𝜇D

In many cases, the null hypothesis represents the status quo or that nothing inter-
esting is happening. The alternative is usually what the experimenter or researcher
wants to establish or find evidence for. A hypothesis test is designed to measure evi-
dence against the null hypothesis, and determine whether this evidence is sufficient
to conclude in favor of the alternative hypothesis.

Null and Alternative Hypotheses

Null Hypothesis (H0): Claim that there is no effect or no difference.
Alternative Hypothesis (Ha): Claim for which we seek significant
evidence.

In a hypothesis test, we examine whether sample data provide enough
evidence to refute the null hypothesis and support the alternative
hypothesis.

Note that the hypotheses are written in terms of the population parameters
𝜇L and 𝜇D, not in terms of the sample statistics xL and xD. We know that, in the
sample, mean weight gain is larger for the mice with light at night. The key question
is whether the sample provides convincing evidence that mean weight gain for all
mice with a light on at night is larger than mean weight gain for all mice with dark-
ness at night.

In Data 4.1, we describe a hypothesis test comparing two means. Just as we dis-
cuss confidence intervals for any population parameter in Chapter 3, statistical tests
can apply to any population parameter. (This would be a good time to review the
summary of different parameters given in Table 3.5 on page 232.) In the next two
examples, we consider a hypothesis test for a single proportion and a hypothesis test
for a difference in proportions.
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Example 4.2
Have you ever forgotten a to-go box?

A server at a restaurant recently told one of the authors that, when diners at a restau-
rant request a to-go box to take leftover food home, about 30% of them forget the
box and leave it sitting on the table when they leave. Suppose the restaurant plans
to take a random sample of 120 diners requesting a to-go box, and count how many
of them forget to take their leftover food. State the null and alternative hypotheses
in a test to determine whether the sample provides enough evidence to refute the
server’s estimate of 30%, defining any parameters used.

Solution This is a hypothesis test for a proportion, and the relevant parameter is p = the
proportion of all diners requesting a to-go box at this restaurant who forget it when
they leave. We are seeing if there is evidence that p is different from 30%, so the
hypotheses are:

H0∶ p = 0.30

Ha∶ p ≠ 0.30

Note that the sample statistic, p̂, will probably not equal 0.3 exactly, but the ques-
tion is whether p̂ will be far enough away from 0.3 to conclude that the population
parameter, p, does not equal 0.3.

Example 4.3
Breaking the Cycle of Cocaine Addiction

Cocaine addiction is very hard to break. Even among addicts trying hard to break
the addiction, relapse (going back to using cocaine) is common. Researchers try dif-
ferent treatment drugs to see if the relapse rate can be reduced.4 One randomized
double-blind experiment compares the proportion that relapse between those tak-
ing the drug being tested and those in a control group taking a placebo. The question
of interest is whether the drug reduces the proportion of addicts that relapse. Define
the parameters of interest and state the null and alternative hypotheses.

Solution This is a hypothesis test for a difference in proportions, and we are comparing the
two proportions pD and pC where

pD = the proportion of addicts taking the treatment drug who relapse, and

pC = the proportion of addicts taking a control placebo who relapse.

The test is determining whether there is evidence that the proportion who
relapse is lower in people taking the treatment drug, so the null and alternative
hypotheses are:

H0∶ pD = pC
Ha∶ pD < pC

We see again that the hypotheses are stated in terms of the relevant population
parameters, not the sample statistics.

Notice that, in general, the null hypothesis is a statement of equality, while the
alternative hypothesis contains a range of values, using notation indicating greater
than, not equal to, or less than. This is because in a hypothesis test, we measure
evidence against the null hypothesis, and it is relatively straightforward to assess
evidence against a statement of equality.

4We will examine one of these studies later in this chapter.
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While the null hypothesis of “no difference” is the same in each case, the alter-
native hypothesis depends on the question of interest. In general, the question of
interest, and therefore the null and alternative hypotheses, should be determined
before any data are examined.

In Data 4.1 about the effect of light at night on weight gain, we could interpret
the null hypothesis as simply “Light at night has no effect on weight gain” rather
than the more specific claim that the means are equal. For the sake of simplicity in
this book, we will generally choose to express hypotheses in terms of parameters,
even when the hypothesis is actually more general, such as “no effect.”

Stating Null and Alternative Hypotheses

• H0 andHa are claims about population parameters, not sample
statistics.

• In general, the null hypothesisH0 is a statement of equality (=),
while the alternative hypothesis uses notation indicating greater
than (>), not equal to (≠), or less than (<), depending on the ques-
tion of interest.

Evidence Against the Null Hypothesis (H0) and in
Support of the Alternative Hypothesis (Ha)
In a hypothesis test, the alternative hypothesis is the claim for which we seek evi-
dence. The goal of the test is to determine whether the sample data provide enough
evidence to refute the null hypothesis in favor of the alternative hypothesis.

Example 4.4
Example 4.2 gives null and alternative hypotheses for a test for the proportion for-
getting a to-go box in a restaurant. The sample involved 120 people who requested
a to-go box. In each situation below, discuss the strength of evidence against the
null hypothesis and in support of the alternative hypothesis. Which provides the
strongest evidence? Which provides the least evidence?

(a) 36 forget out of 120 (b) 37 forget out of 120
(c) 90 forget out of 120 (d) 27 forget out of 120

Solution The hypotheses are

H0∶ p = 0.30

Ha∶ p ≠ 0.30

Since the sample size of n = 120 is the same in every case, the sample proportion
furthest from 0.30 will provide the strongest evidence againstH0 and in favor ofHa.

(a) The sample proportion is p̂ = 36∕120 = 0.30. This provides no evidence at all
against H0 since it is exactly 0.30.

(b) The sample proportion in this case, p̂ = 37∕120 = 0.308, isn’t exactly 0.30, but it
is unlikely to provide convincing evidence against H0.

(c) The sample proportion is p̂ = 90∕120 = 0.75. This is very far from 0.30, and likely
to provide convincing evidence againstH0 and in support ofHa.

(d) The sample proportion is p̂ = 27∕120 = 0.225. The conclusion here is not
obvious. We need to read the next two sections to learn how to formally
determine whether such data provide convincing evidence againstH0.

The sample results in part (c) provide the strongest evidence forHa while the sample
results in part (a) provide no evidence at all for Ha.
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Most and least malevolent NFL team logos

D A T A 4 . 2 Do Teams with Malevolent Uniforms Get More Penalties?

Frank and Gilovich5 describe a study of relationships between the type of
uniforms worn by professional sports teams and the aggressiveness of the
team. They consider teams from the National Football League (NFL) and
National Hockey League (NHL). Participants with no knowledge of the teams
rated the jerseys on characteristics such as timid/aggressive, nice/mean, and
good/bad. The averages of these responses produced a “malevolence” index
with higher scores signifying impressions of more malevolent (evil-looking)
uniforms. To measure aggressiveness, the authors used the amount of
penalties (yards for football and minutes for hockey) converted to z-scores and
averaged for each team over the seasons from 1970 to 1986. The data are
shown in Table 4.2 and stored in MalevolentUniformsNFL and
MalevolentUniformsNHL. We are interested in whether teams with more
malevolent uniforms get more penalties. ◼

Figure 4.2 Relationship
between penalties and
uniform malevolence for
NFL teams
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Figure 4.2 shows a scatterplot with regression line of the malevolence ratings vs
z-scores of the penalty yardage for the n = 28 NFL teams in this dataset. The graph
shows a somewhat positive association: Teams with more malevolent uniforms tend
to have more penalty yards. In fact the most penalized team (LA Raiders, now in
Las Vegas) had the most malevolent uniform, and the least penalized team (Miami
Dolphins) had the least malevolent uniform. The sample correlation between male-
volence and penalties for the 28 teams is r = 0.43. Does this provide evidence to
conclude that the true correlation is really positive?

5Frank, M.G., and Gilovich, T., “The Dark Side of Self- and Social Perception: Black Uniforms and
Aggression in Professional Sports,” Journal of Personality and Social Psychology, 1988; 54(1):74–85.
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Table 4.2 Malevolence rating of uniforms and z-scores for penalties

NFLTeam Malevolence ZPenYds NHLTeam Malevolence ZPenMin

LA Raiders 5.10 1.19 Vancouver 5.33 0.88
Pittsburgh 5.00 0.48 Philadelphia 5.17 2.01
Cincinnati 4.97 0.27 Boston 5.13 0.42
New Orleans 4.83 0.10 New Jersey 4.45 −0.78
Chicago 4.68 0.29 Pittsburgh 4.27 0.64
Kansas City 4.58 −0.19 Chicago 4.18 −0.02
Washington 4.40 −0.07 Montreal 4.18 −0.70
St. Louis 4.27 −0.01 Detroit 4.15 0.44
NY Jets 4.12 0.01 Edmonton 4.15 0.58
LA Rams 4.10 −0.09 Calgary 4.13 −0.40
Cleveland 4.05 0.44 LA Kings 4.05 −0.20
San Diego 4.05 0.27 Buffalo 4.00 −0.68
Green Bay 4.00 −0.73 Minnesota 4.00 −0.11
Philadelphia 3.97 −0.49 NY Rangers 3.90 −0.31
Minnesota 3.90 −0.81 NY Islanders 3.80 −0.35
Atlanta 3.87 0.30 Winnipeg 3.78 −0.30
Indianapolis 3.83 −0.19 St. Louis 3.75 −0.09
San Francisco 3.83 0.09 Washington 3.73 −0.07
Seattle 3.82 0.02 Toronto 3.58 0.34
Denver 3.80 0.24 Quebec 3.33 0.41
Tampa Bay 3.77 −0.41 Hartford 3.32 −0.34
New England 3.60 −0.18
Buffalo 3.53 0.63
Detroit 3.38 0.04
NY Giants 3.27 −0.32
Dallas 3.15 0.23
Houston 2.88 0.38
Miami 2.80 −1.60

Example 4.5
Define the parameter of interest and state the null and alternative hypotheses.

Solution The parameter of interest is the correlation 𝜌 between malevolence of uniforms and
number of penalty yards. We are testing to see if the correlation is positive, so the
hypotheses are

H0∶ 𝜌 = 0

Ha∶ 𝜌 > 0

Even if there were no relationship between the types of jerseys and penalties for
the teams, we would not expect the correlation for any sample of teams and seasons
to be exactly zero. Once again, the key question is whether the statistic for this sam-
ple (in this case the sample correlation r) is farther away from zero than we would
reasonably expect to see by random chance alone. In other words, is it unusual to see
a sample correlation as high as r = 0.43 if the null hypothesis of 𝜌 = 0 is really true?

Example 4.6
If the sample correlation of r = 0.43 provides convincing evidence againstH0 and in
support ofHa, what does that mean in the context of malevolent uniforms?

Solution If the sample data provide convincing evidence againstH0 and forHa, then we have
convincing evidence that the true correlation is positive, indicating that teams with
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more malevolent uniforms tend to be more heavily penalized. It also means that we
are unlikely to get a sample correlation as high as r = 0.43 just by random chance if
the true correlation 𝜌 is really zero.

iStock.com/Lauri Patterson

How much arsenic is in this chicken?

D A T A 4 . 3 Arsenic Levels in Chicken Meat
Arsenic-based additives in chicken feed have been banned by the European
Union but are mixed in the diet of about 70% of the 9 billion broiler chickens
produced annually in the US.6 Many restaurant and supermarket chains are
working to reduce the amount of arsenic in the chicken they sell. To accomplish
this, one chain plans to measure, for each supplier, the amount of arsenic in a
random sample of chickens. The chain will cancel its relationship with a supplier
if the sample provides sufficient evidence that the average amount of arsenic in
chicken provided by that supplier is greater than 80 ppb (parts per billion). ◼

Example 4.7
For the situation in Data 4.3, define the population parameter(s) and state the null
and alternative hypotheses.

Solution The parameter of interest is 𝜇, the mean arsenic level in all chickens from a supplier.
We are testing to see if the mean is greater than 80, so the hypotheses are

H0∶ 𝜇 = 80

Ha∶ 𝜇 > 80

6“Arsenic in Chicken Production,” Chemical and Engineering News: Government and Policy, 2007;
85(15):34–35.
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Since we are testing to see if there is evidence that the mean is greater than 80, it
is clear that the alternative hypothesis isHa ∶ 𝜇 > 80. For the null hypothesis, writing
H0 ∶ 𝜇 ≤ 80 makes intuitive sense, as any arsenic level less than 80 is satisfactory.
However, it is easier to assess the extremity of our data for a single, specific value
(H0 ∶ 𝜇 = 80). This is a conservative choice; if the sample mean is large enough to
provide evidence against H0 when 𝜇 = 80, it would provide even more evidence
when compared to 𝜇 = 78 or 𝜇 = 75. Thus, for convenience, we generally choose to
write the null hypothesis as an equality.

Example 4.8
Suppose the chain measures arsenic levels in chickens sampled randomly from three
different suppliers, with data given in Figure 4.3.

(a) Which of the samples shows the strongest evidence for the alternative
hypothesis?

(b) Which of the samples shows no evidence in support of the alternative
hypothesis?

Figure 4.3 Arsenic levels
in chicken samples from
three different suppliers 65
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Solution (a) The sample from Supplier 3 shows the strongest evidence of an average arsenic
amount greater than 80, because it has the highest sample mean and all of the
sampled chickens have arsenic levels at least 80.

(b) The sample from Supplier 1 shows no evidence of an average arsenic amount
greater than 80, since the mean of that sample is less than 80.

In this section, we’ve learned that evidence for a claim about a population can
be assessed using data from a sample. If the sample data are unlikely to occur just
by random chance when the null hypothesis (usually “no effect”) is true, then we
have evidence that there is some effect and that the alternative hypothesis is true.
We understand that you don’t yet know how to determine what is “likely” to occur
by random chance when the null hypothesis is true, and that you are probably eager
to learn. That is the topic of the next section. By the end of the chapter, we’ll return
to the examples in this section as well as the situations described in the exercises and
find out which of them provide convincing evidence for the question of interest and
which do not.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize when and why statistical tests are needed

• Specify null and alternative hypotheses based on a question of interest,
defining relevant parameters

• Recognize that hypothesis tests examine whether sample data pro-
vide sufficient evidence to refute the null hypothesis and support the
alternative hypothesis

• Compare the strength of evidence that different samples have about
the same hypotheses

Exercises for Section 4.1

SKILL BUILDER 1
In Exercises 4.1 to 4.4, a situation is described for a
statistical test and some hypothetical sample results
are given. In each case:

(a) State which of the possible sample results
provides the most evidence for the claim.

(b) State which (if any) of the possible results
provide no evidence for the claim.

4.1 Testing to see if there is evidence that the
population mean for mathematics placement exam
scores is greater than 25. Use Figure 4.4.

343128252219

Sample A

Sample B

Sample C

Sample D

Figure 4.4 Samples for Exercise 4.1

4.2 Testing to see if there is evidence that the
mean service time at Restaurant #1 is less than the
mean service time at Restaurant #2. Use Figure 4.5
and assume that the sample sizes are all the
same. Sample means are shown with circles on the
boxplots.

Sample A
Group

Sample B Sample C Sample D
1 2

20

15

10

5

0

1 2 1 2 1 2

Figure 4.5 Samples for Exercise 4.2

4.3 Testing to see if there is evidence that the cor-
relation between exam grades and hours playing
video games is negative for a population of students.
Use Figure 4.6.

Sample DSample C

Sample BSample A

Figure 4.6 Samples for Exercise 4.3
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4.4 Testing to see if there is evidence that the pro-
portion of US citizens who can name the capital city
of Canada is greater than 0.75. Use the following
possible sample results:

Sample A: 31 successes out of 40

Sample B: 34 successes out of 40

Sample C: 27 successes out of 40

Sample D: 38 successes out of 40

SKILL BUILDER 2
In Exercises 4.5 to 4.8, state the null and alternative
hypotheses for the statistical test described.

4.5 Testing to see if there is evidence that the
mean of group A is not the same as the mean of
group B.

4.6 Testing to see if there is evidence that a pro-
portion is greater than 0.3.

4.7 Testing to see if there is evidence that a mean
is less than 50.

4.8 Testing to see if there is evidence that the cor-
relation between two variables is negative.

SKILL BUILDER 3
In Exercises 4.9 to 4.13, a situation is described
for a statistical test. In each case, define the rele-
vant parameter(s) and state the null and alternative
hypotheses.

4.9 Testing to see if there is evidence that the pro-
portion of people who smoke is greater for males
than for females.

4.10 Testing to see if there is evidence that a corre-
lation between height and salary is significant (that
is, different than zero).

4.11 Testing to see if there is evidence that the per-
centage of a population who watch the Home Shop-
ping Network is less than 20%.

4.12 Testing to see if average sales are higher in
stores where customers are approached by sales-
people than in stores where they aren’t.

4.13 Testing to see if there is evidence that the
mean time spent studying per week is different
between first-year students and upperclass students.

SKILL BUILDER 4
In Exercises 4.14 and 4.15, determine whether the
sets of hypotheses given are valid hypotheses.

4.14 State whether each set of hypotheses is valid
for a statistical test. If not valid, explain why not.

(a) H0 ∶ 𝜇 = 15 vs Ha ∶ 𝜇 ≠ 15

(b) H0 ∶ p ≠ 0.5 vs Ha ∶ p = 0.5

(c) H0 ∶ p1 < p2 vs Ha ∶ p1 > p2
(d) H0 ∶ x̄1 = x̄2 vs Ha ∶ x̄1 ≠ x̄2
4.15 State whether each set of hypotheses is valid
for a statistical test. If not valid, explain why not.

(a) H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 < 0

(b) H0 ∶ p̂ = 0.3 vs Ha ∶ p̂ ≠ 0.3

(c) H0 ∶ 𝜇1 ≠ 𝜇2 vs Ha ∶ 𝜇1 = 𝜇2

(d) H0 ∶ p = 25 vs Ha ∶ p ≠ 25

4.16 How Compassionate Is Your Dog? Can dogs
recognize when their owner is in distress? In one
study, 34 dog-owner pairs were recruited to par-
ticipate in an experiment7 in which the owner sat
behind a magnetic door that the dog could push
open. The pairs were randomly assigned to one of
two conditions: in the distress condition, the owner
said help in a distressed tone every 15 seconds and
made crying sounds between speaking. In the con-
trol condition, the owner said help in a neutral tone
and hummed between speaking. The vocalizations
between the two groups were at the same volume.

(a) One part of the study tested whether the pro-
portion of dogs opening the door to be with
their owner was higher for dogs in the distress
condition than for dogs in the control condi-
tion. State the null and alternative hypotheses
for this test.

(b) For the test in part (a), the evidence from the
sample was not strong enough to support the
alternative hypothesis. Explain what this means
in terms of dogs and owners.

(c) Another part of the study looked only at the
dogs that did open the door, and tested whether
the mean time to open the door was smaller
for dogs in the distress condition than for dogs
in the control condition (meaning that dogs
reacted faster when owners were distressed.)
State the null and alternative hypotheses for
this test.

(d) For the test in part (c), the evidence from the
sample was strong enough to support the alter-
native hypothesis. Explain what this means in
terms of dogs and owners.

4.17 Active Learning vs Passive Learning: Com-
paring Outcomes Active learning in a classroom
implies that students are actively involved and
working during class time while passive learning
indicates that students are primarily taking notes

7Sanford E, Burt E, Meyers-Manor J, “Timmy’s in the well:
Empathy and prosocial helping in dogs,” Learning and Behavior,
46(4), pp 374–386, December 2018.
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while the instructor lectures. Exercise 1.15 intro-
duces a study that measures students actual learning
under these two formats as well as their feelings of
learning. In the study, students in a college physics
course were randomly assigned to a class period
with either active learning or passive learning.

(a) After the class the students took a test to mea-
sure their understanding of the material. State
null and alternative hypotheses if we wish to
test to see if mean test scores are higher for
active learners than for passive learners (sup-
porting past research on active learning).

(b) For the test in part (a), the data from the study
provides evidence to support the alternative
hypothesis. What does that mean in terms of
active learning vs passive learning?

(c) After the class the students also rated the extent
to which they agreed with the statement “I feel
like I learned a great deal from this class.” Since
students often feel that they learn more from a
lecture than from their own active engagement,
state null and alternative hypotheses if we wish
to test to see if mean ratings on feelings of learn-
ing are lower for active learners than for passive
learners.

(d) For the test in part (c), the data from the study
provides evidence to support the alternative
hypothesis. What does that mean in terms of
active learning vs passive learning?

(e) Which type of classroom environment (active or
passive) appears to be best for actual learning?
Which appears to make students (incorrectly)
think they learned more?

4.18 Pesticides and ADHD Are children with
higher exposure to pesticides more likely to develop
ADHD (attention-deficit/hyperactivity disorder)?
In one study, authors measured levels of urinary
dialkyl phosphate (DAP, a common pesticide)
concentrations and ascertained ADHD diagnostic
status (Yes/No) for 1139 children who were repre-
sentative of the general US population.8 The sub-
jects were divided into two groups based on high or
low pesticide concentrations, and we compare the
proportion with ADHD in each group.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) In the sample, children with high pesticide
levels were more likely to be diagnosed with

8Bouchard, M., Bellinger, D., Wright, R., and Weisskopf, M.,
“Attention-Deficit/Hyperactivity Disorder and Urinary Metabo-
lites of Organophosphate Pesticides,” Pediatrics, 2010; 125:
e1270–e1277.

ADHD. Can we necessarily conclude that, in
the population, children with high pesticide
levels are more likely to be diagnosed with
ADHD? (Whether or not we canmake this gen-
eralization is, in fact, the statistical question of
interest.)

(c) In the study, evidence was found to support
the alternative hypothesis. Explain what that
means in the context of pesticide exposure and
ADHD.

4.19 Beer and Mosquitoes Does consuming beer
attract mosquitoes? A study done in Burkino Faso,
Africa, about the spread of malaria investigated
the connection between beer consumption and
mosquito attraction.9 In the experiment, 25 vol-
unteers consumed a liter of beer while 18 volun-
teers consumed a liter of water. The volunteers
were assigned to the two groups randomly. The
attractiveness to mosquitoes of each volunteer was
tested twice: before the beer or water and after.
Mosquitoes were released and caught in traps as
they approached the volunteers. For the beer group,
the total number of mosquitoes caught in the traps
before consumption was 434 and the total was 590
after consumption. For the water group, the total
was 337 before and 345 after.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses for a test to
see if, after consumption, the average number
of mosquitoes is higher for people who drink
beer.

(b) Compute the average number of mosquitoes
per volunteer before consumption for each
group and compare the results. Are the two
sample means different? Do you expect that
this difference is just the result of random
chance?

(c) Compute the average number of mosquitoes
per volunteer after consumption for each group
and compare the results. Are the two sample
means different? Do you expect that this differ-
ence is just the result of random chance?

(d) If the difference in part (c) provides convincing
evidence for the alternative hypothesis, what
can we conclude about beer consumption and
mosquitoes?

(e) If the difference in part (c) provides convincing
evidence for the alternative hypothesis, do we
have evidence that beer consumption increases
mosquito attraction? Why or why not?

9Lefvre, T., et al. “Beer Consumption Increases Human Attrac-
tiveness to Malaria Mosquitoes,” 2010; 5(3): e9546.
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4.20 Guilty Verdicts in Court Cases A reporter
on cnn.com once stated that 95% of all court
cases that go to trial result in a guilty verdict. To
test the accuracy of this claim, we collect a ran-
dom sample of 2000 court cases that went to trial
and record the proportion that resulted in a guilty
verdict.

(a) What is/are the relevant parameter(s)? What
sample statistic(s) is/are used to conduct the
test?

(b) State the null and alternative hypotheses.

(c) We assess evidence by considering how likely
our sample results are when H0 is true. What
does that mean in this case?

4.21 Exercise and the Brain It is well established
that exercise is beneficial for our bodies. Recent
studies appear to indicate that exercise can also do
wonders for our brains, or, at least, the brains of
mice. In a randomized experiment, one group of
mice was given access to a running wheel while a
second group of mice was kept sedentary. Accord-
ing to an article describing the study, “The brains
of mice and rats that were allowed to run on
wheels pulsed with vigorous, newly born neurons,
and those animals then breezed through mazes
and other tests of rodent IQ”10 compared to the
sedentary mice. Studies are examining the reasons
for these beneficial effects of exercise on rodent
(and perhaps human) intelligence. High levels of
BMP (bone-morphogenetic protein) in the brain
seem to make stem cells less active, which makes
the brain slower and less nimble. Exercise seems
to reduce the level of BMP in the brain. Addi-
tionally, exercise increases a brain protein called
noggin, which improves the brain’s ability. Indeed,
large doses of noggin turned mice into “little mouse
geniuses,” according to Dr. Kessler, one of the lead
authors of the study. While research is ongoing in
determining how strong the effects are, all evidence
points to the fact that exercise is good for the brain.
Several tests involving these studies are described.
In each case, define the relevant parameters and
state the null and alternative hypotheses.

(a) Testing to see if there is evidence that mice
allowed to exercise have lower levels of BMP
in the brain on average than sedentary mice.

(b) Testing to see if there is evidence that mice
allowed to exercise have higher levels of noggin
in the brain on average than sedentary mice.

10Reynolds, G., “Phys Ed: Your Brain on Exercise,” The New
York Times, July 7, 2010.

(c) Testing to see if there is evidence of a negative
correlation between the level of BMP and the
level of noggin in the brains of mice.

4.22 Taste Test A taste test is conducted between
two brands of diet cola, Brand A and Brand B, to
determine if there is evidence that more people pre-
fer Brand A. A total of 100 people participate in the
taste test.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Give an example of possible sample results that
would provide strong evidence that more peo-
ple prefer Brand A. (Give your results as num-
ber choosing Brand A and number choosing
Brand B.)

(c) Give an example of possible sample results that
would provide no evidence to support the claim
that more people prefer Brand A.

(d) Give an example of possible sample results for
which the results would be inconclusive: the
sample provides some evidence that Brand A is
preferred but the evidence is not strong.

INTENSIVE CARE UNIT (ICU) ADMISSIONS
Exercises 4.23 to 4.27 describe tests we might con-
duct based on Data 2.3, introduced on page 77. This
dataset, stored in ICUAdmissions, contains infor-
mation about a sample of patients admitted to a
hospital Intensive Care Unit (ICU). For each of
the research questions below, define any relevant
parameters and state the appropriate null and alter-
native hypotheses.

4.23 Is there evidence that mean heart rate is higher
in male ICU patients than in female ICU patients?

4.24 Is there a difference in the proportion who
receive CPR based on whether the patient’s race is
white or black?

4.25 Is there a positive linear association between
systolic blood pressure and heart rate?

4.26 Is either sex over-represented in patients in the
ICU or is the sex breakdown about equal?

4.27 Is the average age of ICU patients at this hos-
pital greater than 50?

4.28 Income East and West of the Mississippi For a
random sample of households in the US, we record
annual household income, whether the location is
east or west of the Mississippi River, and number of
children. We are interested in determining whether
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there is a difference in average household income
between those east of theMississippi and those west
of the Mississippi.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) What statistic(s) from the sample would we use
to estimate the difference?

4.29 Relationship between Income and Number of
Children Exercise 4.28 discusses a sample of house-
holds in the US. We are interested in determin-
ing whether or not there is a linear relationship
between household income and number of children.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Which sample correlation shows more evidence
of a relationship, r = 0.25 or r = 0.75?

(c) Which sample correlation shows more evidence
of a relationship, r = 0.50 or r = −0.50?

4.30 Red Wine and Weight Loss Resveratrol, a
compound in grapes and red wine, has been shown
to promote weight loss in rodents and now in a
primate.11 Lemurs fed a resveratrol supplement for
four weeks had decreased food intake, increased
metabolic rate, and a reduction in seasonal body
mass gain compared to a control group. Suppose
a hypothetical study is done for a different pri-
mate species, with one group given a resveratrol
supplement and the other group given a placebo.
We wish to see if there is evidence that resveratrol
increases the mean metabolism rate for this species.
(This exercise presents hypothetical data. We will
see the results from the actual study later in this
chapter.)

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

11BioMed Central, “Lemurs Lose Weight with ‘Life-Extending’
Supplement Resveratrol,” ScienceDaily, June 22, 2010.
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Figure 4.7 Does red wine boost metabolism rates?

(b) Possible sample results for species A are shown
in Figure 4.7(a) with the mean indicated by a
circle on the boxplots. In the sample, is themean
greater for the resveratrol group? Can we nec-
essarily conclude that resveratrol increases the
metabolism rate for this species?

(c) Possible sample results for species B are shown
in Figure 4.7(b) and the sample sizes are the
same as for species A. For which of the two
species, A or B, is the evidence stronger that
resveratrol increases the metabolism rate for
this species? Explain your reasoning.

4.31 The Lady Tasting Tea By some accounts, the
first formal hypothesis test to use statistics involved
the claim of a lady tasting tea.12 In the 1920’s Muriel
Bristol-Roach, a British biological scientist, was at
a tea party where she claimed to be able to tell
whether milk was poured into a cup before or
after the tea. R.A. Fisher, an eminent statistician,
was also attending the party. As a natural skeptic,
Fisher assumed that Muriel had no ability to dis-
tinguish whether the milk or tea was poured first,
and decided to test her claim. An experiment was
designed in which Muriel would be presented with
some cups of tea with the milk poured first, and
some cups with the tea poured first.

(a) In plain English (no symbols), describe the null
and alternative hypotheses for this scenario.

(b) Let p be the true proportion of times Muriel
can guess correctly. State the null and alterna-
tive hypothesis in terms of p.

4.32 Flaxseed and Omega-3 Studies have shown
that omega-3 fatty acids have a wide variety of
health benefits. Omega-3 oils can be found in foods
such as fish, walnuts, and flaxseed. A company

12Salzburg, D. (2002) The Lady Tasting Tea: How Statistics Rev-
olutionized Science in the Twentieth Century, New York: W.H.
Freeman.
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selling milled flaxseed advertises that one table-
spoon of the product contains, on average, at least
3800 mg of ALNA, the primary omega-3.

(a) The company plans to conduct a test to ensure
that there is sufficient evidence that its claim is
correct. To be safe, the company wants to make
sure that evidence shows the average is higher
than 3800 mg. What are the null and alternative
hypotheses?

(b) Suppose, instead, that a consumer organization
plans to conduct a test to see if there is evidence
against the claim that the product contains an
average of 3800 mg per tablespoon. The con-
sumer organization will only take action if it
finds evidence that the claim made by the com-
pany is false and that the actual average amount
of omega-3 is less than 3800 mg. What are the
null and alternative hypotheses?

STATISTICAL TESTS?
In Exercises 4.33 to 4.39, indicate whether the anal-
ysis involves a statistical test. If it does involve a
statistical test, state the population parameter(s) of
interest and the null and alternative hypotheses.

4.33 Polling 1000 people in a large community to
determine the average number of hours a day peo-
ple watch television.

4.34 Polling 1000 people in a large community to
determine if there is evidence for the claim that the
percentage of people in the community living in a
mobile home is greater then 10%.

4.35 Utilizing the census of a community, which
includes information about all residents of the com-
munity, to determine if there is evidence for the
claim that the percentage of people in the commu-
nity living in a mobile home is greater than 10%.

4.36 Testing 100 right-handed participants on the
reaction time of their left and right hands to deter-
mine if there is evidence for the claim that the right
hand reacts faster than the left.

4.37 Testing 50 people in a driving simulator to find
the average reaction time to hit the brakes when an
object is seen in the view ahead.

4.38 Giving a Coke/Pepsi taste test to random peo-
ple in New York City to determine if there is evi-
dence for the claim that Pepsi is preferred.

4.39 Using the complete voting records of a county
to see if there is evidence that more than 50% of
the eligible voters in the county voted in the last
election.

4.40 Influencing VotersWhen getting voters to sup-
port a candidate in an election, is there a difference
between a recorded phone call from the candidate
or a flyer about the candidate sent through the
mail? A sample of 500 voters is randomly divided
into two groups of 250 each, with one group get-
ting the phone call and one group getting the flyer.
The voters are then contacted to see if they plan
to vote for the candidate in question. We wish to
see if there is evidence that the proportions of
support are different between the two methods of
campaigning.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Possible sample results are shown in Table 4.3.
Compute the two sample proportions: p̂c, the
proportion of voters getting the phone call who
say they will vote for the candidate, and p̂f , the
proportion of voters getting the flyer who say
they will vote for the candidate. Is there a dif-
ference in the sample proportions?

Table 4.3 Sample A: Is a phone call or a
flyer more effective?

Will Vote Will Not Vote
Sample A for Candidate for Candidate

Phone call 152 98
Flyer 145 105

(c) A different set of possible sample results are
shown in Table 4.4. Compute the same two sam-
ple proportions for this table.

Table 4.4 Sample B: Is a phone call or a flyer
more effective?

Will Vote Will Not Vote
Sample B for Candidate for Candidate

Phone call 188 62
Flyer 120 130

(d) Which of the two samples seems to offer stron-
ger evidence of a difference in effectiveness
between the two campaign methods? Explain
your reasoning.

4.41 Influencing Voters: Is a Phone Call More
Effective? Suppose, as in Exercise 4.40, that we
wish to compare methods of influencing voters to
support a particular candidate, but in this case
we are specifically interested in testing whether a
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phone call is more effective than a flyer. Suppose
also that our random sample consists of only 200
voters, with 100 chosen at random to get the flyer
and the rest getting a phone call.

(a) State the null and alternative hypotheses in this
situation.

(b) Display in a two-way table possible sample
results that would offer clear evidence that the
phone call is more effective.

(c) Display in a two-way table possible sample
results that offer no evidence at all that the
phone call is more effective.

(d) Display in a two-way table possible sample
results for which the outcome is not clear: there
is some evidence in the sample that the phone
call is more effective but it is possibly only due
to random chance and likely not strong enough
to generalize to the population.

4.2MEASURING EVIDENCE WITH P-VALUES

Recall from Section 4.1 that there are two possible explanations for why sample data
may support the alternative hypothesis: either the alternative hypothesis is true OR
the null hypothesis is true and the sample results were just due to random variation.
A hypothesis test evaluates evidence for the alternative hypothesis by evaluating
evidence against the null hypothesis and random variation. In this section, we learn
how to measure this evidence by answering two key questions:

• What kinds of statistics might we see, just by random chance, if the null hypothesis
were true?

• How unusual would it be to see a statistic as extreme as the observed sample
statistic, if the null hypothesis were true?

Let’s return to the situation described in Data 4.1 on page 280 comparing weight
gain between mice with and without a light on at night. The hypotheses are:

H0∶ 𝜇L = 𝜇D

Ha∶ 𝜇L > 𝜇D

where 𝜇L and 𝜇D represent the mean weight gain for all mice in the light and dark
conditions, respectively.

The data from the experiment are stored in LightatNight and shown again in
Table 4.5, and we see that the difference in this sample is xL − xD = 6.732 − 4.114 =
2.618 grams. In the sample, mice in the group with light at night gained more weight,
on average, than mice with darkness at night. Again, there are two possible expla-
nations for this: it might be that light at night is affecting weight gain, or it might
be that the difference is just due to random chance and has nothing to do with light
condition. How can we determine whether there is enough evidence against the ran-
dom chance option to be convincing that light at night matters? We need to have a
sense of what is likely to occur just by random chance. Again, understanding random
variation is key!

Table 4.5 Body mass gain with Light or Dark at night

Light 9.17 6.94 4.99 1.71 5.43 10.26 4.67 11.67 7.15 5.33 xL = 6.732
Dark 2.83 4.60 6.52 2.27 5.95 4.21 4.00 2.53 xD = 4.114

Randomization Distribution
In Chapter 3, we used a bootstrap distribution to understand how statistics randomly
vary from sample to sample. Here, we want to understand how statistics randomly
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vary from sample to sample, if the null hypothesis is true. Thus, when testing hypothe-
ses, we simulate samples in a way that is consistent with the null hypothesis. We call
these randomization samples.

Just as we did with bootstrap samples, for each simulated randomization sample,
we calculate the statistic of interest. We collect the value of the statistic for many
randomization samples to generate a randomization distribution. This distribution
approximates a sampling distribution of the statistic when the null hypothesis is true.

Randomization Distribution

Simulate many samples assuming the null hypothesis is true. Collect
the values of a sample statistic for each simulated sample to create a
randomization distribution.

The randomization distribution will be centered at the value indicated
by the null hypothesis and shows what values of the sample statistic
are likely to occur by random chance, if the null hypothesis is true.

Figure 4.8 shows a randomization distribution for 3000 values of xL − xD gen-
erated by assuming the null hypothesis of no difference in the average weight gain,
𝜇L = 𝜇D. Note that this randomization distribution is centered near zero since,
assuming H0 is true, we have 𝜇L − 𝜇D = 0. The values in the dotplot show what we
might expect to see for sample mean differences if the light and dark conditions
really have no effect on weight gain in mice.

To generate randomization samples under the null hypothesis from the origi-
nal mice data, we assume that a mouse’s weight gain would be the same whether
it was assigned to the Light group or the Dark group. Under the null hypothesis,
any of the values in the Light group could just as easily have come from the Dark
group and vice versa, if a different random assignment had been made at the start

Figure 4.8 Distribution
of differences in means
for 3000 randomizations
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null = 0
1 2 3

Samples = 3000
mean = 0.0090
st. dev. = 1.288

Left Tail Two-Tail Right Tail
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of the experiment. Thus, to simulate what would happen just by random chance,
we randomly reassign the 18 observed weight gains to two groups so that 10 val-
ues are put in the Light group and the remaining eight are assigned to the Dark
group.

For example, the data in Table 4.6 show the same 18 body mass gains after a
new random assignment into the two groups. We see that the largest body mass
gain of 11.67 grams was in the Light group and got randomly assigned to stay in
the Light group, but that the next two highest values, 10.26 and 9.17, were both
in the Light group but got randomly assigned to the Dark group in this simulated
assignment.

Table 4.6 Simulated randomization of body mass gain to groups

Light 5.43 7.15 2.27 1.71 6.52 6.94 4.00 11.67 2.83 5.33 xL = 5.385
Dark 5.95 10.26 4.60 4.21 2.53 9.17 4.67 4.99 xD = 5.798

The relevant sample statistic is the difference in sample means, xL − xD, and
we compute this difference for each such randomly generated assignment. For the
simulated assignment shown in Table 4.6, the difference in the sample means is xL −
xD = 5.385 − 5.798 = −0.413. Note that this statistic, by itself, is not very meaningful.
It is just the value obtained from one simulated randomization, just one possible
value we might see, if the null hypothesis were true, and just one of the dots shown
in the randomization distribution shown in Figure 4.8.

Imagine putting all 18 sample values on index cards, shuffling the deck and
repeatedly dealing them at random into two piles, with 10 cards in the “Light” group
and 8 in the “Dark” group. Each such random deal represents a different random
assignment of mice to the two experimental groups and, if the null hypothesis (no
effect due to light at night) is true, gives a plausible value for the difference in the
two sample means. If we repeat this process many times, we obtain a randomization
distribution, such as the one shown in Figure 4.8, of plausible differences that might
happen by random chance if the null hypothesis is true.

There are different ways to create randomization distributions, based on the
parameters involved and the way the data were collected. We discuss some of these
methods in more detail in Section 4.5. In every case, however, the randomization
distribution shows what statistics are likely to occur by random chance, if the null
hypothesis is true. We use technology, such as the online tools at StatKey, to auto-
mate the creation of a randomization distribution.13

Example 4.9
Use the randomization distribution in Figure 4.8 to determine whether each of the
following differences in sample means is likely to occur by random chance, if light at
night has no effect on weight gain in mice.

(a) xL − xD = 0.75 (b) xL − xD = 4.0

Solution (a) We see that a difference in means of 0.75 happened frequently in our simulated
samples, so this difference in sample means is likely to occur by random chance
if light at night has no effect.

13Supplementary materials with instructions for creating randomization distributions using various
statistical software packages are available online.
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(b) We see in Figure 4.8 that a difference in means as extreme as 4.0 never happened
in 3000 simulated samples, so this difference in sample means is very unlikely to
occur just by random chance if light at night has no effect.

Locating the Observed Statistic in a Randomization Distribution
The randomization distribution gives us a way to see what kinds of statistics

would occur, just by random chance, if the null hypothesis is true. The next natural
step is to find the observed statistic in this randomization distribution: how unusual
would our observed sample results be, if the null hypothesis were true? Statistics
that are very unlikely to occur just by random chance provide evidence against the
null hypothesis. See Figure 4.9.

Sample statistic here:
Could be just random variation.
Not much evidence against H0.

Sample statistic way out here:
Unlikely to be just random variation.
Strong evidence against H0!

Figure 4.9 Where does the sample statistic fall in the randomization distribution?

Locating the Observed Statistic in a Randomization
Distribution

The farther out the observed sample statistic is in the tail of a random-
ization distribution, the stronger the statistical evidence is against the
null hypothesis.

We see that statistics farther out in the tail of the randomization distribution
provide stronger evidence against the null hypothesis. We can assess this visually,
but would also like a more formal way to numerically quantify “how far out in
the tail.”

Measuring Strength of Evidence with a P-value
We see in Example 4.9 that a difference in means of 0.75 is relatively likely to occur
just by random chance in the Light at Night experiment, while a difference in means
of 4.0 is very unlikely to occur just by random chance. What about the actual dif-
ference in means we saw in the experiment, xL − xD = 6.732 − 4.114 = 2.618? How
likely is this sample result, if light at night has no effect?We need a more formal way
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to answer this question. This leads us to one of the most important ideas of statistical
inference: the p-value. The p-value measures how extreme sample results would be,
if the null hypothesis were true.

The P-value

The p-value is the proportion of samples, when the null hypothesis is
true, that would give a statistic as extreme as (or more extreme than)
the observed sample.

There are various ways to calculate p-values. In this chapter we’ll take an
approach similar to the bootstrapping procedures of Chapter 3 and calculate
the p-value by seeing where the sample statistic lies in a randomization distri-
bution. Since the randomization distribution shows what is likely to occur by
random chance if the null hypothesis is true, we find the p-value by determin-
ing what proportion of the simulated statistics are as extreme as the observed
statistic.

Finding a P-value on a Randomization Distribution

Example 4.10
Explain, using the definition of a p-value, how we can find the p-value for the light
at night experiment from the randomization distribution in Figure 4.8.

Solution The randomization distribution in Figure 4.8 shows 3000 simulated samples gen-
erated by assuming the null hypothesis is true. To find the p-value, we find the
proportion of these simulated samples that have statistics as extreme as the statistic
observed in the original sample, xL − xD = 2.618.

Figure 4.10 shows in red the simulated statistics in the randomization distribu-
tion that are at or beyond 2.618. We see that only 53 of the 3000 simulated samples
have differences in means that are so large. Thus, we have

p-value = 53∕3000 = 0.018.

If light at night does not affect weight gain, there is only about a 0.018 chance
of getting a difference in means as extreme as the observed 2.618.

Recall that there were two possible reasons for the sample difference in means
of 2.618: one possibility was that light at night really does tend to increase weight
gain (Ha), and the other possibility was that the difference is just due to random
variation and light at night does not affect weight gain in mice (H0). Because a
statistic this extreme is relatively unlikely to occur if the null hypothesis is true
(only a 0.018 chance), we have fairly strong evidence against the null hypothesis
and for the alternative hypothesis that light at night really does increase weight gain
in mice.

Example 4.11
Use Figure 4.8 or Figure 4.10 to determine which would have a larger p-value:
a sample difference in means of xL − xD = 2 or a sample difference in means of
xL − xD = 3?
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Figure 4.10 P-value:
Finding the proportion as
extreme as the observed
sample statistic
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Solution We see that there are many more dots (simulated statistics) beyond 2 than beyond
3, so, because the p-value is the proportion of dots beyond the observed statistic, the
p-value is greater for xL − xD = 2 than for xL − xD = 3.

P-values from Randomization Distributions

To find the p-value from a randomization distribution:

• We find the observed statistic in the randomization distribution.

• The p-value is the proportion of simulated statistics that are as
extreme as the observed statistic.

Sample statistics farther out in the tail of the randomization distribu-
tion give smaller p-values.

A randomization distribution allows us to see what kinds of statistics we would
observe, just by random chance, if the null hypothesis is true. The p-value then mea-
sures how extreme the observed statistic would be, if the null hypothesis were true,
by seeing how extreme the observed statistic is in the randomization distribution.
See Figure 4.11.

Just as different bootstrap distributions gave slightly different confidence inter-
vals for the same sample, different randomization distributions will give slightly
different p-values. Different simulations yield slightly different counts and p-value
estimates which are similar, but not identical. Our goal in constructing the random-
ization distribution is to get an idea of whether the sample data is unusual if the
null hypothesis is true, and variation in the third digit of the p-value is generally not
something to worry about. However, just as with confidence intervals, if we do care
about accuracy even in the third decimal place, we can simply increase the number
of simulated randomizations.
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Figure 4.11 Summary:
P-value from a
randomization
distribution
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What we might see by
random chance if the
null hypothesis is true
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P-values and the Alternative Hypothesis
As we have seen, we create the randomization distribution by assuming the

null hypothesis is true. Does the alternative hypothesis play any role in making
a randomization distribution or computing a p-value? For creating a randomiza-
tion distribution, the answer is no. The randomization samples depend on the null
hypothesis, but not the alternative. However, the alternative hypothesis is important
in determining the p-value because it determines which tail(s) to use to calculate
the p-value. In some tests, the alternative hypothesis specifies a particular direc-
tion (greater than or less than). We refer to these as right-tailed or left-tailed tests,
depending on whether the alternative hypothesis is greater than or less than, respec-
tively.14 In other cases, we are only looking to see if there is a difference without
specifying in advance in which direction it might lie. These are called two-tailed tests.
The definition of “more extreme” when computing a p-value depends on whether
the alternative hypothesis yields a test that is right-, left-, or two-tailed.

In the light at night example, the alternative hypothesis isHa ∶ 𝜇L > 𝜇D. We are
looking to see if the sample data support this claim that 𝜇L − 𝜇D > 0, which means
we are looking at the right side of the randomization distribution where values of
xL − xD are large. In this case, “more extreme than” means larger than, and we see
in Figure 4.10 that the p-value is the proportion of simulated samples to the right of
the observed statistic. This is an example of a right-tail test. The next two examples
illustrate left-tail and two-tail tests.

Example 4.12
Why do students hate zeros so much?

In a student survey, 250 students were asked to write down a 4 digit random number.
Only 12 of the 250 numbers ended with a zero. Does this provide evidence that
students do not like zeros in the last digit (and are not very good at making up
random numbers)? If the numbers were truly random, the values in the last digit

14We may also refer to one-tailed tests as upper or lower tail tests, depending on which side of the
randomization distribution gives evidence for Ha.
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would be evenly spread out between the 10 digits, so the proportion of zeros would
be p = 0.1.

(a) State the null and alternative hypotheses.

(b) Where will the randomization distribution be centered?

(c) Is this a right-tail, left-tail, or two-tailed test?

(d) Give the value and notation for the sample statistic.

(e) Use StatKey or other technology to generate a randomization distribution, and
find the p-value.

Solution (a) We are looking to see if p, the proportion of zeros that students put in the last
digit of random numbers, is less than the expected value of 0.1, so the hypotheses
are:

H0 ∶ p = 0.1

Ha ∶ p < 0.1

(b) The randomization distribution is created assuming the null hypothesis of p = 0.1
is true. Thus, the randomization distribution will be centered at 0.1.

(c) Since we are seeing if there is evidence that p < 0.1, we are interested in values
to the left of 0.1 on the number line, so this is a left-tail test.

(d) The statistic for the original sample of students is p̂ = 12∕250 = 0.048.

(e) Figure 4.12 shows one randomization distribution for 1000 simulated samples.
We see that the dotplot is centered at 0.1, as expected. In this case, “more
extreme than” means less than, and we look for dots (in red) to the left of the
sample statistic of 0.048. In fact, there is only one dot out of 1000 simulated
samples that is as extreme as the original data from the students, so we see that

p-value = 1
1000

= 0.001.

If students are just as likely to choose zeros as any other number, the chance
of seeing a sample proportion as low as 0.048 for this size sample is only about
0.001.

Figure 4.12 P-value in a
left-tail test
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Do men or women play more video games?

D A T A 4 . 4 Do Men or Women Play More Video Games?

A Pew Research study15 conducted in July 2015 asked 2001 US adults whether
they play “video games on a computer, TV, gaming console, or portable device
like a cell phone.” In the sample, 501 of the 1000 males and 477 of the 1001
females said that they played video games. Does this provide evidence of a
difference in the proportion playing video games, between males and
females? ◼

Example 4.13
In Data 4.4, state the null and alternative hypotheses and define any parameters
used. Where will the randomization distribution be centered? Is the test a left-tail,
right-tail, or two-tail test? Give notation and value for the relevant sample statistic.

Solution This is a hypothesis test for a difference in proportions. The hypotheses are:

H0 ∶ pM = pF
Ha ∶ pM ≠ pF

where pM is the proportion of US adult males who say they play video games and pF
is the proportion of US adult females who say they play video games. Since the null
hypothesis is pM = pF , the randomization distribution of differences will be centered
at zero. Since the question is asking whether there is a difference (not whether one
specific proportion is larger than the other), the alternative hypothesis is pM ≠ pF .
We are interested in extreme values on either side, so this is a two-tail test. Since
p̂M = 501∕1000 = 0.501 and p̂F = 477∕1001 = 0.477, the relevant sample statistic is

p̂M − p̂F = 0.501 − 0.477 = 0.024.

Example 4.14
Use StatKey or other technology to generate a randomization distribution and find
the p-value for the statistic in Example 4.13.

15Duggan, M., “Gaming and Gamers,” pewresearch.org, December 15, 2015.
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Solution Figure 4.13 shows a randomization distribution for 2000 simulated samples. As
expected the randomization distribution is centered at zero. The sample statistic of
0.024 is to the right of zero on the number line and we see that the proportion of
simulated samples more extreme on the right is 0.141. Since this is a two-tail test,
however, we care about values more extreme on either side, so we multiply the
proportion on the right by 2:

p-value = 2(0.141) = 0.282.

If there is no difference in proportion playing video games between males and
females, there is a 0.282 chance of seeing a difference this extreme for samples
this size.

Figure 4.13 P-value in a
two-tailed test

Left Tail Two-Tail Right Tail

p̂1 — p̂2Randomization Dotplot of Null hypothesis: P1 = P2

–0.06
0

10

20

30

40

50

60

70

80

90

–0.04 0.00

null = 0

0.02 0.04 0.06–0.02
0.024

0.1410.7180.141

–0.024

Samples = 2000
mean = 0.00088
st. dev. = 0.022

P-value and the Alternative Hypothesis

Right-tailed test: IfHa contains >, the p-value is the proportion of sim-
ulated statistics greater than or equal to the observed statistic, in the
right tail.

Left-tailed test: If Ha contains <, the p-value is the proportion of sim-
ulated statistics less than or equal to the observed statistic, in the
left tail.

Two-tailed test: If Ha contains ≠, we find the proportion of simulated
statistics in the smaller tail at or beyond the observed statistic, and
then to find the p-value, we double this proportion to account for the
other tail.

Take care when applying this method for a two-tailed test to always use the
proportion in the smaller tail. Otherwise, we might get a p-value larger than 1.0,
which is impossible!
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OrderMatters! The order in which we subtract to find the sample statistic should
match the alternative hypothesis. In the experiment on light at night, with 𝜇L and 𝜇D
representing mean body mass gain for mice with light or dark at night, respectively,
the alternative hypothesis is 𝜇L > 𝜇D which is the same as 𝜇L − 𝜇D > 0. To match
this alternative hypothesis, we find the difference in sample means the same way:
xL − xD = 2.618. We could instead have used 𝜇D < 𝜇L for the alternative hypothesis
(since seeing if the mean is less for those in darkness is the same as seeing if the
mean is greater for those in light) but then we would need to use xD − xL = −2.618
for the sample statistic. We should always be sure that the order in which we give
the parameters in the alternative hypothesis matches the order in which we subtract
in the observed statistic. This is particularly important in one-tailed tests.

Interpreting a P-value as Strength of Evidence
We have seen that sample statistics farther out in the tail of a randomization

distribution provide greater evidence against the null hypothesis and in support of
the alternative hypothesis. We now connect this idea to p-values.

Example 4.15
Do more than 30% of restaurant patrons forget a to-go box?

In Example 4.2 on page 283, we examine a claim that about 30% of people in a
restaurant who request a to-go box forget it when they leave. If we want to see
if there is evidence that the true proportion is larger than 30%, then the null and
alternative hypotheses are

H0 ∶ p = 0.30

Ha ∶ p > 0.30

where p is the proportion of diners at this restaurant who forget their to-go box. For
each sample proportion, find the p-value and interpret it in terms of evidence for the
alternative hypothesis. Which p-value provides stronger evidence for the alternative
hypothesis?

(a) p̂ = 39
120

= 0.325 (b) p̂ = 51
120

= 0.425

Solution In both cases, the sample proportion is greater than 0.3. Is it greater just because
of random variation or because the true population proportion really is greater
than 0.3?

(a) Figure 4.14(a) shows a randomization distribution for this test and we see that
the sample proportion p̂ = 0.325 is in a likely part of the distribution, with a
p-value of 0.283. Lots of the simulated samples were more extreme than this one,
and we see that this sample result is not very unusual just by random chance if
the proportion is really 0.3. This sample result doesn’t provide much evidence to
refute the null hypothesis.

(b) Figure 4.14(b) shows the same randomization distribution and we see that the
sample proportion p̂ = 0.425 is way out in the tail, with a p-value of 0.002. This
sample proportion is very unlikely to happen just by random chance if the true
proportion is really 0.3. This sample appears to provide evidence that the true
proportion is greater than 0.3. We have evidence to refute the null hypothesis
and support the alternative hypothesis!

The p-value of 0.002 provides stronger evidence for the alternative hypothesis than
the p-value of 0.283.
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Figure 4.14 Which p-value provides more evidence for the alternative hypothesis?

Interpreting a P-value as Strength of Evidence

The smaller the p-value, the stronger the statistical evidence is against
the null hypothesis and in support of the alternative hypothesis.

The p-value allows us to assess whether the null hypothesis is plausible (the
observed statistic could easily arise, just by random chance, if the null hypothesis is
true), or not plausible (the observed statistic would rarely be seen, just by random
chance, if the null hypothesis is true). How small does the p-value need to be for us
to decide the sample provides enough evidence to reject the null hypothesis in favor
of the alternative hypothesis? That is the topic we consider in the next section.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize that a randomization distribution shows what is likely to
happen by random chance if the null hypothesis is true

• Use technology to create a randomization distribution

• Interpret a p-value as the proportion of samples that would give a statis-
tic as extreme as the observed sample, if the null hypothesis is true

• Distinguish between one-tailed and two-tailed tests in finding p-values

• Find a p-value from a randomization distribution

• Recognize that the more extreme a statistic is in the randomization dis-
tribution, the smaller the p-value, and the stronger the evidence against
the null hypothesis and in support of the alternative hypothesis

Exercises for Section 4.2

SKILL BUILDER 1
In Exercises 4.42 to 4.46, null and alternative hypo-
theses for a test are given. Give the notation (x, for
example) for a sample statistic we might record for
each simulated sample to create the randomization
distribution.

4.42 H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5

4.43 H0 ∶ 𝜇 = 15 vs Ha ∶ 𝜇 < 15

4.44 H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 ≠ 0

4.45 H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 > 𝜇2

4.46 H0 ∶ p1 = p2 vsHa ∶ p1 ≠ p2
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SKILL BUILDER 2
In Exercises 4.47 to 4.51, the null and alternative
hypotheses for a test are given as well as some
information about the actual sample(s) and the
statistic that is computed for each randomization
sample. Indicate where the randomization distribu-
tion will be centered. In addition, indicate whether
the test is a left-tail test, a right-tail test, or a two-
tailed test.

4.47 Hypotheses: H0 ∶ p = 0.5 vs Ha ∶ p < 0.5
Sample: p̂ = 0.4, n = 30
Randomization statistic = p̂

4.48 Hypotheses: H0 ∶ 𝜇 = 10 vs Ha ∶ 𝜇 > 10
Sample: x = 12, s = 3.8, n = 40
Randomization statistic = x

4.49 Hypotheses: H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 ≠ 0
Sample: r = −0.29, n = 50
Randomization statistic = r

4.50 Hypotheses: H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2
Sample: x1 = 2.7 and x2 = 2.1
Randomization statistic = x1 − x2
4.51 Hypotheses: H0 ∶ p1 = p2 vs Ha ∶ p1 > p2
Sample: p̂1 = 0.3, n1 = 20 and p̂2 = 0.167, n2 = 12
Randomization statistic = p̂1 − p̂2

SKILL BUILDER 3
In Exercises 4.52 and 4.53, a randomization distri-
bution is given for a hypothesis test, and shows what
values of the sample statistic are likely to occur if
the null hypothesis is true. Several possible values
are given for a sample statistic. In each case, indi-
cate whether seeing a sample statistic as extreme as
the value given is (i) reasonably likely to occur when
the null hypothesis is true, (ii) unusual but might
occur occasionally when the null hypothesis is true,
or (iii) extremely unlikely to ever occur when the
null hypothesis is true.

4.52 Figure 4.15(a) shows a randomization distri-
bution for a hypothesis test with H0 ∶ p = 0.30.
Answer the question for these possible sample
proportions:

(a) p̂ = 0.1 (b) p̂ = 0.35 (c) p̂ = 0.6

0.02 0.09 0.16 0.23 0.30
(a)

0.37 0.44 0.51 0.58
(b)

285 290 295 300 305 310 315

Figure 4.15 Randomization distributions for Skill Builder 3

4.53 Figure 4.15(b) shows a randomization distri-
bution for a hypothesis test with H0 ∶ 𝜇 = 300.
Answer the question for these possible sample
means:

(a) x = 250 (b) x = 305 (c) x = 315

SKILL BUILDER 4
In Exercises 4.54 to 4.56, a randomization distribu-
tion based on 1000 simulated samples is given along
with the relevant null and alternative hypotheses.
Which p-value most closely matches the observed
statistic?

4.54 Figure 4.16 shows a randomization distribu-
tion for testing H0 ∶ 𝜇 = 50 vs Ha ∶ 𝜇 > 50. In each
case, use the distribution to decide which value is
closer to the p-value for the observed sample mean.

(a) The p-value for x̄ = 68 is closest to: 0.01 or 0.25?

(b) The p-value for x̄ = 54 is closest to: 0.10 or 0.30?

(c) The p-value for x̄ = 63 is closest to: 0.05 or 0.50?
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Figure 4.16 Randomization distribution for
Exercise 4.54

4.55 Figure 4.17 shows a randomization distribu-
tion for testingH0 ∶ p = 0.3 vsHa ∶ p < 0.3. In each
case, use the distribution to decide which value is
closer to the p-value for the observed sample pro-
portion.
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Figure 4.17 Randomization distribution for
Exercise 4.55

(a) The p-value for p̂ = 0.25 is closest to: 0.001
or 0.30?

(b) The p-value for p̂ = 0.15 is closest to: 0.04
or 0.40?

(c) The p-value for p̂ = 0.35 is closest to: 0.30
or 0.70?

4.56 Figure 4.18 shows a randomization distribu-
tion for testing H0 ∶ 𝜇1 = 𝜇2 versus Ha ∶ 𝜇1 ≠ 𝜇2.
The statistic used for each sample is D = x1 − x2. In
each case, use the distribution to decide which value
is closer to the p-value for the observed difference
in sample means.

(a) The p-value forD = x̄1 − x̄2 = −2.9 is closest to:
0.01 or 0.25?

(b) The p-value for D = x̄1 − x̄2 = 1.2 is closest to:
0.30 or 0.60?
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Figure 4.18 Randomization distribution for
Exercises 4.56 to 4.60

SKILL BUILDER 5
Exercises 4.57 to 4.60 also refer to Figure 4.18, which
shows a randomization distribution for hypotheses
H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2. The statistic used for

each sample isD = x1 − x2. Answer parts (a) and (b)
using the two possible sample results given in each
exercise.

(a) For each D-value, sketch a smooth curve
to roughly approximate the distribution in
Figure 4.18, mark theD-value on the horizontal
axis, and shade in the proportion of area corre-
sponding to the p-value.

(b) Which sample provides the strongest evidence
againstH0? Why?

4.57 D = 2.8 or D = 1.3

4.58 D = 0.7 or D = −1.3
4.59 x1 = 17.3, x2 = 18.7 or x1 = 19.0, x2 = 15.4

4.60 x1 = 95.7, x2 = 93.5 or x1 = 94.1, x2 = 96.3

SKILL BUILDER 6
Exercises 4.61 to 4.66 give null and alternative hypo-
theses for a population proportion, as well as
sample results. Use StatKey or other technology to
generate a randomization distribution and calculate
a p-value. StatKey tip: Use “Test for a Single Pro-
portion” and then “Edit Data” to enter the sample
information.

4.61 Hypotheses:H0 ∶ p = 0.5 vsHa ∶ p > 0.5
Sample data: p̂ = 30∕50 = 0.60 with n = 50

4.62 Hypotheses:H0 ∶ p = 0.5 vsHa ∶ p < 0.5
Sample data: p̂ = 38∕100 = 0.38 with n = 100

4.63 Hypotheses:H0 ∶ p = 0.7 vsHa ∶ p < 0.7
Sample data: p̂ = 125∕200 = 0.625 with n = 200

4.64 Hypotheses:H0 ∶ p = 0.6 vsHa ∶ p > 0.6
Sample data: p̂ = 52∕80 = 0.65 with n = 80

4.65 Hypotheses:H0 ∶ p = 0.5 vsHa ∶ p ≠ 0.5
Sample data: p̂ = 42∕100 = 0.42 with n = 100

4.66 Hypotheses:H0 ∶ p = 0.5 vsHa ∶ p ≠ 0.5
Sample data: p̂ = 28∕40 = 0.70 with n = 40

SKILL BUILDER 7
In Exercises 4.67 to 4.70, two p-values are given.
Which one provides the strongest evidence against
H0?

4.67 p-value = 0.90 or p-value = 0.08

4.68 p-value = 0.04 or p-value = 0.62

4.69 p-value = 0.007 or p-value = 0.13

4.70 p-value = 0.02 or p-value = 0.0008

4.71 Lead Toxicity in Drinking Water The US
Environmental ProtectionAgency has set the action
level for lead contamination of drinking water at
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15 ppb (parts per billion).16 Samples are regularly
tested to ensure that mean lead contamination is not
above this level. Suppose we are testing:

H0 ∶ 𝜇 = 15

Ha ∶ 𝜇 > 15

and we have created a randomization distribution
from our sample. Two possible sample means are
shown:

A ∶ x = 19.7 B ∶ x = 15.8

(a) Which samplemean,A orB, will be closer to the
center of the randomization distribution?

(b) Which sample mean, A or B, will be farther out
in the tail of the randomization distribution?

(c) Which sample mean, A or B, will provide the
stronger evidence against H0 and in support of
Ha?

(d) Explain in the context of lead contamination
what it means to “provide evidence against H0
and in support ofHa.”

4.72 Multitasking in the Classroom “Yes, cell-
phones and laptops do affect students’ grades, and
no, students can’t multitask as well as they say they
can.”17 This sentence refers to a study18 in which one
professor taught two sections of an upper-level cog-
nitive psychology course. Students were allowed to
use electronic devices for half of the lectures and not
allowed to use them for the other half, with students
in the two sections receiving opposite instructions.
At theendof the semester, gradeson theallowed/not
allowed portions of the final exam were compared.
We are testing to see if students performbetterwhen
they are not distracted by electronic devices during
class. Using 𝜇1 for mean grade on material when
devices are not allowed and 𝜇2 for mean grade on
material when devices are allowed, the hypotheses
are

H0 ∶ 𝜇1 = 𝜇2

Ha ∶ 𝜇1 > 𝜇2

Suppose we have created a randomization distribu-
tion from our sample. Two possible differences in
sample means are shown. (We investigate the actual
observed results in Chapter 6.)

A ∶ x1 − x2 = 2.8 B ∶ x1 − x2 = 5.7

16www.atsdr.cdc.gov
17Whitford E, “The Myth of Multitasking,” Inside Higher Ed,
July 27, 2018.
18Glass A and Kang M, “Dividing attention in the classroom
reduces exam performance,”Educational Psychology, 39(3), July
26, 2018.

(a) Which sample result,A orB, will be closer to the
center of the randomization distribution?

(b) Which sample result, A or B, will be farther out
in the tail of the randomization distribution?

(c) Which sample result, A or B, will provide the
stronger evidence against H0 and in support of
Ha?

(d) Explain in the context of this situation what it
means to “provide evidence against H0 and in
support ofHa.”

4.73 Are Husbands Older Than Wives?
Exercise 2.213 introduces a dataset giving the ages
of the two people getting married for a sample of
105 marriage licenses. All of the couples in the sam-
ple were male-female couples. We are interested
in whether the sample provides evidence that hus-
bands are, on average, older than their wives. For
each couple, we calculate values for the new vari-
able of the difference in the ages: Husband’s age
minus Wife’s age. For the 105 differences, the mean
is 2.829 years.On average, for the couples in the sam-
ple, the husband is 2.829 years older than his wife.
We wish to determine whether this sample provides
evidence that the mean difference in ages (hus-
band’s age minus wife’s age) is greater than zero for
all male-female married couples. A randomization
distribution for this test is shown in Figure 4.19.

(a) Give the null and alternative hypotheses, using
𝜇 to represent the mean difference in ages (hus-
band minus wife) for all male-female married
couples.

(b) Where is the randomization distribution cen-
tered? Why is it centered there?

(c) Give notation and value for the sample statistic.
Describe in words where the sample statistic is
located on the randomization distribution: near
the center, somewhat in the left tail, somewhat
in the right tail, way out beyond the left tail, or
way out beyond the right tail?
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Figure 4.19 Randomization distribution for difference
in husband/wife ages
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(d) If the mean age difference is zero, is this partic-
ular sample statistic (x = 2.829) likely to happen
just by random chance?

(e) Does the sample statistic appear to provide
strong evidence againstH0 and in support ofHa?

(f) Does the evidence support that, on average, hus-
bands are older than their wives?

4.74 AreHusbandsMore Likely to BeOlder Than
Wives? Exercise 2.213 introduces a dataset giving
the ages of the two people getting married for a
sample of marriage licenses, and in Exercise 4.73
we examine whether, on average, husbands are
older than their wives. In this exercise, we examine
whether it is more likely that the husband is older,
in male-female married couples. In the sample, the
husband is older in 71.4% of the couples. We wish
to determine whether this sample provides evidence
that the proportion of male-female married couples
for which the husband is older is greater than 0.5. A
randomization distribution for this test is shown in
Figure 4.20.

(a) Give the null and alternative hypotheses, using
p to represent the proportion of all male-female
married couples for which the husband is older.

(b) Where is the randomization distribution cen-
tered? Why is it centered there?

(c) Give notation and value for the sample statistic.
Describe in words where the sample statistic is
located on the randomization distribution: near
the center, somewhat in the left tail, somewhat
in the right tail, way out beyond the left tail, or
way out beyond the right tail?

(d) If husbands andwives are equally likely to be the
older one (with p = 0.5), is this particular sam-
ple statistic (p̂ = 0.714) likely to happen just by
random chance in a sample of this size?
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Figure 4.20 Randomization distribution for
proportion with husband older

(e) Does the sample statistic appear to provide
strong evidence againstH0 and in support ofHa?

(f) Does the evidence support that, on average,
husbands are more likely to be older than their
wives?

4.75 Finger Tapping and Caffeine The effects of
caffeine on the body have been extensively studied.
In one experiment,19 researchers examined whether
caffeine increases the rate at which people are able
to tap their fingers. Twenty students were randomly
divided into two groups of 10 students each, with
one group receiving caffeinated coffee and one
group receiving decaffeinated coffee. The study was
double-blind, andafter a 2-hourperiod, each student
was tested to measure finger tapping rate (taps per
minute). The goal of the experiment was to deter-
mine whether caffeine produces an increase in the
average tap rate. The finger-tapping rates measured
in this experiment are stored in CaffeineTaps. A
distribution of differences in means, xc − xn, for ran-
domization samples from this experiment is given in
Figure 4.21.

(a) State the null and alternative hypotheses.

(b) Sketch a smooth curve that roughly approxi-
mates the distribution in Figure 4.21 and shade
in the proportion of area corresponding to the p-
value for a difference in average sample tap rates
of x̄c − x̄n = 1.6.Which of the following values is
closest to the p-value: 0.60, 0.45, 0.11, or 0.03?
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Figure 4.21 Distribution of differences in means for
1000 randomizations when 𝝁c = 𝝁n

19Hand, A.J., Daly, F., Lund, A.D., McConway, K.J. and
Ostrowski, E., Handbook of Small Data Sets, Chapman and
Hall, London, 1994, p. 40.
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(c) On another sketch of the distribution in
Figure 4.21, shade in the proportion of area cor-
responding to the p-value for a difference in
average sample tap rates of x̄c − x̄n = 2.4.Which
of the following values is closest to the p-value:
0.60, 0.45, 0.11, or 0.03?

(d) Which of the results given in parts (b) and (c) (a
difference of 1.6 or a difference of 2.4) is likely to
provide strongerevidence that caffeine increases
average finger-tapping rate?

4.76 Influencing Voters: Is a Phone Call Better
Than a Flyer? Exercise 4.41 on page 294 describes
a study to investigate whether a recorded phone call
is more effective than a flyer in persuading voters to
vote for a particular candidate. The response vari-
able is the proportion of voters planning to vote for
the candidate, with pc and pf representing the pro-
portions for the two methods (receiving a phone
call and receiving a flyer, respectively). The sam-
ple statistic of interest is p̂c − p̂f . We are testing
H0 ∶ pc = pf vs Ha ∶ pc > pf . A randomization dis-
tribution of differences in proportions, p̂c − p̂f , for
this test is shown in Figure 4.22.
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Figure 4.22 Randomization distribution using
n = 1000 for testing H0 ∶ pc = pf

(a) Sketch a smooth curve that roughly approxi-
mates the distribution in Figure 4.22 and shade
in the proportion of the area corresponding to
the p-value for the sample statistic p̂c − p̂f = 0.3.

(b) Four possible sample statistics are given, along
with four possible p-values. Match the statistics
with the p-values.

p̂c − p̂f ∶ 0.1, 0.3, 0.5, 0.65

p-values ∶ 0.012, 0.001, 0.365, 0.085

(c) Interpret thep-value 0.001 in termsof theproba-
bilityof the results happeningby randomchance.

(d) Of the four statistics given in part (b), which is
likely to provide the strongest evidence that a
phone call is more effective?

4.77 Influencing Voters: Is There a Difference in
Effectiveness between a Phone Call and a Flyer?
Exercise 4.40 on page 294 describes a study to inves-
tigate which method, a recorded phone call or a
flyer, is more effective in persuading voters to vote
for a particular candidate. Since in this case, the
alternative hypothesis is not specified in a partic-
ular direction, the hypotheses are: H0 ∶ pc = pf vs
Ha ∶ pc ≠ pf . All else is as in Exercise 4.76, includ-
ing the randomization distribution for p̂c − p̂f shown
in Figure 4.22.

(a) Sketch smooth curves that roughly approxi-
mate the distribution in Figure 4.22 and shade
in the proportion of the area corresponding
to the p-value for each of p̂c − p̂f = 0.2 and
p̂c − p̂f = −0.4.

(b) Two possible sample statistics are given below,
along with several possible p-values. Select the
most accurate p-value for each sample statistic.

p̂c − p̂f∶ 0.2,−0.4
p-values ∶ 0.008, 0.066, 0.150, 0.392, 0.842

(c) Of the two statistics given in part (b), which is
likely to provide the strongest evidence that the
methods are not equally effective?

4.78 If You Break an Arm, Use Your Brain!
Multiple studiesarehelpingusunderstand thepower
of the mind on the body. One such study20 exam-
ines the effect of imagery on muscle strength. In the
study, 29 healthy individuals underwent four weeks
of wrist immobilization to induce weakness. Half
of the participants were randomly assigned to men-
tally imagine strong muscle contractions in that arm
(without actually moving the arm.) At the end of
the four weeks, the percentage decrease in muscle
strength was measured for all the participants, and
we are testing to see if mean decrease is greater for
people who do not use mental imaging when mus-
cles are immobilized than for people who do. For
the 15 participants not using anymental imagery, the
mean percent decrease in muscle strength was 51.2
while for the 14 participants using imagery, it was
24.5. A randomization distribution of differences in
means (mean decrease with no imagery minus mean
decrease with imagery) using 1000 simulated sam-
ples is shown in Figure 4.23.

20Clark, B.C., et al., “The power of the mind: The cortex as a crit-
ical determinant of muscle strength/weakness,” J Neurophysiol,
112: 3219–26, October, 2014.
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Figure 4.23 Does imagining motion reduce muscle loss?

(a) State the null and alternative hypotheses.

(b) Give the notation and value for the sample
statistic.

(c) Use the randomization distribution to estimate
the p-value.

4.79 Colonoscopy, Anyone? A colonoscopy is a
screening test for colon cancer, recommended as a
routine test for adults over age 50. One study21 pro-
vides some evidence that this test saves lives. The
proportion of people with colon polyps expected to
die from colon cancer is 0.01. A sample of 2602 peo-
ple who had polyps removed during a colonoscopy
were followed for 20 years, and 12 of them died
from colon cancer. We want to assess the strength
of evidence that the proportion of people who die
from colon cancer after having polyps removed in
a colonoscopy is less than the expected proportion
(without a colonoscopy) of 0.01.

(a) What are the null and alternative hypotheses?

(b) What is the sample proportion?

(c) Figure 4.24 shows a randomization distribution
of proportions for this test. Use the fact that
there are 1000 dots in the distribution to find the
p-value. Explain your reasoning.

0.01000.0046

Figure 4.24 Randomization distribution for 1000
samples testing effectiveness of colonoscopies

21Zauber, et al., “Colonoscopic Polypectomy and Long-Term
Prevention of Colorectal-Cancer Deaths,” New England Journal
of Medicine, 2012; 366: 687–96.

4.80 Arsenic in Chicken Data 4.3 on page 287 dis-
cusses a test to determine if themean level of arsenic
in chickenmeat is above 80 ppb. If a restaurant chain
finds significant evidence that themean arsenic level
is above 80, the chain will stop using that supplier of
chicken meat. The hypotheses are

H0 ∶ 𝜇 = 80

Ha ∶ 𝜇 > 80

where 𝜇 represents the mean arsenic level in all
chicken meat from that supplier. Samples from two
different suppliers are analyzed, and the resulting
p-values are given:

Sample from Supplier A: p-value is 0.0003
Sample from Supplier B: p-value is 0.3500

(a) Interpret eachp-value in termsof theprobability
of the results happening by random chance.

(b) Which p-value shows stronger evidence for the
alternative hypothesis? What does this mean in
terms of arsenic and chickens?

(c) Which supplier, A or B, should the chain get
chickens from in order to avoid too high a level
of arsenic?

4.81 Football Experience and Brain Size Exercise
2.165 on page 112 introduces a study examining
the relationship of football and concussions on hip-
pocampus volume in the brain. The study included
three groups with n = 25 in each group: healthy con-
trols who had never played football, football players
with no history of concussions, and football players
with a history of concussions. In this exercise, we
use the first two groups (Control vs FBNoConcuss)
to test to see if there is evidence that the average
brain size in people who have never played foot-
ball is larger than average brain size for football
players with no history of concussions. The data for
this exercise are in FootballBrainwith hippocampus
brain size (in 𝜇L) stored in a variable calledHipp.

(a) What are the null and alternative hypotheses?

(b) UseStatKeyorother technology tofind thevalue
of the relevant sample statistic.
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(c) Use StatKey or other technology to find the p-
value.

(d) Does it appear that this difference in brain size
is just due to random chance?

4.82 Concussions and Brain SizeExercise 4.81 dis-
cusses a study comparing average brain size between
three groups of subjects. In this exercise, we test for
evidence that average brain size is larger in football
players who have never had a concussion (FBNo-
Concuss) than in football players with a history of
concussions (FBConcuss). The data are in Football-
Brain where the variable Hipp measures brain size
as the volume of the hippocampus (in 𝜇L) for each
subject.

(a) What are the null and alternative hypotheses?

(b) UseStatKeyorother technology tofind thevalue
of the relevant sample statistic.

(c) Use StatKey or other technology to find the
p-value.

(d) Does it appear that this difference in brain size
is just due to random chance?

RATS PLAY HIDE-AND-SEEK
Exercises 4.83 to 4.85 examine the study introduced
in Exercise 2.24 on rats learning to play hide-and-
seekwithhumans.Thegamehappens in a large room
with several boxes, some transparent (see-through)
and others opaque (not see-through), and the rats
wander through the boxes. We are interested in
whether the rats understand thegamewell enough to
know that opaque boxes are better when hiding. The
data are reproduced in Table 4.7. For each exercise:

(a) State the null and alternative hypotheses.

(b) Give notation and value of the sample statistic.

(c) Use a randomization distribution to find the p-
value.

Table 4.7 Rats play hide-and-seek

Transparent Opaque Total
Hiding 15 38 53
Seeking 17 14 31
Total 32 52 84

4.83 Do Rats Know How to Hide? Considering
only the rats who are hiding, wewant to test whether
the proportion of times the hiding rats pick an
opaque box is greater than the equally likely value
of 0.50.

4.84 Do Seeking Rats Care Which Box? Consid-
ering only the rats who are seeking, we want to test
whether theproportionof times the seeking rats pick
an opaque box is different than the equally likely
value of 0.50.

4.85 Do Rats Behave Differently Between Hiding
and Seeking? Considering all the data, we want to
test whether the proportion of hiding rats picking an
opaque box is greater than the proportion of seeking
rats picking an opaque box.

4.86 Do You Own a Smartphone? A study22 con-
ducted in July 2015 examines smartphone own-
ership by US adults. A random sample of 2001
people were surveyed, and the study shows that 688
of the989menowna smartphoneand671of the1012
women own a smartphone. We want to test whether
the survey results provide evidence of a difference in
the proportion owning a smartphone between men
and women.

(a) State the null and alternative hypotheses, and
define the parameters.

(b) Give the notation and value of the sample statis-
tic. In the sample, which group has higher smart-
phone ownership: men or women?

(c) Use StatKey or other technology to find the p-
value.

4.87 Do You Own a Tablet? A study23 conducted
in June 2015 examines ownership of tablet comput-
ers by US adults. A random sample of 959 people
were surveyed, and we are told that 197 of the 455
men own a tablet and 235 of the 504 women own
a tablet. We want to test whether the survey results
provide evidence of a difference in the proportion
owning a tablet between men and women.

(a) State the null and alternative hypotheses, and
define the parameters.

(b) Give the notation and value of the sample statis-
tic. In the sample, which group has higher tablet
ownership: men or women?

(c) Use StatKey or other technology to find the p-
value.

22Anderson, M., “The Demographics of Device Ownership,”
pewresearch.org, October 29, 2015.
23Anderson, M., “The Demographics of Device Ownership,”
pewresearch.org, October 29, 2015.
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4.88 Are Antimicrobial Ingredients Having the
Opposite Effect? Exercise 3.135 on page 274 intro-
duced a study examining the effect of triclosan on
staph infections. Triclosan is found in soap andmany
other products and is antimicrobial, so we expect
it to lower one’s chance of having a staph infec-
tion. However, the opposite was found in the study.
Microbiologists swabbed the noses of 90 people, and
recordedwhichhaddetectable levels of triclosanand
which had evidence of carrying the staph bacteria.
The results are shown in Table 4.8.

Table 4.8 Does triclosan increase staph
infections?

Staph No Staph Total
Triclosan 24 13 37
No Triclosan 15 38 53
Total 39 51 90

(a) What proportion of thosewith triclosan have the
staph bacteria? What proportion of those with-
out triclosan have the staph bacteria? What is
the sample difference in proportions?

(b) We wish to test to see if the effect found in the
sample generalizes to the population. In testing
to see if there is evidence that people with tri-
closan are more likely to have staph bacteria,
what are the null and alternative hypotheses?

(c) Use StatKey or other technology to find the p-
value for the test.

4.89 Testing the Lady Tasting TeaExercise 4.31 on
page 293 introduces a historical scenario in which
a British woman, Muriel Bristol-Roach, claimed to
be able to tell whether milk had been poured into a
cup before or after the tea. An experiment was con-
ducted in whichMuriel was presented with 8 cups of
tea, and for each cup she correctly guessed whether
the milk was added first or the tea added first. Let’s
assume that Muriel did not know beforehand how
many of the 8 cups had tea first and how many had
milk first. Let p represent the true proportion of
timesMuriel can guess correctly.Our hypotheses are
H0 ∶ p = 0.5 (random guessing) andHa ∶ p > 0.5.

(a) Give the value and notation for the sample
statistic.

(b) Use StatKey or other technology to generate a
randomization distribution, andfind the p-value.

4.90 Definition of a P-value Using the definition
of a p-value, explain why the area in the tail of
a randomization distribution is used to compute a
p-value.

ARE ULTRA-PROCESSED FOODS MAKING
US FAT?
Twenty adults were admitted to the National Insti-
tutes of Health (NIH) Clinical Center and had all
of their food supplied for 4 weeks. Each was given
a diet of ultra-processed foods for two weeks, and
a diet of unprocessed foods for two weeks, with the
order of the diet randomized. The diets as presented
were matched for calories, sugar, fat, fiber, and
micronutrients, but then participants could choose
how much of each food to eat. Several different
response variables were recorded under the two
diets, with the differences for each person, ultra-
processed response - unprocessed response, avail-
able in ProcessedFoods.24 Recall from Section 1.3
that thereare threepossible explanations forwhy the
sample data might show higher or lower responses
under either diet:

(i) Eating ultra-processed foods, as opposed
to unprocessed foods, causes the different
responses

(ii) Thegroupsdifferedatbaseline,beforepresented
with the different diets

(iii) Just random chance (no real difference in
response by diet).

Also recall that evaluating evidence for the causal
explanation, (i), requiresevaluatingevidenceagainst
the alternative explanations, (ii) and (iii). Exercises
4.91 to 4.94 examine this evidence for several differ-
ent response variables.

4.91 Weight Gain Do the data provide evidence
that eating ultra-processed foods, as opposed to
unprocessed food, causes weight gain? The differ-
ences inweight gain, ultra-processed− unprocessed,
are in the variableWeightGain.

(a) Is average weight gain higher under the ultra-
processed diet in the sample? By how much?

(b) Is there evidence against explanation (ii)? Why
or why not?

24Hall KD, et al. (2019). “Ultra-Processed Diets Cause Excess
Calorie Intake andWeightGain: An Inpatient RandomizedCon-
trolled Trial ofAd Libitum Food Intake,”Cell Metabolism, 30(1):
67–77.
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(c) Is there evidence against explanation (iii)? Why
or why not?

(d) Based on your answers to (a), (b) and (c), do
the data provide evidence that eating ultra-
processed foods, as opposed to unprocessed
foods, causes weight gain?

4.92 Calories Do the data provide evidence that
eating ultra-processed foods, as opposed to unpro-
cessed food, causes people to consume more calo-
ries? The differences in weight gain, ultra-processed
− unprocessed, are in the variable Kcal.

(a) Is average daily caloric intake higher under
the ultra-processed diet in the sample? By how
much?

(b) Is there evidence against explanation (ii)? Why
or why not?

(c) Is there evidence against explanation (iii)? Why
or why not?

(d) Based on your answers to (a), (b) and (c), do
the data provide evidence that eating ultra-
processed foods, as opposed to unprocessed
foods, causes people to consume more calories?

4.93 Sugar The study also collected data on con-
sumption for a variety of different macronutrients,
and although the presented diets were matched for
these macronutrients, participants were allowed to
choose which foods and how much food they actu-
ally consumed, so consumption of macronutrients
may differ between the groups. Do the data pro-
vide evidence that eating ultra-processed foods, as
opposed to unprocessed foods, causes people to eat
less sugar?The differences in average grams of sugar
consumed daily, ultra-processed − unprocessed, are
in the variable Sugar. (If you are interested in other
macronutrients, you can also look at the data for fat,
protein, carbohydrates, and fiber).

(a) Did people consumemore sugar under the ultra-
processed or the unprocessed diet? By how
much?

(b) Is there evidence against explanation (ii)? Why
or why not?

(c) Is there evidence against explanation (iii)? Why
or why not?

(d) Based on your answers to (a), (b) and (c), do
the data provide evidence that eating ultra-
processed foods, as opposed to unprocessed
foods, causes people to consume less sugar?

4.94 Glucagon The study also drew blood from
the participants to measure a variety of different
appetite hormones. One of the hormones measured
was glucagon, a hormone responsible for regulating
blood sugar and increasing feelings of satiety.Do the
data provide evidence that eating ultra-processed
foods, as opposed to unprocessed foods, increases
levels of glucagon? The differences in glucagon
levels, ultra-processed − unprocessed, are in the
variable Glucagon. (If you are interested in other
appetite hormones, you can also look at the data for
leptin, ghrelin, and PYY).

(a) Are glucagon levels higher under the ultra-
processed diet in the sample? By how much?

(b) Is there evidence against explanation (ii)? Why
or why not?

(c) Is there evidence against explanation (iii)? Why
or why not?

(d) Based on your answers to (a), (b) and (c), do
the data provide evidence that eating ultra-
processed foods, as opposed to unprocessed
foods, causes higher glucagon levels?

4.95 RollingDiceYouroll a die 60 times and record
the sample proportion of 5’s, and you want to test
whether the die is biased to give more 5’s than a fair
diewouldordinarily give.Tofind thep-value for your
sampledata, youcreatea randomizationdistribution
of proportions of 5’s in many simulated samples of
size 60 with a fair die.
(a) State the null and alternative hypotheses.

(b) Where will the center of the distribution be?
Why?

(c) Give an example of a sample proportion for
which the number of 5’s obtained is less than
what you would expect in a fair die.

(d) Will your answer to part (c) lie on the left or the
right of the center of the randomization distri-
bution?

(e) To find the p-value for your answer to part (c),
would you look at the left, right, or both tails?

(f) For your answer in part (c), can you say anything
about the size of the p-value?

4.96 What IsYourLuckyNumber?Thirty students
are asked to choose a randomnumber between 0 and
9, inclusive, to create a data set of n = 30 digits. If the
numbers are truly random, we would expect about
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three 0’s, three 1’s, three 2’s, and so on. If the dataset
includes eight 7’s, how unusual is that? If we look
exclusively at the number of 7’s, we expect the pro-
portion of 7’s to be 0.1 (since there are 10 possible
numbers) and thenumber of 7’s to be 3 in a sample of
size 30. We are testing H0 ∶ p = 0.1 vs Ha ∶ p ≠ 0.1,
where p is the proportion of 7’s.We can generate the
randomization distribution by generating 1000 sets
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Figure 4.25 Randomization distribution for 1000
samples of number of 7’s in 30 digits when H0 ∶ p = 0.1

of 30 random digits and recording X = the number
of 7’s in each simulated sample. See Figure 4.25.

(a) Notice that this randomizationdistribution isnot
symmetric. This is a two-tailed test, so we need
to consider both “tails.” How far is X = 8 from
the expected value of 3?What number would be
equally far out on the other side? Explain why it
is better in this situation to double the observed
one-tailed p-value rather than to add the exact
values on both sides.

(b) What is the p-value for the observed statistic of
X = 8 sevens when doing the two-tailed test?

(c) The randomization distribution in Figure 4.25
would apply to any digit (not just 7’s) if the null
hypothesis is H0 ∶ p = 0.1. Suppose we want to
test if students tend to avoid choosing zero when
picking a random digit. If we now let p be the
proportion of 0’s all students choose, the alterna-
tive would beHa ∶ p < 0.1. What is the smallest
p-value we could get using the randomization
distribution in Figure 4.25? What would have to
happen in the sample of digits from 30 students
for this p-value to occur?

4.3DETERMINING STATISTICAL SIGNIFICANCE

In Section 4.1, we see that a hypothesis test involves determining whether sample
data provide enough evidence to refute a null hypothesis and support an alternative
hypothesis. In Section 4.2, we see that a p-value measures how unlikely a sample
statistic is, if the null hypothesis is true. In this section, we connect these two ideas.

Statistical Significance
If the p-value is small enough, the sample results are more extreme than we would
reasonably expect to see by random chance if the null hypothesis were true. If
this is the case, we say the data are statistically significant. Statistically significant
data provide convincing evidence against the null hypothesis in favor of the
alternative, and allow us to use our sample results to support that claim about the
population.

Statistical Significance

If the p-value is small enough, then results as extreme as the observed
sample statistic are unlikely to occur by random chance alone (assum-
ing the null hypothesis is true), and we say the sample results are
statistically significant.

If our sample is statistically significant, we have convincing evidence
against H0 and in favor ofHa.
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Example 4.16
In Data 4.3 on page 287, a company is testing whether chicken meat from a supplier
has an average arsenic level higher than 80 ppb. The hypotheses are

H0 ∶ 𝜇 = 80

Ha ∶ 𝜇 > 80

where 𝜇 is the mean arsenic level in chicken from this supplier.

(a) If sample results are statistically significant, what can the company conclude?

(b) If sample results are not statistically significant, what can the company conclude?

Solution (a) If results are statistically significant, the company has found evidence that the
average level of arsenic in chickens from that supplier is greater than 80, and the
company should stop buying chicken from that supplier.

(b) If results are not statistically significant, the company cannot conclude anything
specific about the average level of arsenic in chickens from that supplier. The
company would not have sufficient evidence to cancel its relationship with the
supplier, since the mean arsenic level may or may not be greater than 80 ppb.

You’re probably wondering, how small does a p-value have to be for us to achieve
statistical significance? If we agree that a p-value of 0.0001 is clearly statistically
significant and a p-value of 0.50 is not, there must be some point between 0.0001
and 0.50 where we cross the threshold between statistical significance and random
chance. That point, measuring when something becomes rare enough to be called
“unusual,” might vary a lot from person to person. We should agree in advance on
a reasonable cutoff point. Statisticians call this cutoff point the significance level of
a test and usually denote it with the Greek letter 𝛼 (alpha). For example, if 𝛼 = 0.05
we say we are doing a 5% test and will call the results statistically significant if the
p-value for the sample is smaller than 0.05. Often, short hand notation such as
P < 0.05 is used to indicate that the p-value is less than 0.05, which means the results
are significant at a 5% level.

Significance Level

The significance level, 𝛼, for a test of hypotheses is a boundary below
which we conclude that a p-value shows statistically significant evi-
dence against the null hypothesis.

Common significance levels are 𝛼 = 0.05, 𝛼 = 0.01, or 𝛼 = 0.10. If a
significance level is not specified, we use 𝛼 = 0.05.

Statistical Decisions
A small p-value means that the sample result is unlikely to occur by random chance
alone and provides evidence against the null hypothesis, H0, in favor of the alterna-
tive, Ha. If the evidence is strong enough against the null hypothesis, we can reject
the null hypothesis in favor of the alternative. On the other hand, if the data are
reasonably likely to occur when the null hypothesis is true, we do not reject the
null hypothesis. Given a specific significance level, 𝛼, the formal decision in a sta-
tistical test, based on comparing the p-value from a sample to 𝛼, is very straight-
forward.
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Formal Statistical Decisions

Given a significance level 𝛼 and the p-value from a sample:

If the p-value < 𝛼: Reject H0
This means the results are significant and we
have convincing evidence that Ha is true.

If the p-value ≥ 𝛼: Do Not Reject H0
This means the results are not significant and we
do not have convincing evidence thatHa is true.

Example 4.17
Students hate zeros!

In Example 4.12 on page 301, we are testing H0 ∶ p = 0.1 vs Ha ∶ p < 0.1 where p
represents the proportion of zeros that students put in the last digit of “random”
numbers. We see in that example that the p-value is 0.001. If the significance level
is 0.05, what decision do we make? Does the decision change if we use 𝛼 = 0.10 or
𝛼 = 0.01?

Solution Since the p-value is less than a significance level of 0.05, we reject H0 and find evi-
dence that the proportion of zeros that students put in the last digit of their random
numbers is less than the expected value of 0.1 for true random numbers. Since the
p-value is also less than both 0.10 and 0.01, the decision and interpretation are the
same for those significance levels. Students are not very good at generating their
own random numbers!

In a formal hypothesis test, after making the decision of whether to reject or not
reject the null hypothesis, we always follow up with a conclusion in context, stated
in terms of the alternative hypothesis and referring back to the question of interest.

Example 4.18
Light at Night: The Conclusion!

In Data 4.1, we are testing to see if mean body mass gain for mice with a light on
at night, 𝜇L, is greater than mean body mass gain for mice with darkness at night,
𝜇D, with hypotheses H0 ∶ 𝜇L = 𝜇D vs Ha ∶ 𝜇L > 𝜇D. In Example 4.10 on page 299,
we see that the p-value for the test is

p-value = 0.018.

Using a 5% significance level,

(a) Are the results statistically significant?

(b) Give the formal decision of the test.

(c) State the conclusion in context.

(d) Can we conclude that having a light on at night causes increased weight gain in
mice?

Solution (a) Yes, the results are statistically significant because the p-value of 0.018 is less
than the significance level of 𝛼 = 0.05.

(b) Since the p-value of 0.018 is less than the significance level of 0.05, the formal
conclusion is to “Reject H0.”
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(c) Since we reject H0, we have evidence for the alternative hypothesis, 𝜇L > 𝜇D.
We have convincing evidence that average weight gain is greater for mice with a
light on at night than for mice with darkness at night.

(d) Yes. The results are statistically significant and the data come from an experi-
ment, so we can conclude that there is causation.

Example 4.19
Who plays more video games?

In Example 4.14 on page 303, we are testing to see if there is a difference in the
proportion who play video games, between males and females, using Ha∶ pM ≠ pF .
The p-value of the test is 0.282. Give the generic decision and the conclusion in
context.

Solution This p-value is not small at all, and is not less than a significance level of 0.05. We
do not have significant results and we do not reject H0. We do not have convincing
evidence of a difference in the proportion playing video games between males and
females.

Notice that the formal decision is generally made in terms of whether or not we
reject the null hypothesis: Reject H0 or do not reject H0. If the data are significant,
we reject H0. If the data are not significant, we do not reject H0. When the sample
is not significant, as in Example 4.19, we do not say that we “accept H0.” Finding
a lack of convincing evidence against the null hypothesis should never be confused
with finding strong evidence for the null hypothesis. In fact, in a hypothesis test, we
can find evidence for the alternative hypothesis, but the conclusion is never that we
have found evidence for the null hypothesis. The next example illustrates this point.

Example 4.20
Walking Elephants

Suppose that we have a mystery animal named X and consider the hypotheses

H0 ∶ X is an elephant

Ha ∶ X is not an elephant

What conclusion would you draw from each of the following pieces of evidence?

(a) X has four legs.

(b) X walks on two legs.

Solution (a) It is not at all unusual for an elephant to have four legs, so that evidence would
certainly not lead to rejecting this null hypothesis. However, we do not “Accept
H0” and we do not conclude that X must be an elephant or even that we have
strong evidence X is an elephant. Rather we say that the data do not provide
significant evidence against H0 and we cannot determine whether X is or is not
an elephant.

(b) While it is not impossible for an elephant to walk on two legs (for example,
you might think of trained circus elephants), it is certainly very uncommon. So
“walking on two legs” would be sufficient evidence to rejectH0 and conclude X
is probably not an elephant.

This reinforces the distinction between the null hypothesis and the alternative
hypothesis as described in Section 4.1: a hypothesis test is designed only to find evi-
dence for the alternative hypothesis (usually the claim for which you seek evidence)
and against the null hypothesis.
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An elephant standing on two legs

Hypothesis Tests

A formal hypothesis test includes the following components:

• State the null and alternative hypotheses (defining parameters
when necessary).

• Determine the value of the observed sample statistic.

• Find the p-value.

• Make a generic decision aboutH0: RejectH0 or do not rejectH0.

• Write a sentence explaining the conclusion of the test in context,
indicating whether or not we have convincing evidence forHa and
referring back to the question of interest.

D A T A 4 . 5 Smiles and Leniency
Can a simple smile have an effect on punishment assigned following an
infraction? Hecht and LeFrance conducted a study examining the effect of a
smile on the leniency of disciplinary action for wrongdoers.25 Participants in the
experiment took on the role of members of a college disciplinary panel judging
students accused of cheating. For each suspect, along with a description of the
offense, a picture was provided with either a smile or neutral facial expression.
A leniency score was calculated based on the disciplinary decisions made by the
participants. The full data can be found in Smiles. The experimenters are testing
to see if the average leniency score is different for smiling students than it is for
students with a neutral facial expression. ◼

25LeFrance, M., and Hecht, M.A., “Why Smiles Generate Leniency,” Personality and Social Psychology
Bulletin, 1995; 21:207–214.
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A neutral expression and a smiling expression: Which
student gets the harsher punishment?

Example 4.21
In the experiment described in Data 4.5, there were 34 participants in each group
who made disciplinary decisions that were interpreted to give a leniency score (on a
10 point scale) for each case. The mean leniency score for the smiling group was 4.91
while the mean leniency score for the neutral group was 4.12. Conduct a hypothesis
test to see whether smiling has an effect on leniency. Use a 5% significance level.

Solution We are comparing two means in this test, so the relevant parameters are 𝜇s, the
true mean score for smiling students, and 𝜇n, the true mean score for students with
a neutral expression. We are testing to see if there is evidence of a difference in
average leniency score, so the hypotheses are:

H0 ∶ 𝜇s = 𝜇n

Ha ∶ 𝜇s ≠ 𝜇n

We are told that xs = 4.91 and xn = 4.12, so the observed difference in sample
means is

xs − xn = 4.91 − 4.12 = 0.79.

The randomization distribution in Figure 4.26 shows the results of the differences in
sample means for 1000 simulations where the 34 “smile” and “neutral” labels were

Figure 4.26
Randomization
distribution of differences
in leniency means, xs − xn
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D = 0.79Diff
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randomly assigned to the 68 leniency scores. There are 23 values in the upper tail
of the 1000 simulations that are larger than the observed sample difference of 0.79.
Since we are doing a two-tailed test, we have

p-value = 2 ⋅ 23
1000

= 0.046.

This p-value is less than the significance level of 𝛼 = 0.05 so the formal decision is to
reject H0. We have found evidence that smiling makes a difference and we expect
more leniency, on average, to be awarded to smiling suspects. If you go before a
disciplinary panel, you should smile!

Example 4.22
If we change the score for just one of the participants in the smiling and leniency
experiment by a single point, either less lenient for someone in the smile group or
more lenient for someone in the neutral group, the difference in means becomes
xs − xn = 0.76 and four new points in the randomization distribution would exceed
this difference. Find the p-value for this new difference in means, and use a 5%
significance level to give the conclusion of the test.

Solution The randomization distribution has 23 + 4 = 27 cases above xs − xn = 0.76 which
produces a p-value of 2 ⋅ 27∕1000 = 0.054. This p-value is not less than 5% so we do
not rejectH0 and thus conclude that we do not have sufficient evidence to show that
smiling makes a difference in the amount of leniency. If you go before a disciplinary
panel, it may not matter whether you smile or maintain a neutral expression.

Less Formal Statistical Decisions
Notice in Example 4.22 that changing just one person’s score by a single point dra-
matically changes the conclusion of the test. One of the drawbacks of the classical
approach to hypothesis testing is that it forces us to make very black-white deci-
sions. The formal decision is either “RejectH0” or “Do not rejectH0” depending on
whether or not the p-value is less than the desired significance level. This scenario
for a 5% test is illustrated in Figure 4.27(a).

In some situations we might feel more comfortable with a less prescriptive
decision. We might be “pretty sure” thatH0 should be rejected or find some, but not
entirely convincing, evidence against it. For this reason we sometimes interpret a
p-value less formally by merely indicating the strength of evidence it shows against
the null hypothesis. For example, the p-values of 0.046 and 0.054 in Examples 4.21
and 4.22 might both be interpreted as showing moderate but not very strong
evidence that smiling helps increase leniency.

Figure 4.27 Formal vs
Informal statistical
decisions

Reject H0 Do not reject H0

1% 5% 10%

ModerateStrong LittleSome

1% 5% 10%

(a) Formal decision rule for a p-value with a 5% significance test

(b) Informal strengths of evidence against H0 and for Ha based on a p-value
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Figure 4.27(b) gives a schematic representation of a less formal way to
interpret p-values as strength of evidence against a null hypothesis. Contrast
this with the formal decision rule shown in Figure 4.27(a). Which way is right?
They both have their merits. As we continue studying significance testing, keep
both approaches in mind so that you can make a concrete decision for a given
significance level but also interpret any p-value as a measure of strength of
evidence.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Demonstrate an understanding of the concept of statistical significance

• Make a formal decision in a hypothesis test by comparing a p-value to
a given significance level

• State the conclusion to a hypothesis test in context

• Make a less formal decision that reflects the strength of evidence in a
p-value

• Conduct a hypothesis test for a variety of situations

Exercises for Section 4.3

SKILL BUILDER 1
Exercises 4.97 to 4.100 give a p-value. State the con-
clusion of the test based on this p-value in terms of
“Reject H0” or “Do not reject H0”, if we use a 5%
significance level.

4.97 p-value = 0.0007

4.98 p-value = 0.0320

4.99 p-value = 0.2531

4.100 p-value = 0.1145

SKILL BUILDER 2
In Exercises 4.101 to 4.104, using the p-value given,
are the results significant at a 10% level? At a 5%
level? At a 1% level?

4.101 p-value = 0.0320

4.102 p-value = 0.2800

4.103 p-value = 0.008

4.104 p-value = 0.0621

SKILL BUILDER 3
In Exercises 4.105 and 4.106, match the four p-
values with the appropriate conclusion:

(a) The evidence against the null hypothesis is sig-
nificant, but only at the 10% level.

(b) The evidence against the null and in favor of the
alternative is very strong.

(c) There is not enough evidence to reject the null
hypothesis, even at the 10% level.

(d) The result is significant at a 5% level but not at
a 1% level.

4.105 I. 0.0875 II. 0.5457
III. 0.0217 IV. 0.00003

4.106 I. 0.00008 II. 0.0571
III. 0.0368 IV. 0.1753

4.107 Significance Levels Test A is described in a
journal article as being significant with “P < .01”;
Test B in the same article is described as being
significant with “P < .10.” Using only this informa-
tion, which test would you suspect provides stronger
evidence for its alternative hypothesis?

4.108 Can Rats Keep Quiet in Hide-and-Seek?
Exercise 2.24 introduces a study that teaches rats to
play hide-and-seek with humans, and Exercises 4.83
to 4.85 examine whether rats understand that hid-
ing in closed boxes is better than hiding in open
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boxes. Do they also understand that they should be
quiet when hiding? The rats appear to love to play
the game and often squeak with excitement as they
play. Researchers tested whether mean amount of
vocalizing is higher when rats are seeking than when
they are hiding. Using p for the p-value, the authors
report the results of this test as “p < 0.001.” State
the conclusion of the test in context.

4.109 Honest Placebos Until recently, it was
believed that a placebo worked only if the recip-
ient did not know that it was a placebo. How-
ever, the practice of not telling recipients the truth
raises ethical questions. Researchers have started to
investigate whether honest placebos, given with the
recipient’s full knowledge, might also work. In one
such study26 conducted in Germany, researchers
randomly assigned 127 people with chronic back
pain to take placebo capsules or not. Patients in the
placebo group were told the capsules were place-
bos that they should take twice a day for 21 days.
At the end of the study, patients in the placebo
group reported a significantly lower mean level of
pain. However, there was not a significant differ-
ence between the two groups in mean range of
motion of the spine. The p-values for the two dif-
ference in means tests are 0.001 and 0.47. Which
p-value goes with which test?

4.110 Are Fast-FoodDiet andDepression Related?
Exercise 1.102 introduces a study that examines the
relationship between eating a diet high in sodium
and low in potassium (such as a diet high in
fast foods) and depression symptoms in middle-
schoolers. Some of the results of the study27 are
described below. Match each description with one
of the following p-values:

0.371 0.031 0.009

(a) There was strong evidence of an association
between sodium levels and depression symp-
toms.

(b) For males, the study did not find evidence of a
significant relationship between potassium lev-
els and depression symptoms.

(c) The evidence for an association between the
sodium/potassium ratio and depression symp-
toms was significant at the 5% level but not the
1% level.

26Kleine-Borgman J, et al., “Effects of open-label placebo on
pain, functional disability and spine mobility in chronic back pain
patients: a randomized controlled trial,” Pain, August 30, 2019.
27Mrug S, et al., “Sodium and potassium excretion pre-
dict increased depression in urban adolescents,” Physiological
Reports, 7(16), August 2019.

4.111 Which Is Better for Understanding: Reading
or Movies? Exercises 1.13 and 1.114 discuss a study
in which brain connectivity is measured in 27 four-
year-old children as they are presented with stories
three different ways: audio only, illustrated, and ani-
mated. The study also examined the effect of the
different formats on understanding, with a test of
comprehension given to the children at the conclu-
sion of the study. Researchers found no evidence of
a difference in comprehension between audio and
illustrated, some evidence of a difference between
illustrated and animated, and strong evidence of a
difference between audio and animated. Animation
was the worst of the three formats in terms of the
children’s understanding of the stories. Match the
three p-values with the three tests.

(a) 0.031 (b) 0.258 (c) 0.006

4.112 High Fat Diet Affects Young Memory?
Numerous studies have shown that a high fat diet
can have a negative effect on a child’s health. A
new study28 suggests that a high fat diet early in
life might also have a significant effect on memory
and spatial ability. In the double-blind study, young
rats were randomly assigned to either a high-fat diet
group or to a control group. After 12 weeks on the
diets, the rats were given tests of their spatial mem-
ory. The article states that “spatial memory was sig-
nificantly impaired” for the high-fat diet rats, and
also tells us that “there were no significant differ-
ences in amount of time exploring objects” between
the two groups. The p-values for the two tests are
0.0001 and 0.7.

(a) Which p-value goes with the test of spatial
memory? Which p-value goes with the test of
time exploring objects?

(b) The title of the article describing the study
states “A high-fat diet causes impairment” in
spatial memory. Is the wording in the title jus-
tified (for rats)? Why or why not?

4.113 Multiple Sclerosis and Sunlight It is believed
that sunlight offers some protection against multi-
ple sclerosis (MS) since the disease is rare near the
equator and more prevalent at high latitudes. What
is it about sunlight that offers this protection? To
find out, researchers29 injected mice with proteins

28Underwood, E.L. and Thompson, L.T., “A high-fat diet causes
impairment in hippocampal memory and sex-dependent alter-
ations in peripheral metabolism,” Neural Plasticity, August 2015.
29Seppa, N., “Sunlight may cut MS risk by itself,” Science News,
April 24, 2010, p. 9, reporting on a study in the Proceedings of
the National Academy of Science, March 22, 2010.
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that induce a condition in mice comparable to MS
in humans. The control mice got only the injec-
tion, while a second group of mice were exposed
to UV light before and after the injection, and a
third group of mice received vitamin D supplements
before and after the injection. In the test compar-
ing UV light to the control group, evidence was
found that the mice exposed to UV suppressed the
MS-like disease significantly better than the control
mice. In the test comparing mice getting vitamin D
supplements to the control group, the mice given
the vitamin D did not fare significantly better than
the control group. If the p-values for the two tests
are 0.472 and 0.002, which p-value goes with which
test?

IS YOUR NOSE GETTING BIGGER?
Exercise 1.27 on page 16 introduces a study examin-
ing whether or not noses continue to grow through-
out a person’s lifetime. The study included many
measurements (including size of the nose as mea-
sured by total volume) and included multiple tests.
Exercises 4.114 to 4.116 each describe one of the
tests along with information about the p-value for
that test. In each case:

(a) State the hypotheses.

(b) Give the formal decision using a 5% signifi-
cance level, and interpret the conclusion in con-
text.

4.114 In a test to see whether males, on average,
have bigger noses than females, the study indicates
that “p < 0.01.”

4.115 In a test to see whether there is a difference
between males and females in average nasal tip
angle, the study indicates that “p > 0.05.”

4.116 In a test to see whether there is a positive
linear relationship between age and nose size, the
study indicates that “p < 0.001.”

4.117 Antibiotics in Infancy and Weight Exercise
2.25 on page 65 introduces a study examining
whether giving antibiotics in infancy increases the
likelihood that the child will be overweight. Pre-
scription records were examined to determine
whether or not antibiotics were prescribed during
the first year of a child’s life, and each child was clas-
sified as overweight or not at age 12. (Exercise 2.25
looked at the results for age 9.) The researchers
compared the proportion overweight in each group.
The study concludes that: “Infants receiving antibi-
otics in the first year of life were more likely to be
overweight later in childhood compared with those
who were unexposed (32.4% versus 18.2% at age
12, P = 0.002).”

(a) What is the explanatory variable? What is the
response variable? Classify each as categorical
or quantitative.

(b) Is this an experiment or an observational study?

(c) State the null and alternative hypotheses and
define the parameters.

(d) Give notation and the value of the relevant sam-
ple statistic.

(e) Use the p-value to give the formal conclusion
of the test (Reject H0 or Do not reject H0) and
to give an indication of the strength of evidence
for the result.

(f) Can we conclude that whether or not children
receive antibiotics in infancy causes the differ-
ence in proportion classified as overweight?

4.118 Sleep or Caffeine forMemory?The consump-
tion of caffeine to benefit alertness is a common
activity practiced by 90% of adults in North Amer-
ica. Often caffeine is used in order to replace the
need for sleep. One study30 compares students’ abil-
ity to recall memorized information after either the
consumption of caffeine or a brief sleep. A random
sample of 35 adults (between the ages of 18 and 39)
were randomly divided into three groups and ver-
bally given a list of 24 words to memorize. During
a break, one of the groups takes a nap for an hour
and a half, another group is kept awake and then
given a caffeine pill an hour prior to testing, and the
third group is given a placebo. The response vari-
able of interest is the number of words participants
are able to recall following the break. The summary
statistics for the three groups are in Table 4.9. We
are interested in testing whether there is evidence
of a difference in average recall ability between
any two of the treatments. Thus we have three
possible tests between different pairs of groups:
Sleep vs Caffeine, Sleep vs Placebo, and Caffeine vs
Placebo.

Table 4.9 Effect of sleep and caffeine on
memory

Group Sample Size Mean Standard Deviation

Sleep 12 15.25 3.3
Caffeine 12 12.25 3.5
Placebo 11 13.70 3.0

30Mednick, S., Cai, D., Kanady, J., and Drummond, S., “Compar-
ing the benefits of caffeine, naps and placebo on verbal, motor
and perceptual memory,” Behavioural Brain Research, 2008;
193: 79–86.
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(a) In the test comparing the sleep group to the caf-
feine group, the p-value is 0.003. What is the
conclusion of the test? In the sample, which
group had better recall ability? According to the
test results, do you think sleep is really better
than caffeine for recall ability?

(b) In the test comparing the sleep group to the
placebo group, the p-value is 0.06. What is the
conclusion of the test using a 5% significance
level? If we use a 10% significance level? How
strong is the evidence of a difference in mean
recall ability between these two treatments?

(c) In the test comparing the caffeine group to the
placebo group, the p-value is 0.22. What is the
conclusion of the test? In the sample, which
group had better recall ability? According to the
test results, would we be justified in concluding
that caffeine impairs recall ability?

(d) According to this study, what should you do
before an exam that asks you to recall informa-
tion?

4.119 Price and Marketing How influenced are
consumers by price and marketing? If something
costs more, do our expectations lead us to believe
it is better? Because expectations play such a large
role in reality, can a product that costs more (but
is in reality identical) actually be more effective?
Baba Shiv, a neuroeconomist at Stanford, con-
ducted a study31 involving 204 undergraduates. In
the study, all students consumed a popular energy
drink which claims on its packaging to increase
mental acuity. The students were then asked to
solve a series of puzzles. The students were charged
either regular price ($1.89) for the drink or a dis-
count price ($0.89). The students receiving the dis-
count price were told that they were able to buy the
drink at a discount since the drinks had been pur-
chased in bulk. The authors of the study describe
the results: “the number of puzzles solved was lower
in the reduced-price condition (M = 4.2) than in the
regular-price condition (M = 5.8) . . . p < .0001.”

(a) What can you conclude from the study? How
strong is the evidence for the conclusion?

(b) These results have been replicated in many sim-
ilar studies. As Jonah Lehrer tells us: “Accord-
ing to Shiv, a kind of placebo effect is at work.
Since we expect cheaper goods to be less effec-
tive, they generally are less effective, even if
they are identical to more expensive products.

31Shiv, B., Carmon, Z., and Ariely, D., “Placebo Effects of Mar-
keting Actions: Consumers May Get What They Pay For,” Jour-
nal of Marketing Research, 2005; 42:383–93.

This is why brand-name aspirin works better
than generic aspirin and why Coke tastes better
than cheaper colas, even if most consumers can’t
tell the difference in blind taste tests.”32 Discuss
the implications of this research in marketing
and pricing.

4.120 Mercury Levels in Fish Figure 4.28 shows a
scatterplot of the acidity (pH) for a sample of n = 53
Florida lakes vs the average mercury level (ppm)
found in fish taken from each lake. The full dataset
is introduced in Data 2.4 on page 80 and is avail-
able in FloridaLakes. There appears to be a neg-
ative trend in the scatterplot, and we wish to test
whether there is significant evidence of a negative
association between pH and mercury levels.

pH
8 976543

0.0

0.2

0.4

0.6

A
vg

M
er

cu
ry

0.8

1.0

1.2

1.4

Figure 4.28 Water pH vs mercury levels of fish in
Florida lakes

(a) What are the null and alternative hypotheses?

(b) For these data, a statistical software package
produces the following output:

r = −0.575 p-𝑣alue = 0.000017

Use the p-value to give the conclusion of the
test. Include an assessment of the strength of
the evidence and state your result in terms of
rejecting or failing to reject H0 and in terms
of pH and mercury.

(c) Is this convincing evidence that low pH causes
the average mercury level in fish to increase?
Why or why not?

4.121 Penalty Shots in Soccer An article noted
that it may be possible to accurately predict which
way a penalty-shot kicker in soccer will direct his
shot.33 The study finds that certain types of body

32Lehrer, J., “Grape expectations: What wine can tell us about
the nature of reality,” The Boston Globe, February 28, 2008.
33“A Penalty Kicker’s Cues,” The Week, July 16, 2010, p. 21.
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language by a soccer player – called “tells” – can be
accurately read to predict whether the ball will go
left or right. For a given body movement leading up
to the kick, the question is whether there is strong
evidence that the proportion of kicks that go right
is significantly different from one-half.

(a) What are the null and alternative hypotheses in
this situation?

(b) If sample results for one type of body move-
ment give a p-value of 0.3184, what is the con-
clusion of the test? Should a goalie learn to dis-
tinguish this movement?

(c) If sample results for a different type of body
movement give a p-value of 0.0006, what is the
conclusion of the test? Should a goalie learn to
distinguish this movement?

4.122 ADHD and Pesticides In Exercise 4.18 on
page 291, we describe an observational study inves-
tigating a possible relationship between exposure
to organophosphate pesticides as measured in uri-
nary metabolites (DAP) and diagnosis of ADHD
(attention-deficit/hyperactivity disorder). In report-
ing the results of this study, the authors34 make the
following statements:

• “The threshold for statistical significance was set
at P < .05.”

• “The odds of meeting the . . . criteria for ADHD
increased with the urinary concentrations of total
DAP metabolites.”

• “The association was statistically significant.”

(a) What can we conclude about the p-value
obtained in analyzing the data?

(b) Based on these statements, can we distinguish
whether the evidence of association is very
strong vs moderately strong? Why or why not?

(c) Can we conclude that exposure to pesticides
is related to the likelihood of an ADHD
diagnosis?

(d) Can we conclude that exposure to pesticides
causesmore cases of ADHD?Why or why not?

4.123 Diabetes and Pollution Diabetes tends to be
more prevalent in urban populations, but why this

34Bouchard, M., Bellinger, D., Wright, R., and Weisskopf, M.,
“Attention-Deficit/Hyperactivity Disorder and Urinary Metabo-
lites of Organophosphate Pesticides,” Pediatrics, 2010; 125:
e1270–e1277.

is so is not fully understood. A study35 on mice was
designed to investigate the link between diabetes
and air pollution. The study involved 28 mice, with
14 randomly selected to have filtered air pumped
into their cage while the other 14 breathed partic-
ulate matter that simulated common air pollution.
The response variable is the amount of insulin resis-
tance eachmouse had after 24 weeks. Higher insulin
resistance indicates a greater risk for developing
diabetes.

(a) Is this an observational study or randomized
experiment?

(b) If we are interested in whether there is a dif-
ference in mean insulin resistance between the
two groups, what are the null and alternative
hypotheses?

(c) The difference in sample means from the origi-
nal sample isD = xFA − xPM = 1.8 − 6.2 = −4.4.
Figure 4.29 shows 1000 random assignments of
insulin resistant scores from the original sample
to each of the two groups. Is it likely we will
reject the null hypothesis?

(d) What is the p-value?

(e) State the conclusion of the test in context.
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Figure 4.29 Randomization distribution for 1000
simulations with H0 ∶ 𝝁FA = 𝝁PM

4.124 Beer and Mosquitoes Does consuming beer
attract mosquitoes? Exercise 4.19 on page 291 dis-
cusses an experiment done inAfrica testing possible
ways to reduce the spread of malaria by mosquitoes.
In the experiment, 43 volunteers were randomly
assigned to consume either a liter of beer or a liter
of water, and the attractiveness to mosquitoes of
each volunteer was measured. The experiment was

35Data recreated from information in Sun, et al. “Ambient Air
Pollution Exaggerates Adipose Inflammation and Insulin Resis-
tance in a MouseModel of Diet-Induced Obesity,” Journal of the
American Heart Association, 2009; 119 (4): 538–46.
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designed to test whether beer consumption increa-
ses mosquito attraction. The report36 states that
“Beer consumption, as opposed to water consump-
tion, significantly increased the activation . . . of An.
gambiae [mosquitoes] . . . (P < 0.001).”

(a) Is this convincing evidence that consuming beer
is associated with higher mosquito attraction?
Why or why not?

(b) How strong is the evidence for the result?
Explain.

(c) Based on these results, it is reasonable to con-
clude that consuming beer causes an increase in
mosquito attraction? Why or why not?

4.125 Exercise and the Brain Exercise 4.21 on page
292 describes a study investigating the effects of
exercise on cognitive function.37 Separate groups of
mice were exposed to running wheels for 0, 2, 4, 7,
or 10 days. Cognitive function was measured by Y-
maze performance. The study was testing whether
exercise improves brain function, whether exercise
reduces levels of BMP (a protein which makes the
brain slower and less nimble), and whether exercise
increases the levels of noggin (which improves the
brain’s ability). For each of the results quoted in
parts (a), (b), and (c), interpret the information
about the p-value in terms of evidence for the
effect.

(a) “Exercise improved Y-maze performance in
most mice by the 7th day of exposure, with fur-
ther increases after 10 days for all mice tested
(p < .01).”

(b) “After only two days of running, BMP . . . was
reduced . . . and it remained decreased for all
subsequent time-points (p < .01).”

(c) “Levels of noggin . . . did not change until 4
days, but had increased 1.5-fold by 7–10 days of
exercise (p < .001).”

(d) Which of the tests appears to show the strongest
statistical effect?

(e) What (if anything) can we conclude about the
effects of exercise on mice?

4.126 Cake or Broccoli? When children are just
learning to speak, they are likely to mimic what they
just heard. For example, when asked “Do you want
cake or broccoli?”, a child might answer broccoli just
because it was the last option presented. (This is

36Lefvre, T., et al. “Beer Consumption Increases Human Attrac-
tiveness to Malaria Mosquitoes.” PLoS ONE, 2010; 5(3): e9546.
37Gobeske, K., et al. “BMP Signaling Mediates Effects of
Exercise on Hippocampal Neurogenesis and Cognition in Mice,”
PLoS One, 2009; 4(10); e7506.

called “recency bias” in psychology.38 ) In a study39

examining this effect, two-year-old children were
asked to choose between two options. In Experi-
ment 1, each binary-choice question included pic-
tures of the two options, and children answered by
pointing at a picture. In Experiment 2, the question
was only given verbally, and children answered ver-
bally. In each case, test to see if the second option is
more likely to be picked than the first, which means
the proportion of times the second option is cho-
sen is greater than 0.5. Give all details of the test in
each case: hypotheses, sample statistic, p-value, and
conclusion in context.

(a) In Experiment 1 with pictures, the toddlers
picked the second choice 248 times out of 480
trials.

(b) In Experiment 2 with only words, the toddlers
picked the second choice 409 times out of 480
trials.

4.127 Can a Brief Diet Intervention Help Depres-
sion? Exercise 2.209 introduces a study investigat-
ing whether a brief diet intervention might improve
depression symptoms. In the study, 75 college-age
students with elevated depression symptoms and
relatively poor diet habits were randomly assigned
to either a healthy diet group or a control group.
Depression levels were measured at the beginning
of the experiment and then again three weeks later.
The response variable is the reduction in depres-
sion level (as measured by the DASS survey) at the
end of the three weeks. Larger numbers mean more
improvement in depression symptoms. Test whether
these experimental results allow us to conclude that,
on average, improvement of depression symptoms
is higher for those who eat a healthy diet for three
weeks than for those who don’t. The data is avail-
able on StatKey and inDietDepression.

4.128 Can a Brief Diet Intervention Change BMI?
Exercise 2.209 introduces a study investigating
whether a brief diet intervention might improve
depression symptoms. In the study, 75 college-
age students with elevated depression symptoms
and relatively poor diet habits were randomly
assigned to either a healthy diet group or a con-
trol group. While the study was explicitly studying
the impact of a healthy diet on depression levels,

38The recency bias seen in two-year-olds appears to disappear by
the age of 4. As we saw in Exercise 1.63, adults are more likely to
show the primacy effect, in which the first choice given is more
likely to be the one selected.
39Sumner E, et al., “Cake or broccoli? Recency biases children’s
verbal responses,” PLoS ONE, 14(6), June 12, 2019.
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the researchers also measured Body Mass Index
(BMI) of all the participants at the beginning of the
experiment and then again three weeks later. The
response variable is the reduction in BMI, so larger
numbers indicate greater reduction. Test whether
these experimental results allow us to conclude that,
on average, change in BMI is higher for those who
eat a healthy diet for three weeks than for those
who don’t. The data is available on StatKey and in
DietDepression.

4.129 Social Media Use and ADHD Exercise 2.23
introduces a study examining whether frequent
use of digital social media by teens is associated
with subsequent development of ADHD symp-
toms. Researchers rated the frequency of social
media use as High or Low for each teen. Two years
later, they recorded whether or not ADHD symp-
toms had been diagnosed. The results are shown in
Table 4.10. Use StatKey or other technology to test
whether the proportion of teens being diagnosed
with ADHD is higher for teens with a high fre-
quency of social media use than for those with a low
frequency. Show all details of the test.

Table 4.10 Social Media Use and ADHD
Diagnosis

Social Media Use ADHD No ADHD Total
High frequency 16 149 165
Low frequency 23 472 495
Total 39 621 660

4.130 Want to Live Longer?WalkMore!More than
16, 000 older women were asked to wear a device
to record their steps per day over the course of a
week, and the women were then divided into quar-
tiles based on the number of steps per day. The
researchers40 tracked the women and recorded how
many died, of any cause, during a follow-up period
of about five years. The results, as well as themedian
number of steps per day for each quartile, are shown
in Table 4.11. We test to see if even increasing steps
a small amount (from the amount in one quartile
of the sample to the next higher quartile) gives a
significant decrease in mortality.

(a) Conduct a difference in proportions test to see
if the proportion dying is higher in women who
walk at the level of Quartile 1 compared to
women who walk at the level of Quartile 2.

(b) Repeat part (a) using Quartiles 3 and 4. Use a
significance level of 5%.

40Abbasi J, “For Mortality, Busting the Myth of 10,000 Steps per
Day,” JAMA, July 24, 2019.

(c) The title of this problem appears to imply causa-
tion. Is that appropriate here? Why or why not?

Table 4.11 Steps per day and mortality

Number of Number of
Quartile Median Steps Deaths Women

1 2718 275 4185
2 4363 103 4185
3 5905 77 4186
4 8442 49 4185

4.131 Are Female orMale Homing Pigeons Faster?
Exercise 1.20 introduces a dataset containing race
results for a homing pigeon race. The data is in
HomingPigeons, and includes the sex of the pigeons
(H for hens and C for cocks) and the speed of
the pigeons (in YPM, yards per minute). Does this
dataset provide evidence that there is a difference
in mean speed between male pigeons (cocks) and
female pigeons (hens)? Use StatKey or other tech-
nology to create a randomization distribution to
find the p-value, and be sure to show all details of
the test.

DOES HEAT AFFECT COGNITIVE ABILITY?
Forty-six college students at a college in the North-
east were recruited to perform cognitive tasks every
morning during a heat wave. Some of the stu-
dents were in air-conditioned dorms and some were
not. Exercises 4.132 and 4.133 refer to two of the
responses measured in the study.41 The simplified
data are available inHeatCognition. (While we only
look at two responses here, it does appear in general
that heat affects cognitive ability. On almost all the
tasks, the students with air-conditioning performed
better.)

4.132 Does Heat Affect Math Reaction Time?One
task asked students to add or subtract two-digit
numbers as quickly as possible, with a z-score
of their reaction time recorded in MathZRT in
HeatCognition. Test to see if students with air-
conditioning are faster at this task (with a smaller
mean reaction time), on average, than students
without. Let Group 1 represent students with air-
conditioning and Group 2 represent those without,
giving a left-tail test. Show all details: hypothe-
ses, sample statistic, p-value, and conclusion in
context.

41Cedeo Laurent JG, et al., “Reduced cognitive function during
a heat wave among residents of non-air-conditioned buildings:
An observational study of young adults in the summer of 2016.”
PLoS Med, 15(7): e1002605, July 10, 2018. Data is simplified
from the repeated measures design used in the original study.
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4.133 Does Heat Affect Color Dissonance Reac-
tion Time? One task asked students to take the
STROOP color test, in which one identifies the
color of letters when the letters spell a different
color. For example, when presented with

RED

the correct answer is blue. A z-score of reac-
tion time is recorded in ColorsZRT in HeatCog-
nition. Test to see if students with air-conditioning
are faster at this task (with a smaller mean reac-
tion time), on average, than students without. Let
Group 1 represent students with air-conditioning
and Group 2 represent those without, giving a left-
tail test. Show all details: hypotheses, sample statis-
tic, p-value, and conclusion in context.

ARE THERE HUMAN PHEROMONES?
Exercises 4.134 to 4.136 examine studies introduced
on page 11 about human pheromones, which are
chemical signals given off that may subconsciously
influence others. In the studies, men had a pad
attached to their upper lip that contained either
tears collected from women who watched sad films
or a salt solution (as a placebo) that had been trick-
led down the same women’s faces. The studies fol-
low a double-blind matched pairs design. The order
was randomized, and the difference in responses
under the two conditions (Placebo response − Tears
response) was recorded. Exercises 4.134 to 4.136
each involve a test for a single mean, where the
data is the difference in responses. Show all details:
hypotheses, sample statistic, p-value, and conclusion
in context.

4.134 Do Tears Subconsciously Affect Sadness
Ratings? After exposure to either tears or a
placebo, men were shown pictures of female faces
and asked “To what extent is this face sad?” The
difference in ratings between the two treatments is
in HumanTears25, and is available on StatKey. Use
StatKey or other technology to see if the data pro-
vide evidence that tears contain a chemical signal
affecting perceptions of sadness. In particular, test
to see if we can conclude that the mean difference
in ratings is not equal to zero.

4.135 Do Tears Subconsciously Affect Sexual
Arousal Ratings? After exposure to either tears
or a placebo, men were shown pictures of female
faces and asked “To what extent is this face sexually
arousing?” The difference in ratings between the
two treatments is in HumanTears25, and is avail-
able on StatKey. Use StatKey or other technology to

see if the data provide evidence that tears contain
a chemical signal affecting sexual arousal. In partic-
ular, test to see if we can conclude that the mean
difference in ratings is not equal to zero. Use a 5%
significance level.

4.136 Do Tears Affect Testosterone Levels?Testos-
terone levels in men were recorded after exposure
to either tears or a placebo.42 The difference in
levels between the two treatments is in Human-
Tears50, and is available on StatKey. Use StatKey or
other technology to see if the data provide evidence
that tears contain a chemical signal that reduces
testosterone levels in men. In particular, test to see
if we can conclude that the mean difference in levels
(Placebo − Tears) is greater than zero.

4.137 Watch Out for Lions after a Full Moon
Scientists studying lion attacks on humans in
Tanzania43 found that 95 lion attacks happened
between 6 pm and 10 pm within either five days
before a full moon or five days after a full moon.
Of these, 71 happened during the five days after the
full moon while the other 24 happened during the
five days before the full moon. Does this sample of
lion attacks provide evidence that attacks are more
likely after a full moon? In other words, is there evi-
dence that attacks are not equally split between the
two five-day periods? Use StatKey or other tech-
nology to find the p-value, and be sure to show all
details of the test. (Note that this is a test for a single
proportion since the data come from one sample.)

4.138 Electrical Stimulation for Fresh Insight?
Exercise 2.31 introduces a study in which 40 partici-
pants are trained to solve problems in a certain way
and then asked to solve an unfamiliar problem that
requires fresh insight. Half of the participants were
randomly assigned to receive electrical stimulation
of the brain while the other half (control group)
received sham stimulation as a placebo. The results
are shown in Table 4.12.

Table 4.12 Does electrical brain
stimulation bring fresh insight to a problem?

Treatment Solved Not Solved

Sham 4 16
Electrical 12 8

42Gelstein, S., et. al., “Human Tears Contain a Chemosignal,”
Science, 6 January 2011: 331 (6014): 226-230. Testosterone levels
in saliva were measured and given in pg/mL. Data are approxi-
mated from the article.
43Packer, C., Swanson, A., Ikanda, D., and Kushnir, H., “Fear of
Darkness, the Full Moon and the Nocturnal Ecology of African
Lions,” PLoS ONE 2011; 6(7): e22285.
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(a) Use StatKey or other technology to create a
randomization distribution to test whether the
proportion able to solve the problem was signif-
icantly higher in the group receiving electrical
stimulation of the brain. Be sure to state the
hypotheses, give the p-value, and clearly state
the conclusion in context.

(b) Can we conclude that electrical stimulation of
the brain helps people solve a new problem that
needs fresh insight?

4.139 Does Massage Help Heal Muscles Strained
by Exercise? After exercise, massage is often used
to relieve pain, and a recent study44 shows that
it also may relieve inflammation and help muscles
heal. In the study, 11 male participants who had just
strenuously exercised had 10 minutes of massage
on one quadricep and no treatment on the other,
with treatment randomly assigned. After 2.5 hours,
muscle biopsies were taken and production of the
inflammatory cytokine interleukin-6 was measured
relative to the resting level. The differences (control
minus massage) are given in Table 4.13.

Table 4.13 Inflammation in muscle: control
minus massage

0.6 4.7 3.8 0.4 1.5 −1.2 2.8 −0.4 1.4 3.5 −2.8

(a) Is this an experiment or an observational study?
Why is it not double blind?

(b) What is the sample mean difference in inflam-
mation between no massage and massage?

(c) We want to test to see if the population mean
difference 𝜇D is greater than zero, meaning
muscle with no treatment has more inflamma-
tion than muscle that has been massaged. State
the null and alternative hypotheses.

(d) Use StatKey or other technology to find the
p-value from a randomization distribution.

(e) Are the results significant at a 5% level? At a
1% level? State the conclusion of the test if we
assume a 5% significance level (as the authors
of the study did).

4.140 The Ignorance Survey: United States The
Ignorance Surveys were conducted in 2013
using random sampling methods in four dif-
ferent countries under the leadership of Hans
Rosling, a Swedish statistician and international

44Data approximated from summary statistics in Crane, J.,
et al., “Massage Therapy Attenuates Inflammatory Signaling
After Exercise-Induced Muscle Damage,” Science Translational
Medicine, February 1, 2012.

health advocate. The survey questions were
designed to assess the ignorance of the public to
global population trends. The survey was not just
designed to measure ignorance (no information),
but if preconceived notions can lead to more wrong
answers than would be expected by random guess-
ing. One question asked, “In the last 20 years
the proportion of the world population living in
extreme poverty has . . .,” and three choices were
provided: 1) “almost doubled” 2) “remained more
or less the same,” and 3) “almost halved.” Of 1005
US respondents, just 5% gave the correct answer:
“almost halved.”45 We would like to test if the per-
cent of correct choices is significantly different than
what would be expected if the participants were just
randomly guessing between the three choices.

(a) What are the null and alternative hypotheses?

(b) Using StatKey or other technology, construct a
randomization distribution and compute the p-
value.

(c) State the conclusion in context.

4.141 The Ignorance Survey: United Kingdom
Exercise 4.140 refers to a survey used to assess the
ignorance of the public to global population trends.
A similar survey was conducted in the United
Kingdom, where respondents were asked if they
had a university degree. One question asked, “In
the last 20 years the proportion of the world pop-
ulation living in extreme poverty has . . .,” and three
choices were provided: 1)“increased” 2) “remained
more or less the same,” and 3) “decreased.”
Of 373 university degree holders, 45 responded
with the correct answer: decreased; of 639 non-
degree respondents, 57 responded with the correct
answer.46 We would like to test if the percent of
correct answers is significantly different between
degree holders and non-degree holders.

(a) What are the null and alternative hypotheses?

(b) Using StatKey or other technology, construct
a randomization distribution and compute the
p-value.

(c) State the conclusion in context.

4.142 Flying Home for the Holidays Does the air-
line you choose affect when you’ll arrive at your
destination? The datasetDecemberFlights contains
the difference between actual and scheduled arrival
time from 1000 randomly sampled December
45http://www.gapminder.org/GapminderMedia/wp-uploads/
Results-from-the-Ignorance-Survey-in-the-US..pdf
46Counts approximated from the percentages reported at
http://www.gapminder.org/news/highlights-from-ignorance-survey
-in-the-uk/
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flights for two of themajor NorthAmerican airlines,
Delta Air Lines and United Air Lines. A negative
difference indicates a flight arrived early. We are
interested in testing whether the average difference
between actual and scheduled arrival time is differ-
ent between the two airlines.

(a) Define any relevant parameter(s) and state the
null and alternative hypotheses.

(b) Find the sample mean of each group, and calcu-
late the difference in sample means.

(c) Use StatKey or other technology to create a ran-
domization distribution and find the p-value.

(d) At a significance level of 𝛼 = 0.01, what is the
conclusion of the test? Interpret the conclusion
in context.

LIZARDS AND INVASIVE FIRE ANTS
Exercises 4.143 and 4.144 address lizard behavior
in response to fire ants. The red imported fire
ant, Solenopsis invicta, is native to South Amer-
ica, but has an expansive invasive range, including
much of the southern United States (invasion of
this ant is predicted to go global). In the United
States, these ants occupy similar habitats as fence
lizards. The ants eat the lizards and the lizards eat
the ants, and in either scenario the venom from
the fire ant can be fatal to the lizard. A study47

explored the question of whether lizards learn to
adapt their behavior if their environment has been
invaded by fire ants. The researchers selected lizards
from an uninvaded habitat (eastern Arkansas) and
lizards from an invaded habitat (southern Alabama,
which has been invaded for more than 70 years)
and exposed them to fire ants. They measured how
long it takes each lizard to flee and the number of
twitches each lizard does. The data are stored in
FireAnts.

4.143 If lizards adapt their behavior to the fire
ants, then lizards from the invaded habitats should
flee from the fire ants faster than lizards from the
uninvaded habitats. Test this hypothesis. The vari-
able Flee gives time to flee, measured in seconds,
and lizards taking more than a minute to flee have
recorded responses of 61 seconds.

(a) State the null and alternative hypotheses.

(b) Use technology to calculate the p-value.

47Langkilde, T. (2009). “Invasive fire ants alter behavior and
morphology of native lizards,” Ecology, 90(1): 208–217. Thanks
to Dr. Langkilde for providing the data.

(c) What (if anything) does this p-value tell you
about lizards and fire ants?

(d) Can we conclude that living in a habitat invaded
by fire ants causes lizards to adapt their behav-
ior and flee faster when exposed to fire ants?
Why or why not?

4.144 If lizards adapt their behavior to the fire ants,
then lizards from the invaded habitats should twitch
more than lizards from uninvaded habitats when
exposed to red imported fire ants (twitching helps
to repel the ants). Test this hypothesis. The variable
Twitches is the number of twitches exhibited by each
lizard in the first minute after exposure.

(a) State the null and alternative hypotheses.

(b) Use technology to calculate the p-value.

(c) What (if anything) does this p-value tell you
about lizards and fire ants?

4.145 Split the Bill? Exercise 2.177 on page 116
describes a study to compare the cost of restaurant
meals when people pay individually versus splitting
the bill as a group. In the experiment 48 subjects
were randomly assigned to eight groups of six diners
each. Half of the people were told that they would
each be responsible for individual meal costs and
the other half were told to split the cost equally
among the six people at the table. The data in Split-
Bill includes the cost of what each person ordered
(in Israeli shekels) and the payment method (Indi-
vidual or Split). Use StatKey or other technology to
construct a randomization distribution using these
data to test whether there is sufficient evidence to
conclude that the mean cost is lower when diners
are paying individually than when they split the bill
equally.

4.146 Cat Ownership and Schizophrenia Could
owning a cat as a child be related to mental illness
later in life? Toxoplasmosis is a disease transmit-
ted primarily through contact with cat feces, and
has recently been linked with schizophrenia and
other mental illnesses. Also, people infected with
Toxoplasmosis tend to like cats more and are 2.5
times more likely to get in a car accident, due to
delayed reaction times. The CDC estimates that
about 22.5% of Americans are infected with Toxo-
plasmosis (most have no symptoms), and this preva-
lence can be as high as 95% in other parts of
the world. A study48 randomly selected 262 people

48Torrey, E.F., Simmons, W., Yolken, R.H. (2015). “Is child-
hood cat ownership a risk factor for schizophrenia later in life?,”
Schizophrenia Research, June 2015, 165(1):1–2.
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registered with the National Alliance for the
Mentally Ill (NAMI), almost all of whom had
schizophrenia, and for each person selected, chose
two people from families without mental illness
who were the same age, sex, and socioeconomic sta-
tus as the person selected from NAMI. Each partic-
ipant was asked whether or not they owned a cat as
a child. The results showed that 136 of the 262 peo-
ple in the mentally ill group had owned a cat, while
220 of the 522 people in the not mentally ill group
had owned a cat.

(a) This is known as a case-control study, where
cases are selected as people with a specific dis-
ease or trait, and controls are chosen to be peo-
ple without the disease or trait being studied.
Both cases and controls are then asked about
some variable from their past being studied as
a potential risk factor. This is particularly useful
for studying rare diseases (such as schizophre-
nia), because the design ensures a sufficient
sample size of people with the disease. Can
case-control studies such as this be used to infer
a causal relationship between the hypothesized
risk factor (e.g., cat ownership) and the disease
(e.g., schizophrenia)? Why or why not?

(b) In case-control studies, controls are usually cho-
sen to be similar to the cases. For example, in

this study each control was chosen to be the
same age, sex, and socioeconomic status as the
corresponding case. Why choose controls who
are similar to the cases?

(c) For this study, calculate the relevant difference
in proportions; proportion of cases (those with
schizophrenia) who owned a cat as a childminus
proportion of controls (no mental illness) who
owned a cat as a child.

(d) For testing the hypothesis that the proportion of
cat owners is higher in the schizophrenic group
than the control group, use technology to gener-
ate a randomization distribution and calculate
the p-value.

(e) Do you think this provides evidence that there
is an association between owning a cat as a
child and developing schizophrenia?49 Why or
why not?

49Even if you owned a cat as a child, you probably do not have to
worry. Schizophrenia has a strong genetic component, and most
cat owners do not go on to develop schizophrenia. However,
because of this study, you may want to think twice before letting
children (or pregnant women) come into contact with cat feces.
If you love cats but are worried by this study, cats always kept
indoors are thought to be safe.

4.4A CLOSER LOOK AT TESTING

Hypothesis testing is very powerful, as it helps shed light on whether an observed
effect is real or just due to random chance. However, statistical significance is not
foolproof, and it is possible to make the wrong decision, rejecting a true null hypoth-
esis or not rejecting a false null hypothesis. This section discusses common pit-
falls associated with formal hypothesis testing, along with factors that influence the
chances of these errors occurring.

Type I and Type II Errors
Formal hypothesis testing produces one of two possible generic decisions: “reject
H0” or “do not reject H0.” In reality, the claims about the population described by
H0 and Ha might be either true or false. Perhaps light at night really does increase
weight gain (Ha), or maybe this phenomenon doesn’t exist at all (H0) and sam-
ple differences just reflect random variation. When we make a formal decision to
“rejectH0,” we generally are accepting some risk thatH0 might actually be true. For
example, we may have been unlucky and stumbled upon one of those “1 in a 1000”
samples that are very rare to see when H0 holds but still are not impossible. This is
an example of what we call a Type I error: rejecting a true H0. The other possible
error to make in a statistical test is to fail to reject H0 when it is false and the alter-
nativeHa is actually true. We call this a Type II error: failing to reject a falseH0. See
Table 4.15.
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Table 4.14 Possible errors in a formal statistical
decision

Decision:
Reject H0 Do not reject H0

H0 is true Type I error No error
Reality:

H0 is false No error Type II error

In medical terms we often think of a Type I error as a “false positive” – a test
that indicates a patient has an illness when actually none is present, and a Type II
error as a “false negative” – a test that fails to detect an actual illness.

Example 4.23
Describe the consequences of making Type I and Type II errors in each case.

(a) In the light at night experiment where we testH0 ∶ 𝜇L = 𝜇D vs Ha ∶ 𝜇L > 𝜇D

(b) In Example 4.20 where we have a mystery animal named X and test H0 ∶ X is
an elephant vs Ha ∶ X is not an elephant

Solution (a) A Type I error is to reject a true H0. In the light at night study, a Type I error
is to conclude that light at night increases weight gain when actually there is no
effect.

A Type II error is to fail to reject a false H0. In this case, a Type II error
means the test based on our sample data does not convince us that light increases
weight gain when it actually does.

(b) If we see evidence (perhaps that X walks on two legs) that is so rare we conclude
that X is not an elephant and it turns out that X is an elephant (perhaps trained
in a circus), we have made a Type I error.

For a Type II error, we might find evidence (perhaps having four legs) that
is not unusual for an elephant, so we do not reject H0 and then discover that X
is actually a giraffe.

If our results are significant and we rejectH0, there is usually no way of knowing
whether we are correct or whether we have made a Type I error. If our results are
insignificant and we fail to reject H0, we could be correct or we could have made a
Type II error. While we can never rule out these possibilities entirely, we do have
some control over the chance of making these errors.

Significance Level and Errors
While we wish to avoid both types of errors, in practice we have to accept some
trade-off between them. If we make it very hard to reject H0, we could reduce the
chance of making a Type I error, but then we would make Type II errors more
often. On the other hand, making it easier to reject H0 would reduce the chance
of making a Type II error, but increase the chance of making a Type I error and
we would end up rejecting too many H0’s that were actually true. This balance is
set by how easy or hard it is to reject H0, which is exactly determined by the signif-
icance level! To decrease the chance of making a Type I error, we make it harder
to reject H0 by using a lower significance level. To decrease the chance of mak-
ing a Type II error, we make it easier to reject H0 by using a higher significance
level.
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If we use 𝛼 = 0.05 in a right-tail test, we decide to rejectH0 for all sample values
in the 5% of area in the upper tail of a randomization distribution. If instead we use
𝛼 = 0.01, we only reject H0 for sample values in the extreme upper 1% of area. If
we make 𝛼 smaller, fewer samples would be that extreme, meaning we would reject
H0 less often.

Because 5% of statistics will be in the most extreme 5% of the randomization
distribution, these 5% of samples will yield p-values less than 0.05. Because a ran-
domization distribution is created assuming the null hypothesis is true, this means
5% of samples will lead to rejecting H0 at 𝛼 = 0.05, even when H0 is true. This idea
generalizes beyond 0.05: if the null hypothesis is true, 𝛼 is the probability of making
a Type I error.

Understanding a Significance Level

The significance level, 𝛼, represents the tolerable probability of mak-
ing a Type I error.

If the consequences of a Type I error are severe (for example, approving a
new drug that is potentially dangerous) we might use a very small 𝛼 (perhaps even
𝛼 = 0.005). If the consequences of a Type II error are severe (for example, failing
to diagnose a treatable disease), we would want to make it easier to reject H0, so
might use a relatively large 𝛼. However, remember that there is always a trade-off
between the two types of errors, so we usually use the common significance levels
of 5%, 10% or 1%.

Example 4.24
Analogy to Law

It is often helpful to think of significance tests as similar to cases in a court of law.
For each italicized word or phrase below, give the analogy in a statistical test.

(a) A person is innocent until proven guilty.

(b) The evidence provided must indicate the suspect’s guilt beyond a reasonable
doubt.

(c) There are two types of errors a jury can make:

• Releasing a guilty person

• Convicting an innocent person

Solution (a) “Innocent” is the null hypothesis, H0 (the status quo that we assume to be the
situation until we see convincing evidence to the contrary). “Guilty” represents
the alternative hypothesis, Ha (the claim that instigates the trial).

(b) The “evidence” is the data from the sample and its p-value. The “reasonable
doubt” corresponds to the significance level, 𝛼. We reject the claim of innocence
(H0) and determine the suspect is guilty (Ha) when the evidence (p-value) is
very unlikely (less than 𝛼) to occur if the suspect is really innocent.

(c) “Releasing a guilty person” corresponds to a Type II error, since we fail to find
evidence to reject a false H0. “Convicting an innocent person” corresponds to a
Type I error, since we (incorrectly) find sufficient evidence in the data to reject
a true H0. As in our legal system, we are usually more worried about a Type
I error (convicting an innocent person) than about a Type II error (releasing a
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guilty person). Also as in our legal system, there is a trade-off between the two
kinds of errors when we test hypotheses.

The Problem of Multiple Testing
We just learned that if the null hypothesis is true, then 5% of hypothesis tests using
𝛼 = 0.05 will incorrectly reject the null hypothesis. This issue becomes even more
important when doing multiple hypothesis tests. Of all hypothesis tests conducted
for a true null hypothesis, using 𝛼 = 0.05, 5% of the tests will lead to rejecting the
null hypothesis! In other words, if you do 100 hypothesis tests, all testing for an effect
that doesn’t exist (the null is true), about 5% of them will incorrectly reject the null.

Example 4.25
Opening an Umbrella Indoors

Is it really bad luck to open an umbrella indoors? Suppose researchers all over the
world set out to actually test this idea, each randomizing people to either open an
umbrella indoors or to open an umbrella outdoors, and somehow measure “luck”
afterwards. If there are 100 people all testing this phenomenon at 𝛼 = 0.05, and if
opening an umbrella indoors does not bring bad luck, then about how many people
do you expect to get statistically significant results?

Solution If the null hypothesis is true (opening an umbrella indoors has no effect on luck),
then about 5% of the hypothesis tests will get p-values less than 0.05 just by random
chance, so about 5 of the 100 people testing this phenomena will get statistically
significant results.

If multiple hypothesis tests are conducted for an effect that doesn’t exist, some
of them may get significant results just by chance. The more hypothesis tests being
conducted, the higher the chance that at least one of those tests will make a Type I
error. This problem is known as the problem ofmultiple testing.

The Problem of Multiple Testing

When multiple tests are conducted, if the null hypotheses are all true,
the proportion of all the tests that will yield statistically significant
results just by random chance is about 𝛼, the significance level.

This issue is made even worse by the fact that usually only significant results are
published. This problem is known as publication bias. If only significant results
are published, then no one knows of all the studies producing insignificant
results. Consider the umbrella example. If the five statistically significant studies are
all published, and we do not know about the 95 insignificant studies, we might take
this as convincing evidence that opening an umbrella indoors really does cause bad
luck. Unfortunately this is a very real problem with scientific research.

Publication bias

Often, only significant results are published. If many tests are con-
ducted, some of them will be significant just by chance, and it may be
only these studies that we hear about.
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The problem of multiple testing can also occur when one researcher is testing
multiple hypotheses.

nobeastsofierce/Shutterstock.com

Are there genes related to leukemia?

D A T A 4 . 6 Genes and Leukemia
Genome association studies, tests for whether genes are associated with certain
diseases or other traits, are currently widely used in medical research,
particularly in cancer research. Typically, DNA is collected from a group of
people, some of whom have the disease in question, and some of whom don’t.
These DNA data are made up of values for thousands of different genes, and
each gene is tested to see if there is a difference between the diseased patients
and the healthy patients. Results can then be useful in risk assessment,
diagnosis, and the search for a cure. One of the most famous genome
association studies tested for genetic differences between patients with two
different types of leukemia (acute myeloid leukemia and acute lymphoblastic
leukemia).50 In this study, scientists collected data on 7129 different genes for 38
patients with leukemia. ◼

Example 4.26
Genes and Leukemia

Data 4.6 refers to a study in which data included information on 7129 genes, and
each gene was tested for a difference between the two types of leukemia.

(a) If all tests used a significance level of 𝛼 = 0.01, and if there are no genetic differ-
ences between the two types of leukemia, about how many of the genes would
be found to be significantly different between the two groups?

(b) Do we have reason to believe that all of the genes found to be statistically sig-
nificant are actually associated with the type of leukemia?

(c) In the actual study, 11% of tests for each gene yielded p-values less than 0.01.
Do we have reason to believe that there is some association between genes and
the type of leukemia?

Solution (a) If there are no genetic differences between the two types of leukemia, then we
would expect about 0.01 of the tests to yield statistically significant results just
by random chance. We expect about 0.01 × 7129 ≈ 71 of the genes to be found

50Golub, T.R., et al. “Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene
Expression Monitoring,” Science, 1999; 286:531–537.
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to be significantly different between the two groups, even if no differences
actually exist.

(b) Because we expect 71 genes to be found significant just by random chance even if
no associations exist, we should not believe that all genes found to be statistically
significant are actually associated with the type of leukemia.

(c) If there were no association between genes and leukemia, we would only expect
about 1% of the tests to yield p-values less than 0.01. Because 11% of the genes
yielded p-values below 0.01, some of them are probably truly associated with
the type of leukemia.

There are many ways of dealing with the problem of multiple testing,51 but those
methods are outside the scope of this text. The most important thing is to be aware
of the problem, and to realize that when doing multiple hypothesis tests, some are
likely to be significant just by random chance.

Replicating Results
If results are statistically significant we unfortunately have no way of knowing
(unless we can measure the entire population) whether the alternative hypothesis is
actually true or whether a Type I error occurred. In some situations, we may be extra
suspicious of Type I errors, such as when multiple tests were performed or when
a result is surprising or goes against current scientific theory. In other situations,
making a Type I error can be very problematic, such as when the study results have
important implications that will change current practice. For example, it would
be very bad to start prescribing a new drug with potential side effects to millions
of people if the drug does not work. In situations such as these, studies yielding
statistical significance should be replicated or reproduced with another study.

Example 4.27
Clinical Trials

Clinical trials are studies on people investigating a new drug or medical treatment,
and in the United States these are conducted in four phases. During Phase I, the
new treatment is tested for safety on a small group of people. In Phase II, an
experiment is conducted to test the effectiveness of the new treatment (usually
against a placebo). In Phase III, if the Phase II experiment yielded statistical
significance, another experiment is conducted (usually with a larger sample size and
comparing to an existing treatment). Phase IV consists of data collection on users
after the drug has gone to market, which occurs only if both Phase II and Phase
III yield significant results. Explain why two separate randomized experiments are
required for clinical trials.

Solution If the Phase II experiment yields statistically significant results, we can’t tell for sure
whether the treatment effect is real or whether a Type I error occurred. Because we
want to be sure the treatment really works before approving it for widespread use,
we perform another experiment in an attempt to replicate the results. If the Phase III
experiment also yields statistically significant results, we can be much more certain
that the treatment is actually effective. If the Phase III experiment does not yield
statistically significant results, perhaps the Phase II significance was just the result of
a Type I error.

51One common way, known as Bonferroni’s correction, is to divide the significance level by the number
of tests. For 𝛼 = 0.05 and 100 tests, a p-value would have to be less than 0.05∕100 = 0.0005 to be deemed
statistically significant.
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Replication is an important safeguard in clinical trials for two reasons. One is
that many pharmaceutical companies are testing new drugs and treatments all the
time, so we have a multiple testing problem. The second reason is that it could be
very harmful to society to conclude a new drug or medical treatment is effective
when it is not: people could suffer side effects for no reason, or they could choose
this treatment over another option that actually works.

Replication with Another Study

By attempting to replicate significant results with another study, this
second study can either:

(a) reject H0, providing further confirmation that Ha is true

(b) fail to rejectH0, suggesting that the first study may have yielded
a Type I error

Because replication of results is an important part of science, it is good practice
to conduct your study in a way that is fully reproducible, making each step of the
data collection and analysis transparent to other researchers.

Practical vs Statistical Significance
Suppose that a company offers an online tutorial course to help high school students
improve their scores when retaking a standardized exam such as the Scholastic Apti-
tude Test (SAT). Does the online course improve scores?Wemight use a hypothesis
test to determine if there is an improvement in scores and a confidence interval to
determine the size of the improvement.

Suppose we set up an experiment to measure the change in SAT score by ran-
domly assigning students to either take the course or just study on their own before
retaking the SAT. We let 𝜇c be the mean change in SAT scores for those taking the
online course and 𝜇nc be the mean change for those who just prepare on their own
with no course. This gives the hypotheses

H0 ∶ 𝜇c = 𝜇nc

Ha ∶ 𝜇c > 𝜇nc

Suppose that we randomly assign 2000 students to take the online course and
another 2000 students to a “no course” group. Figure 4.30 shows possible histograms
of the score changes for both groups. Although some students in both groups do
worse (i.e., have a negative change) when they retake the exam, in general stu-
dents tend to do better the second time. The mean change for the sample of stu-
dents taking the online course is xc = 42.7 points improvement and for the other
group without the course the sample mean change is xnc = 38.5 points. The differ-
ence is xc − xnc = 42.7 − 38.5 = 4.2 points and a randomization distribution shows
the upper tail p-value is about 0.0038. For any reasonable significance level this is
a small p-value so we have very strong evidence to reject H0 and conclude that
the mean improvement in SAT scores is higher for students who use the online
course.

We not only care about significance but also want to know how much higher the
average improvement is for students who use the online course. For this, we compute
an interval estimate. A 95% confidence interval for difference in mean improvement
in SAT scores for students who use the online course minus students who don’t is
(1.04, 7.36) points. Is an average improvement between 1 and 7 points worth it?
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Figure 4.30
Hypothetical SAT score
changes for groups of
2000 students
with/without an online
course
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Now suppose that the online prep course costs $3000 and takes more than
50 hours to complete. Would you be willing to spend that time and money to
earn (on average) roughly 4 more points than you might get by preparing on your
own (on an exam that is scored out of 800 points)? Would that magnitude of a score
change really make much difference in how your SAT score is viewed by a college
admissions officer?

Example 4.28
In testing whether an online prep course for the SAT test improves scores, we saw
that the average increase is 4.2 points and the p-value for the test is 0.0038. Are the
results statistically significant? Are the results practically significant?

Solution Since the p-value is very low, 0.0038, the results are definitely statistically significant.
Since the average improvement is only 4.2 points, however, the results are probably
not practically significant. It is probably not worth taking the online course for such
a small change.

This hypothetical example demonstrates that a difference that is statistically sig-
nificant might not have much practical significance. Especially when the sample sizes
are large, a rather small difference (such as 4 points on an 800-point SAT exam)
might turn out to be statistically significant. That does not necessarily mean that the
difference is going to be particularly important to individualsmaking a decision (such
as whether or not to take the online course). While some small differences may be
important and large samples can help reveal the true effects, we should not make
the mistake of automatically assuming that anything that is statistically significant is
practically significant.

TheEffect of SampleSize
We see in Section 3.1 that as the sample size increases, the variability of sample
statistics tends to decrease and sample statistics tend to be closer to the true value of
the population parameter. This idea applies here aswell.As the sample size increases,
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there will be less spread in the kinds of statistics we will see just by random chance,
when the null hypothesis is true, and statistics in the randomization distribution will
be more closely concentrated around the null value.

Example 4.29
Let’s return toExample 4.15 examining the proportion, p, of customers who forget to
take their to-go box, withH0 ∶ p = 0.3 andHa ∶ p > 0.3. In the following situations,
the sample statistic is the same but the sample size is different. In each case, find the
p-value, make a formal decision (using 𝛼 = 0.05), and give a conclusion in context.

(a) p̂ = 0.35 with n = 100

(b) p̂ = 0.35 with n = 1000

Solution (a) The randomization distribution for samples of size 100 is shown in Figure 4.31(a),
and yields a p-value of 0.166. This is greater than 𝛼 = 0.05, so we do not reject
H0. We would not have convincing evidence, based on the sample of 100 cus-
tomers with p̂ = 0.35, that more than 30% of people forget their to-go box at this
restaurant.

(b) The randomization distribution for samples of size 1000 is shown in
Figure 4.31(b), and yields a p-value of 0.001. This is less than 𝛼 = 0.05, so we
rejectH0. We would have strong evidence from a sample of 1000 customers with
p̂ = 0.35 that more than 30% of people forget their to-go box at this restaurant.

Figure 4.31
Randomization
distributions for
H0 ∶ p = 0.3

0.20 0.25 0.30 0.35 0.40

p-value = 0.166

(a) n = 100

0.45

0.20 0.25 0.30 0.35 0.40

p-value = 0.001

(b) n = 1000
0.45

Notice in Example 4.29 that the hypotheses and sample statistic are the same in
bothcases, and theonlydifference is the sample size. InFigure 4.31, the randomization
distribution with n = 100 has more variability than the randomization distribution
with n = 1000. As a result, if the proportion really is 0.3, it is quite likely to see a
statistic as high as p̂ = 0.35 if n = 100, but very unlikely to see a statistic that large if
n = 1000. Because a larger sample size decreases the spread of values we might see
just by random chance, a larger sample size makes it easier to reject H0 when the
alternative hypothesis is true.

Sample Size and Significance

A larger sample size makes it easier to find significant results, if Ha is
true.
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This has several important practical implications. The first is that to maximize
your chances of finding significant results, you should always use the largest sample
size possible. A larger sample size decreases the chance of making a Type II error.
In this case there is no trade-off with Type I errors, because the chance of a Type I
error ifH0 is true is simply 𝛼, and is not affected by sample size. A larger sample size
is always better!

The second implication is that a small sample size can make it hard to find signif-
icant results, because your observed statistic would have to be very far from the null
value to constitute convincing evidence. This means with a small sample size we may
often fail to rejectH0, even if the alternative is true.

Finally, in this age of “big data,” we often have samples consisting of millions
of credit card records or billions of mouse clicks, where almost every test will yield
significant results. This makes it important to avoid confusing statistical significance
with practical significance.

Effects of Sample Size

• With a small sample size, it may be hard to find significant results,
even when the alternative hypothesis is true.

• With a large sample size, it is easier to find significant results when
the alternative hypothesis is true, but we should be especially
careful to distinguish between statistical significance and practical
significance.

In this sectionwehave learnedabout someof theways inwhich formalhypothesis
testing can go wrong. If we reject H0, it is always possible that the null hypothesis
is actually true, and that we made a Type I error. If we fail to reject H0, it is always
possible that the alternative hypothesis is true, and that we made a Type II error.
Although we can never fully prevent errors, we should know how to control the
chances of making errors (such as by choosing the significance level or increasing the
sample size), be able to recognize common situations that are prone to errors (Type I
errors are more common when multiple tests are performed and Type II errors are
more common with small sample sizes), and recognize the importance of replication
as a tool to reveal or dispel Type I errors.

In general, when performing statistical inference, it is important to remember
that intervals will not always capture the truth, results can be deemed statistically
significant even when the null hypothesis is in fact true, and failing to reject the null
hypothesis does not mean the null hypothesis is true.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Interpret Type I and Type II errors in hypothesis tests

• Recognize a significance level asmeasuring the tolerable chance ofmak-
ing a Type I error

• Explain the potential problemwith significant results when doingmulti-
ple tests

• Recognize the value of replicating a study that shows significant results

• Recognize that statistical significance is not always the same as practical
significance

• Recognize that larger sample sizes make it easier to achieve statistical
significance if the alternative hypothesis is true
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Exercises forSection4.4

SKILL BUILDER 1
In Exercises 4.147 to 4.150, the same sample statistic
is used to test a hypothesis, using different sample
sizes. In each case, use StatKey or other technology
to find the p-value and indicate whether the results
are significant at a 5% level. Which sample size
provides the strongest evidence for the alternative
hypothesis?

4.147 Testing H0 ∶ p = 0.5 vs Ha ∶ p > 0.5 using
p̂ = 0.55 with each of the following sample sizes:

(a) p̂ = 55∕100 = 0.55

(b) p̂ = 275∕500 = 0.55

(c) p̂ = 550∕1000 = 0.55

4.148 Testing H0 ∶ p = 0.5 vs Ha ∶ p > 0.5 using
p̂ = 0.58 with each of the following sample sizes:

(a) p̂ = 29∕50 = 0.58

(b) p̂ = 290∕500 = 0.58

4.149 Testing H0 ∶ p1 = p2 vs Ha ∶ p1 > p2 using
p̂1 − p̂2 = 0.8 − 0.7 = 0.10 with each of the following
sample sizes:

(a) p̂1 = 24∕30 = 0.8 and p̂2 = 14∕20 = 0.7

(b) p̂1 = 240∕300 = 0.8 and p̂2 = 140∕200 = 0.7

4.150 Testing H0 ∶ p1 = p2 vs Ha ∶ p1 > p2 using
p̂1 − p̂2 = 0.45 − 0.30 = 0.15 with each of the follow-
ing sample sizes:

(a) p̂1 = 9∕20 = 0.45 and p̂2 = 6∕20 = 0.30

(b) p̂1 = 90∕200 = 0.45 and p̂2 = 60∕200 = 0.30

(c) p̂1 = 900∕2000= 0.45 and p̂2 = 600∕2000 = 0.30

SKILL BUILDER 2
In Exercises 4.151 to 4.154, we are conducting many
hypothesis tests to test a claim. In every case, assume
that the null hypothesis is true. Approximately how
many of the tests will incorrectly find significance?

4.151 100 tests conducted using a significance level
of 5%.

4.152 300 tests using a significance level of 1%.

4.153 40 tests using a significance level of 10%.

4.154 800 tests using a significance level of 5%.

4.155 Interpreting a P-value In each case, indicate
whether the statement is a proper interpretation of
what a p-value measures.

(a) The probability the null hypothesisH0 is true.

(b) The probability that the alternative hypothesis
Ha is true.

(c) The probability of seeing data as extreme as the
sample, when the null hypothesisH0 is true.

(d) The probability of making a Type I error if the
null hypothesisH0 is true.

(e) The probability of making a Type II error if the
alternative hypothesisHa is true.

4.156 Translating Information toOther Significance
Levels Suppose in a two-tailed test of H0 ∶ 𝜌 = 0 vs
Ha ∶ 𝜌 ≠ 0, we reject H0 when using a 5% signifi-
cance level. Which of the conclusions below (if any)
would also definitely be valid for the same data?
Explain your reasoning in each case.

(a) Reject H0 ∶ 𝜌 = 0 in favor of Ha ∶ 𝜌 ≠ 0 at a
1% significance level.

(b) Reject H0 ∶ 𝜌 = 0 in favor of Ha ∶ 𝜌 ≠ 0 at a
10% significance level.

(c) Reject H0 ∶ 𝜌 = 0 in favor of the one-tail alter-
native, Ha ∶ 𝜌 > 0, at a 5% significance level,
assuming the sample correlation is positive.

4.157 Euchre One of the authors and some statisti-
cian friends have an ongoing series of Euchre games
that will stop when one of the two teams is deemed
to be statistically significantly better than the other
team. Euchre is a card game and each game results
in a win for one team and a loss for the other. Only
two teams are competing in this series, which we’ll
call team A and team B.

(a) Define the parameter(s) of interest.

(b) What are the null and alternative hypotheses if
the goal is to determine if either team is sta-
tistically significantly better than the other at
winning Euchre?

(c) What sample statistic(s)would theyneed tomea-
sure as the games go on?

(d) Could thewinnerbedeterminedafter oneor two
games? Why or why not?

(e) Which significance level, 5% or 1%, will make
the game last longer?

4.158 Flying Home for the Holidays, On Time
In Exercise 4.142 on page 331, we compared the
average difference between actual and scheduled
arrival times for December flights on two major air-
lines: Delta and United. Suppose now that we are
only interested in the proportion of flights arriving
more than 30 minutes after the scheduled time. Of
the 1000 Delta flights, 45 arrived more than 30 min-
utes late, and of the 1000 United flights, 114 arrived
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more than 30 minutes late. We are testing to see if
this provides evidence to conclude that the propor-
tionofflights that areover 30minutes late is different
between flyingUnited orDelta.

(a) State the null and alternative hypothesis.

(b) What statistic will be recorded for each of the
simulated samples to create the randomization
distribution? What is the value of that statistic
for the observed sample?

(c) Use StatKey or other technology to create a ran-
domization distribution. Estimate the p-value
for the observed statistic found in part (b).

(d) At a significance level of 𝛼 = 0.01, what is the
conclusion of the test? Interpret in context.

(e) Now assume we had only collected samples of
size 88, but got roughly the same proportions
(4/88 late flights for Delta and 10/88 late flights
for United). Repeating steps (b) through (d) on
these smaller samples, do you come to the same
conclusion?

4.159 Flaxseed and Omega-3 Exercise 4.32 on
page 293 describes a company that advertises that its
milled flaxseed contains, on average, at least 3800mg
ofALNA, theprimaryomega-3 fattyacid inflaxseed,
per tablespoon. Ineachcasebelow,whichof the stan-
dard significance levels, 1% or 5% or 10%, makes
the most sense for that situation?

(a) The company plans to conduct a test just to
double-check that its claim is correct. The com-
pany is eager to find evidence that the aver-
age amount per tablespoon is greater than 3800
(their alternative hypothesis), and is not really
worriedaboutmakingamistake.The test is inter-
nal to the company and there are unlikely to be
any real consequences either way.

(b) Suppose, instead, that a consumer organization
plans to conduct a test to see if there is evidence
against the claim that the product contains at
least 3800mgper tablespoon. If the organization
finds evidence that the advertising claim is false,
it will file a lawsuit against the flaxseed company.
The organization wants to be very sure that the
evidence is strong, since if the company is sued
incorrectly, there could be very serious conse-
quences.

SELECTINGA SIGNIFICANCE LEVEL
For each situation described in Exercises 4.160
to 4.165, indicate whether it makes more sense to
use a relatively large significance level (such as
𝛼 = 0.10) or a relatively small significance level (such
as 𝛼 = 0.01).

4.160 Testing a new drug with potentially danger-
ous side effects to see if it is significantly better than
the drug currently in use. If it is found to be more
effective, it will be prescribed to millions of people.

4.161 Using your statistics class as a sample to see if
there is evidence of a difference between male and
female students in howmany hours are spent watch-
ing television per week.

4.162 Using a sample of 10 games each to see if your
average score at Wii bowling is significantly more
than your friend’s average score.

4.163 Testing to see if awell-knowncompany is lying
in its advertising. If there is evidence that the com-
pany is lying, the Federal Trade Commission will file
a lawsuit against them.

4.164 Testingtoseewhether takingavitaminsupple-
ment each day has significant health benefits. There
are no (known) harmful side effects of the supple-
ment.

4.165 A pharmaceutical company is testing to see
whether its new drug is significantly better than the
existingdrugonthemarket. It ismoreexpensive than
the existing drug.Which significance level would the
company prefer? Which significance level would
the consumer prefer?

TYPE I AND TYPE II ERRORS
For each situation given in Exercises 4.166 to 4.170,
describe what it means in that context to make a
Type I and Type II error. Personally, which do you
feel is a worse error to make in the given situation?

4.166 The situation described in Exercise 4.160.

4.167 The situation described in Exercise 4.161.

4.168 The situation described in Exercise 4.162.

4.169 The situation described in Exercise 4.163.

4.170 The situation described in Exercise 4.164.

4.171 Influencing Voters Exercise 4.41 on page 294
describes a possible study to see if there is evidence
that a recorded phone call is more effective than a
mailed flyer in getting voters to support a certain
candidate. The study assumes a significance level of
𝛼 = 0.05.

(a) What is the conclusion in thecontextof this study
if the p-value for the test is 0.027?

(b) In the conclusion in part (a), which type of error
are we possibly making: Type I or Type II?
Describe what that type of error means in this
situation.

(c) What is the conclusion if the p-value for the test
is 0.18?
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(d) In the conclusion in part (c), which type of error
are we possibly making: Type I or Type II?
Describe what that type of error means in this
situation.

4.172 Significant and Insignificant Results

(a) If we are conducting a statistical test and deter-
mine that our sample shows significant results,
there are two possible realities: We are right in
our conclusion or we are wrong. In each case,
describe the situation in terms of hypotheses
and/or errors.

(b) If we are conducting a statistical test and deter-
mine that our sample shows insignificant results,
there are two possible realities: We are right in
our conclusion or we are wrong. In each case,
describe the situation in terms of hypotheses
and/or errors.

(c) Explainwhywegenerallywon’t everknowwhich
of the realities (in either case) is correct.

4.173 Weight Loss Program Suppose that a weight
loss company advertises that people using its pro-
gram lose an average of 8 pounds the first month,
and that the Federal Trade Commission (the main
government agency responsible for truth in adver-
tising) is gathering evidence to see if this advertising
claim is accurate. If the FTC finds evidence that the
average is less than 8 pounds, the agency will file a
lawsuit against the company for false advertising.

(a) What are the null and alternative hypotheses the
FTC should use?

(b) Suppose that the FTC gathers information from
a very large random sample of patrons and finds
that the average weight loss during the first
month in the program is x = 7.9 pounds with a
p-value for this result of 0.006. What is the con-
clusion of the test? Are the results statistically
significant?

(c) Doyou think the results of the test arepractically
significant? In other words, do you think patrons
of theweight loss programwill care that the aver-
age is 7.9 pounds lost rather than 8.0 pounds lost?
Discuss the difference between practical signifi-
cance and statistical significance in this context.

4.174 Do iPads Help Kindergartners Learn: A Sub-
test The Auburn, Maine, school district conducted
an early literacy experiment in the fall of 2011. In
September,half of thekindergartenclasseswere ran-
domly assigned iPads (the intervention group) while
the other half of the classes got them in December
(the control group.) Kids were tested in September
and December and the study measures the aver-
age difference in score gains between the control

and intervention group.52 The experimenters tested
whether the mean score for the intervention group
was higher on the HRSIW subtest (Hearing and
Recording Sounds in Words) than the mean score
for the control group.

(a) State the null and alternative hypotheses of the
test and define any relevant parameters.

(b) The p-value for the test is 0.02. State the con-
clusion of the test in context. Are the results
statistically significant at the 5% level?

(c) The effect size was about two points, which
means themean score for the intervention group
was approximately two points higher than the
mean score for the control group on this subtest.
A school board member argues, “While these
resultsmight be statistically significant, theymay
not be practically significant.” What does she
mean by this in this context?

4.175 Do iPads Help Kindergartners Learn: A
Series of Tests Exercise 4.174 introduces a study in
which half of the kindergarten classes in a school dis-
trict are randomlyassigned to receive iPads.We learn
that the results are significant at the 5% level (the
mean for the iPad group is significantly higher than
for the control group) for the results on the HRSIW
subtest. In fact, the HRSIW subtest was one of 10
subtests and the results were not significant for the
other 9 tests. Explain, using the problem of multiple
tests, why we might want to hesitate before we run
out to buy iPads for all kindergartners based on the
results of this study.

4.176 Vitamin C for Sepsis Sepsis occurs when
a person’s body has an overwhelmingly danger-
ous response to an infection. It can affect peo-
ple of all ages and is life-threatening. Because
vitamin C is believed to reduce inflammation, a ran-
domized experiment53 was designed to see if intra-
venous administration of high-dose vitamin Cwould
improve outcomes in patients with sepsis. Half the
patients received an infusion of vitamin C while the
other half received a placebo infusion.

(a) Over a follow-up period of 28 days, the mean
number of days on a ventilator was not sig-
nificantly different between the two groups,
while the mean number of days out of the
Intensive Care Unit was significantly different.

52Reich, J., “Are iPads Making a Significant Difference? Findings
from Auburn, Maine,” Ed Tech Researcher, February 17, 2012.
53Fowler A, et al., “Effect of Vitamin C Infusion on Organ
Failure and Biomarkers of Inflammation and Vascular Injury
in Patients with Sepsis and Severe Acute Respiratory Failure,”
JAMA, 322(13), October 1, 2019.
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The p-values for these two tests were 0.03 and
0.15. Which p-value goes with which test?

(b) Part (a) describes one test that was significant
and one that wasn’t in this study. In fact, many
outcomes were measured and forty-six different
tests were conducted. Forty-three of the 46 tests
did not showa significant difference between the
vitamin C group and the placebo group, while 3
did show significance at the 5% level. Explain
whyweshouldhesitate toattachtoomuchimpor-
tance to the three significant results.

4.177 Impact of Arts EducationA randomized con-
trolled experiment involving over 10, 000 students
enrolled in 4th to 8th grade in Texas examined
the impact of arts education on a wide variety
of outcomes.54 Arts education included visual arts,
music, dance, and theater. Six different outcomes
weremeasuredover 12different groups, for a total of
72 different hypothesis tests conducted to examine
evidence for a positive impact from additional arts
education.

(a) If additional arts education has no effect, how
many of the 72 tests would you expect to be sig-
nificant at the 5% level just by random chance?
How many at the 1% level? (Do not round off
answers.)

(b) In fact, 16 of the tests were significant at the
5% level and 6 tests were significant at the 1%
level,but these significant resultswerenotevenly
spread out over the different response variables.
In each case below, compare the number of sig-
nificant results to the number expected just by
randomchanceat each level.Does increasedarts
education appear to have a statistically signifi-
cant impact in the areas specified?

(i) Forty-eight of the tests were in four areas
(absences, math, reading, and science) and
had only 1 result significant at the 5% level
and no results significant at the 1% level.

(ii) The other 24 tests were in the areas of disci-
pline and writing. For these 24 tests, 15 were
significant at the 5% level and 6 were signif-
icant at the 1% level.

4.178 EatingBreakfastCereal andConceivingBoys
Newscientist.com ran the headline “Breakfast Cere-
als Boost Chances of Conceiving Boys,” based on an
article which found that women who eat breakfast
cereal before becoming pregnant are significantly

54Bowen D and Kisida B, “Investigating Causal Effects of
Arts Education: Experimental Evidence from Houston’s Arts
Access Initiative,” Research Report, Kinder Institute for Urban
Research, February 12, 2019.

more likely to conceive boys.55 The study used a
significance level of 𝛼 = 0.01. The researchers kept
track of 133 foods and, for each food, tested whether
there was a difference in the proportion conceiving
boys between women who ate the food and women
who didn’t. Of all the foods, only breakfast cereal
showed a significant difference.

(a) If none of the 133 foods actually have an effect
on the sex of a conceived child, how many (if
any) of the individual tests would you expect to
show a significant result just by random chance?
Explain. (Hint: Pay attention to the significance
level.)

(b) Do you think the researchers made a Type I
error? Why or why not?

(c) Even if you could somehow ascertain that the
researchers did not make a Type I error, that
is, women who eat breakfast cereals are actu-
ally more likely to give birth to boys, should you
believe the headline “Breakfast Cereals Boost
Chances of ConceivingBoys”?Why orwhy not?

4.179 Approval from the FDA for Antidepressants
The FDA (US Food and Drug Administration) is
responsible for approving all new drugs sold in the
US. In order to approve a new drug for use as an
antidepressant, the FDA requires two results from
randomized double-blind experiments showing the
drug is more effective than a placebo at a 5% level.
TheFDAdoes not put a limit on the number of times
a drug company can try such experiments. Explain,
using the problem of multiple tests, why the FDA
might want to rethink its guidelines.

4.180 DoesMassageReallyHelpReduceInflamma-
tion in Muscles? In Exercise 4.139 on page 331, we
learn that massage helps reduce levels of the inflam-
matory cytokine interleukin-6 inmuscles whenmus-
cle tissue is tested 2.5 hours after massage. The
resultswere significant at the 5% level.However, the
authors of the study actually performed 42 different
tests: They tested for significance with 21 different
compounds in muscles and at two different times
(right after the massage and 2.5 hours after).

(a) Given this new information, should we have less
confidence in the one result described in the ear-
lier exercise? Why?

(b) Sixteen of the tests done by the authors involved
measuring the effects of massage on muscle
metabolites. None of these tests were significant.

55Mathews, F., Johnson, P.J., and Neil, A., “You are what your
mother eats: Evidence for maternal preconception diet influenc-
ing foetal sex in humans.” Proceedings of the Royal Society B:
Biological Sciences. 2008; 275: 1643,1661–68.
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Do you think massage affects muscle metabo-
lites?

(c) Eight of the tests done by the authors (includ-
ing the one described in the earlier exercise)
involved measuring the effects of massage on
inflammation in the muscle. Four of these
tests were significant. Do you think it is safe
to conclude that massage really does reduce
inflammation?

4.181 Cat Ownership and Schizophrenia Exercise
4.146 on page 332 revealed an association between
owning a cat as a child and developing schizophre-
nia later in life. Many people enjoy cats as pets, so
this conclusion has profound implications and could
change pet ownership habits substantially.However,
because of the chance for false positives (Type I
errors) and potential problems with generalizability,
good scientific conclusions rarely rest on a founda-
tion of just one study. Because of this, significant
results often require replication with follow up stud-
ies before they are truly trusted. If study results can
be replicated, especially in a slightly different setting,
they becomemore trustworthy, and if results can not
be replicated, suspicions of aType I error (significant
results by random chance) or a lack of generalizabil-
ity from the setting of the initial study may arise.
In fact, the paper56 cited in Exercise 4.146 actually
provided three different datasets, all from differ-
ent years (1982, 1992, and 1997) and with different
choices for choosing the control group. The sample
proportions for each dataset, with the sample sizes
in the denominator, are given in Table 4.15.

(a) As we know, statistics vary from sample to sam-
ple naturally, so it is not surprising that the sam-
ple proportions differ slightly from year to year.
However, does the relative consistency of the
sample proportions affect the credibility of any
single dataset?

(b) Use technology to calculate the p-value for each
dataset, testing the alternative hypothesis that

56Torrey, E.F., Simmons, W., and Yolken, R.H. (2015). “Is child-
hood cat ownership a risk factor for schizophrenia later in life?,”
Schizophrenia Research, June 2015, 165(1):1–2.

Table 4.15 Cat Ownership and Schizophrenia

Proportion of schizophrenics Proportion of controls
Year who owned cats as children who owned cats as children

1982 Data (Analyzed in 2015) 1075∕2125 = 0.506 2065∕4847 = 0.426

1992 Data 84∕165 = 0.509 65∕165 = 0.394

1997 Data 136∕262 = 0.519 220∕522 = 0.421

the proportion of cat owners is higher among
schizophrenics.

(c) Do all datasets yield significant results? Should
this increaseordecreasepotential suspicions that
the significance of any single study may have
been just a Type I error?

(d) Why is the p-value lowest for the 1982 data, even
though this dataset yields the smallest differ-
ence inproportions?Similarly,why is thep-value
highest for the 1992 data, even though this data
yielded the largest difference in proportions?

4.182 MatingChoiceandOffspringFitnessDoes the
ability to choose a mate improve offspring fitness in
fruit flies? Researchers have studied this by taking
female fruit flies and randomly dividing them into
two groups; one group is put into a cage with a large
number of males and able to freely choose who to
mate with, while flies in the other group are each put
into individual vials, each with only one male, giv-
ing no choice in who to mate with. Females are then
put into egg laying chambers, and a certain num-
ber of larvae collected. Do the larvae from the mate
choice group exhibit higher survival rates?A study57

published in Nature found that mate choice does
increase offspring fitness in fruit flies (with p-value
< 0.02), yet this result went against conventional
wisdom in genetics and was quite controversial.
Researchers attempted to replicate this result with
a series of related experiments,58 with data provided
inMateChoice.

(a) In the first replication experiment, using the
same species of fruit fly as the original Nature
study, 6067 of the 10000 larvae from the mate
choice group survived and 5976 of the 10000
larvae from the no mate choice group survived.
Calculate the p-value.

57Patridge, L. (1980). “Mate choice increases a component of
offspring fitness in fruit flies,” Nature, 283:290–291, 1/17/80.
58Schaeffer, S.W.,Brown,C.J., andAnderson,W.W. (1984). “Does
mate choice affect fitness?” Genetics, 107:s94. Thank to Stephen
Schaeffer for providing the data. The data is included here with
permission from Wyatt W. Anderson (University of Georgia),
Celeste J. Brown (University of Idaho), and StephenW. Schaeffer
(Penn State).
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(b) Using a significance level of 𝛼 = 0.05 andp-value
from (a), state the conclusion in context.

(c) Actually, the 10,000 larvae in each group came
from a series of 50 different runs of the experi-
ment, with 200 larvae in each group for each run.
The researchers believe that conditions differ
from run to run, and thus it makes sense to treat
each run as a case (rather than each fly). In this
analysis, we are looking at paired data, and the
response variable would be the difference in the
number of larvae surviving between the choice
group and the no choice group, for each of the
50 runs. The counts (Choice and NoChoice and
difference (Choice −NoChoice) in number of
surviving larva are stored inMateChoice. Using
the single variable of differences, calculate the p-
value for testing whether the average difference
is greater than 0. (Hint: this is a single quantita-
tive variable, so the corresponding test would be
for a single mean.)

(d) Using a significance level of 𝛼 = 0.05 and the
p-value from (c), state the conclusion in context.

(e) The experiment being tested in parts (a)–(d)
was designed to mimic the experiment from the
original study, yet the original study yielded sig-
nificant results while this study did not. If mate
choice really does improve offspring fitness in
fruit flies, did the follow-up study being analyzed
in parts (a)–(d) make a Type I, Type II, or no
error?

(f) If mate choice really does not improve offspring
fitness in fruit flies, did the originalNature study
make a Type I, Type II, or no error?59

4.183 Mating Choice and Offspring Fitness: Mini-
Experiments Exercise 4.182 explores the question
of whether mate choice improves offspring fitness
in fruit flies, and describes two seemingly iden-
tical experiments yielding conflicting results (one
significant, one insignificant). In fact, the second
source was actually a series of three different experi-
ments, and each full experiment was comprised of
50 different mini-experiments (runs), 10 each on
five different days.

59Subsequent studies suggest that this is more likely the true
scenario, at least for populations in genetic equilibrium.

(a) Suppose each of the 50 mini-experiments from
the first studywere analyzed individually. Ifmat-
ing choice has no impact on offspring fitness,
about how many of these 50 p-values would you
expect to yield significant results at 𝛼 = 0.05?

(b) The 50 p-values, testing the alternative Ha ∶
pC > pNC (proportion of flies surviving is higher
in the mate choice group) are given below:

Day 1: 0.96 0.85 0.14 0.54 0.76 0.98 0.33 0.84 0.21 0.89
Day 2: 0.89 0.66 0.67 0.88 1.00 0.01 1.00 0.77 0.95 0.27
Day 3: 0.58 0.11 0.02 0.00 0.62 0.01 0.79 0.08 0.96 0.00
Day 4: 0.89 0.13 0.34 0.18 0.11 0.66 0.01 0.31 0.69 0.19
Day 5: 0.42 0.06 0.31 0.24 0.24 0.16 0.17 0.03 0.02 0.11

How many are actually significant using
𝛼 = 0.05?

(c) Youmaynotice that twop-values (the fourth and
last run on day 3) are 0.00 when rounded to two
decimal places. The second of these is actually
0.0001 if we report more decimal places. This is
very significant! Would it be appropriate and/or
ethical to just report this one run, yielding highly
statistically significant evidence thatmate choice
improves offspring fitness? Explain.

(d) You may also notice that two of the p-values on
day2are1 (rounded to twodecimalplaces). Ifwe
had been testing the opposite alternative, Ha ∶
pC < pNC (proportion surviving is lower in the
mate choice group), would these two runs yield
significant results that preventing mate choice
actually improves offspring fitness? Explain.

(e) Using the problem of multiple testing, explain
whyit ispossible toget suchcontradictoryresults.

(f) In fact, the replication studies involved three dif-
ferent sets of experiments, each with a different
type of mutant fly introduced for competition,
and with two different species of fruit flies being
studied. While the originalNature study yielded
statistically significant results in favor of mate
choice, and the first replication study yielded
insignificant results, the latter two replication
studies yielded statistically significant results in
favor of no mate choice. Explain why replica-
tion of studies (the replication of a study in a
different setting or by a different researcher) is
an important part of science.
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4.5MAKINGCONNECTIONS

In this section, we connect some of the ideas of the previous sections together. We
start by connecting the bootstrap distributions of Chapter 3 with the randomization
distributions of this chapter. We then examine the connection between confidence
intervals and hypothesis tests. Finally, we connect the definition of randomization
distributions with how randomization distributions are actually created.

ConnectingRandomization andBootstrapDistributions
In Chapter 3 we examine methods to construct confidence intervals for population
parameters.We sample (with replacement) from the original sample to create a boot-
strapdistributionofpossiblevalues forasamplestatistic.Basedonthisdistribution,we
produce a range of plausible values for the parameter so that we have some degree of
certainty that the interval will capture the actual parameter value for the population.

In this chapter we develop methods to test claims about populations. After
specifying null and alternative hypotheses, we assess the evidence in a sample by
constructing a randomization distribution of possible sample statistics that we might
see by random chance, if the null hypothesis were true. If the original sample statistic
falls in an unlikely location of the randomization distribution, we have evidence to
reject the null hypothesis in favor of the alternative.

You have probably noticed similarities in these two approaches. Both use some
sort of random process to simulate many samples and then collect values of a sample
statistic for eachof those samples to formadistribution. Inboth casesweare generally
concernedwithdistinguishingbetween“typical” values in themiddleof adistribution
and “unusual” values in one or both tails. Assuming that the values in a bootstrap or
randomization distribution reflect what we might expect to see if we could generate
manysetsof sampledata,weuse the informationbasedonouroriginal sample tomake
some inference about what actually might be true about a population, parameter, or
relationship.

Sampling Distribution, Bootstrap Distribution, and
Randomization Distribution

A sampling distribution shows the distribution of sample statistics from
a population, and is generally centered at the true value of the popula-
tion parameter.

A bootstrap distribution simulates a distribution of sample statistics for
the population, but is generally centered at the value of the original
sample statistic.

A randomization distribution simulates a distribution of sample statis-
tics for a population inwhich the null hypothesis is true, and is generally
centered at the value of the null parameter.

We take a closer look at the connection between a bootstrap distribution and a
randomization distribution at the end of this section (page 361).

ConnectingConfidence Intervals andHypothesis Tests
In Chapter 3, we see that a confidence interval shows us the plausible values of the
population parameter. In Chapter 4, we use a hypothesis test to determine whether a
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given parameter in a null hypothesis is plausible or not. Thus, we can use a confidence
interval to make a decision in a hypothesis test, and we can use a hypothesis test to
determine whether a given value will be inside a confidence interval!

Connection between Confidence Intervals and
Hypothesis Tests

The formal decision to a two-tailed hypothesis test is related towhether
or not the null parameter falls within a confidence interval:

• When the parameter value given inH0 falls outside of a 95% confi-
dence interval, then it is not a plausible value for the parameter and
we should rejectH0 at a 5% level in a two-tailed test.

• When the parameter value specified byH0 falls inside of a 95% con-
fidence interval, then it is a plausible value for the parameter and
we should not rejectH0 at a 5% level in a two-tailed test.

This relationship is very flexible: It can be applied to different parameters andwe
can use different significance levels by adjusting the confidence level accordingly. For
example, a 1% test would correspond to seeing if the hypothesized value is within a
99% confidence interval and a significance level of 10%would use a 90% confidence
interval.

Example 4.30
CAOS Exam

The Comprehensive Assessment of Outcomes in Statistics60 (CAOS) exam is a stan-
dardized test for assessing students’ knowledge of statistical concepts. The questions
on this exam have been tested extensively to establish benchmarks for how well
students do when answering them. One of the tougher questions, dealing with mis-
interpretations of a confidence interval, is answered correctly by about 42% of all
statistics students. A statistics instructor gets the results for 30 students in a class and
finds that 17 of the students (p̂ = 17∕30 = 0.567) answered the confidence interval
question correctly. Based on these sample results a 95% confidence interval for the
proportion of students with this instructor who get the question correct goes from
0.39 to 0.75.We assume that the 30 students who answered the question are a random
sample of this instructor’s students.

(a) Based on this confidence interval, is the instructor justified in saying the propor-
tion of his students who get the question correct is different from the baseline
national proportion of p = 0.42?

(b) This question is in a multiple-choice format with four possible answers, only one
of which is correct. Can the instructor conclude that his students are not just
guessing on this question?

Solution (a) If thehypotheses areH0 ∶ p = 0.42andHa ∶ p ≠ 0.42,we see that thenull propor-
tion is within the 95% confidence interval, (0.39, 0.75), so using a 5% significance
level we would not reject H0. The instructor would not have sufficient evidence
to conclude that the proportion correct for his students is different than 0.42.

(b) If studentsare justguessing, theproportioncorrect foraquestionwith fourchoices
is p = 0.25. Since 0.25 is not within the 95% confidence interval, we rejectH0 and
the instructor can conclude (using a 5% significance level) that the proportion of

60https://app.gen.umn.edu/artist/caos.html.
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correct answers for this question is different from 0.25. The students are doing
better than merely guessing at random.

jonathan miller/Alamy Stock Photo

About 59% of Americans favored a ban
on smoking in public places

Example 4.31
Smoking in Public Places

Attitudesonbanning smoking inpublicplaceshaveevolvedover timeandmay impact
public policy. In aGalluppoll ofAmericanadults in July 2018, 59%of the respondents
favored a total ban on smoking in public places.61 In a similar survey 18 years earlier
the proportion who favored such a ban was only 40%. We use these two samples
to construct a 95% confidence interval for the difference in proportion of support
for a smoking ban in public places between these two years, p2 − p1, where p2 is the
proportion in 2018 and p1 is the proportion in 2000. The confidence interval for the
difference in proportions is 0.147 to 0.233.

(a) Does thisconfidence intervalprovidesufficientevidenceata5%level that thepro-
portion of Americans supporting a ban on smoking in public places was different
in 2018 than it was in 2000?

(b) What conclusions (if any) could we draw if the significance level was 10%or 1%?

Solution (a) When testingH0 ∶ p2 = p1, the null difference in proportions is p2 − p1 = 0. Since
the 95% confidence interval for p2 − p1 does not include zero, we have sufficient
evidence (at a 5% level) to rejectH0 and conclude that the proportion of Amer-
icans favoring the smoking ban changed over this time period.

Since the confidence interval includes only positive differences, we can go
even further and conclude that the proportion supporting such a ban was higher
in 2018 than it was in 2000. This conclusion may seem more appropriate for
a one-tailed test, but note that a sample statistic which is far enough in the

61https://news.gallup.com/poll/237767/one-four-americans-support-total-smoking-ban.aspx.
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tail to reject H0 for a two-tailed test will also reject H0 for a one-tailed test in
that direction.

(b) Since part (a) indicates that we should reject H0 at a 5% significance level,
we know we would also reject H0 at the larger 10% level and draw the same
conclusion. However, we cannot reach a firm decision for a 1% test based only
on the results of the 95% confidence interval for the difference in proportions.
Since that is a stricter significance level, we would need to either construct a
99% confidence interval for the difference in proportions or carry out the actual
details of the hypothesis test to make a decision at the 1% level.

Confidence Intervals and Hypothesis Tests
Are Both Still Important!
Since we can use a confidence interval to make a conclusion in a hypothesis test,

you might be wondering why we bother with significance tests at all. Couldn’t we just
always compute a confidence interval and then check whether or not it includes some
hypothesized value for a parameter? If we adopted this approach, we could make
a reject/not reject decision, but we lose information about the strength of evidence.
For example, when actually doing a hypothesis test for the situation in Example 4.31,
the p-value is less than 0.0001, indicating very strong evidence that the proportion of
Americans who support a total ban on smoking in public places increased between
2000 and 2018. On the other hand, the question of interest is often “how big is the
difference?” not does a difference exist at all. In that case the confidence interval
for the difference in proportions, (0.147, 0.233), is more useful than just knowing
that the p-value is very small. Confidence intervals and hypothesis tests are both
important inference procedures, and which is most relevant in a particular situation
depends on the question of interest.

Example 4.32
For each question, indicate whether it is best assessed using a confidence interval or
a hypothesis test, or whether statistical inference is not relevant to answer it.

(a) Estimate the proportion of infant car seats that are installed correctly, using a
sample of new parents leaving the hospital.

(b) Use the sample from part (a) to determine whether the proportion of car seats
installed correctly differs between two of the leading infant car seat brands.

(c) Look in the US Congressional Record to see what proportion of times a senator
was absent for a vote during the previous year.

Solution (a) We are estimating a population proportion, so a confidence interval is most
appropriate.

(b) We want to answer the question: Is the proportion different between the two
brands? A hypothesis test is most appropriate.

(c) Inference is not relevant in this case since we have access to the entire population
of all votes taken during the year. Remember that we use inference procedures
when we want to generalize beyond a sample.

CreatingRandomizationDistributions
Although we introduce randomization distributions in Section 4.2, our main focus in
that section is on understanding a p-value. In this section, we focus more explicitly
on how randomization distributions are created. As we saw in Section 4.2, we select
randomization samples by focusing on two important goals.
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Generating Randomization Samples

Themain criteria to consider when creating randomization samples for
a statistical test are:

• Be consistent with the null hypothesis.

• Use the data in the original sample.

Ideally, we also try to reflect the way the original data were collected.

Several examples of randomization distributions are given in Section 4.2. For the
difference in means test for the light at night experiment, the mice were randomly
assigned to oneof two treatment groups (Light orDark) and their bodymass gainwas
measured after treatment. The null hypothesis states that the treatment has no effect
on themean bodymass gain (H0 ∶ 𝜇L = 𝜇D). To generate randomization samples, we
reassign the treatment labels at random to body mass gains (to satisfyH0 and use the
original sample).

Our goal in that situation is to generate lots of samples that mimic what we see in
the original sample but use a random process (random assignment of mice to groups)
that is consistent with both the null hypothesis and the way the actual sample was
generated. By doing so we can assess how unlikely the original sample results might
be whenH0 is true.

In this section, we describe four additional examples: randomization tests for a
difference in two proportions, a correlation, a single proportion, and a single mean.
Before reading the details for each example, you might think for a minute about
how you might generate randomization samples for each situation that satisfy the
criteria in the box above. For example, you might put the original data on cards
to shuffle, flip a coin, or use the data to create a new population that satisfies the
null hypothesis. One goal in this section is to understand the basic principles behind
creating a randomization distribution.

Randomization Test for a Difference in Proportions: Cocaine
Addiction

D A T A 4 . 7 Cocaine Addiction
Cocaine addiction is very hard to break. Even among addicts trying hard to
break the addiction, relapse is common. (A relapse is when a person trying to
break out of the addiction fails and uses cocaine again.) One experiment62

investigates the effectiveness of the two drugs desipramine and lithium in the
treatment of cocaine addiction. The subjects in the study were cocaine addicts
seeking treatment, and the study lasted six weeks. The 72 subjects were
randomly assigned to one of three groups (desipramine, lithium, or a placebo,
with 24 subjects in each group) and the study was double blind. The results of
the study are summarized in Table 4.16. ◼

Table 4.16 Treatment for cocaine addiction

Relapse No relapse

Desipramine 10 14
Lithium 18 6
Placebo 20 4

62Gawin, F., et. al., “Desipramine Facilitation of Initial Cocaine Abstinence,” Archives of General
Psychiatry, 1989; 46(2):117–121.



354 CHA P T E R 4 Hypothesis Tests

For now, we focus on comparing the data for those in the lithium group with
those taking the placebo. (Exercise 4.209 asks you to consider desipramine versus a
placebo.) The question of interest is whether lithium is more effective at preventing
relapse than taking an inert pill. We define parameters pl and pn, the proportion who
relapse while taking lithium and the placebo, respectively, and test

H0 ∶ pl = pn
Ha ∶ pl < pn

In the sample data we see that the proportion of subjects using lithium who relapsed
( p̂l = 18∕24 = 0.75) is smaller than the proportion who relapsed with the placebo
( p̂n = 20∕24 = 0.83). That result is in the direction of Ha, but is that difference sta-
tistically significant?We construct a randomization distribution and use it to address
this question.

Example 4.33
Explain how to use cards to generate one randomization sample for the test to see if
lithium is more effective than a placebo. What statistic is recorded for the sample?

Solution Since this was a designed experiment and the treatments (lithium or placebo) were
assigned at random, our procedure for generating randomization samples should also
be based on random assignments. Suppose that the null hypothesis is true and lithium
is no more effective than the placebo, so all participants would have had the same
response (relapse or no relapse) if they had been assigned to the other group. If we
construct a deck of 48 cards with 38 “relapse” cards and 10 “no relapse” cards, we
could shuffle the deck and deal the cards into two piles of 24 to simulate the random
assignments into the lithium and placebo groups. Randomly dealing the cards into
these two piles of 24 gives us one randomization sample. What statistic should we
record for each of the randomization samples? Since we are conducting a test for a
difference in proportions, an obvious choice is the difference in sample proportions,
p̂l − p̂n.

While dealing cards may help us understand what is going on in a randomization
distribution, in practice, of course, we use technology to generate a randomization
distribution and to compute a p-value.

Example 4.34
Use StatKey or other technology to generate a randomization distribution for the
difference in proportions between the lithium group and the placebo group. Use
the sample data to find a p-value. What is the conclusion of the test?

Solution Figure 4.32 shows a dotplot of the difference in proportions for 5000 randomization
samples.As expected, the distribution is centered approximately at zero. The original
sample difference in proportions is p̂l − p̂n = 0.75 − 0.83 = −0.08. Since the alterna-
tive hypothesis isHa ∶ pl < pn, this is a left-tail test.We see inFigure 4.32 that the area
to the left of −0.08 is 0.36. The p-value is 0.36. Since this p-value is not less than any
reasonable significance level, we do not rejectH0.We do not have sufficient evidence
that lithium works better than a placebo when treating cocaine addiction.

Using Other Statistics
In Example 4.33, we dealt cards into two piles and computed the difference in

proportion of relapses between the two piles. Now imagine that you were actually
shuffling and dealing the cards over and over again. You might soon realize that you
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Figure 4.32 Randomization distribution of difference in proportions

don’t really need to divide each relapse count by 24, since comparing the difference in
the counts is equally effective.After a fewmore randomizations youmight also realize
that you just need to count the relapse cards in the lithiumpile, since the total number
of relapse cards is always the same (38). All three of these ways to record a sample
statistic are effective, since each offers an equivalent way to measure how extreme
the original sample results are. We could have used any of these three statistics in
constructing a randomization distribution.

We often have this sort of flexibility in choosing a sample statistic. One of the
powerful aspects of the randomization approach is that we can apply it to whatever
statisticmakes sense for a sample.As longas the statisticweuse consistentlymeasures
which samples are more extreme than the original data, the results (i.e., the p-values)
from the randomization distributions will be the same.

Randomization Test for a Correlation: Malevolent Uniforms
and Penalties

In Data 4.2 on page 285 we consider the question of whether the perceived
malevolence score of NFL team jerseys (NFL_Malevolence) is related to the aggres-
siveness of the team asmeasured by a standardized score for number of penalty yards
(ZPenYds). If we let 𝜌 be the population correlation for all teams in all years, wewant
to see if malevolence is positively associated with penalty yards. We have

H0 ∶ 𝜌 = 0

Ha ∶ 𝜌 > 0

The data for the study are stored in theMalevolentUniformsNFL file. For the sample
of n = 28 NFL teams in the years of the original study, the correlation between
NFL_Malevolence and ZPenYds is r = 0.43. We create a randomization distribution
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of sample correlations to assess the strength of evidence that the original sample
correlation, r = 0.43, has in this situation and make a conclusion about a possible
relationship between the perceived malevolence of uniforms and penalty yards.

Example 4.35
To construct the randomization distribution, we assume the null hypothesis is true.
What does that mean in this case? How might we construct a randomization sample
using the original data while also assuming that the null hypothesis is true? What
statistic do we record for each randomization sample?

Solution The null hypothesis is 𝜌 = 0, which means that NFL_Malevolence and ZPenYds are
really unrelated. This would mean that there is no connection between the two data
columns, and that any number in one column could just as easily be matched with
any number in the other column. One way to simulate this physically is to put the
28 ZPenYds values on index cards, shuffle, and randomly deal the cards to the 28
teams. This way the ZPenYds value that gets paired with each NFL_Malevolence
value happens by random chance. In this method, we use the data that we have while
also forcing the null hypothesis to be true. For each such randomization sample, we
compute the sample correlation.

After computing one randomization statistic as in Example 4.35, we shuffle the
cards again and deal out another set of ZPenYds assignments. Using this process
of creating the randomization samples, we ensure no association between ZPenYds
and NFL_Malevolence values, as required by the null hypothesis. Thus we can use
the original data to build up a distribution of typical sample correlations under the
assumption that the null hypothesis, 𝜌 = 0, holds. Table 4.17 shows the originalmalev-
olent uniform data and four random assignments of the ZPenYds values along with
the sample correlation of each assignment.

Of course, in practice we use technology to simulate this process and generate
the randomization distribution of sample correlations more efficiently, as in the next
example.

Example 4.36
Use StatKey or other technology to create a randomization distribution and find a
p-value for the malevolent uniform data. What conclusion can we make about the
relationship (if any) between the perceived malevolence of uniforms and penalty
yards for NFL teams?

Solution Figure 4.33 shows a randomization distribution for these data. SinceHa ∶ 𝜌 > 0, this
is a right-tail test. The sample correlation is r = 0.43 and we are interested in what
proportion of the randomization statistics are more extreme than r = 0.43. We see in
Figure 4.33 that

p-value = 0.011.

This small p-value gives fairly strong evidence to conclude that there is a positive
association between the malevolence score of NFL uniforms and the number of
penalty yards a team receives.

Take care when interpreting this conclusion to avoid assuming a cause-effect
relationshipsince thesedatacomefromanobservational studyandnotanexperiment.
Itmaybe true that referees dealmoreharshlywithmalevolent-looking players or that
donning such a uniform might instill a more aggressive attitude. However, it might
also be the case that owners or coaching staffs who value aggressiveness might select
players with such attitudes and also choose a more malevolent team uniform.
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Table 4.17 Original ZPenYds and four random assignments

NFL Team Malevolence ZPenYds ZPenYds_1 ZPenYds_2 ZPenYds_3 ZPenYds_4

LA Raiders 5.10 1.19 −0.19 0.02 −0.41 1.19
Pittsburgh 5.00 0.48 0.02 0.10 0.27 −0.19
Cincinnati 4.97 0.27 0.38 0.23 −0.01 0.24
New Orleans 4.83 0.10 −0.49 −0.07 −0.73 −0.01
Chicago 4.68 0.29 0.10 1.19 0.38 −0.07
Kansas City 4.58 −0.19 −0.01 0.48 −0.18 0.27
Washington 4.40 −0.07 1.19 0.27 −0.49 0.23
St. Louis 4.27 −0.01 −0.32 0.24 −0.81 −0.81
NY Jets 4.12 0.01 0.01 −0.32 0.02 0.48
LA Rams 4.10 −0.09 0.23 −0.49 −1.60 0.10
Cleveland 4.05 0.44 −0.73 −0.01 0.63 0.38
San Diego 4.05 0.27 0.48 0.29 −0.07 −0.73
Green Bay 4.00 −0.73 −0.18 0.04 0.29 0.29
Philadelphia 3.97 −0.49 0.29 0.09 0.44 −1.60
Minnesota 3.90 −0.81 −0.09 −0.41 −0.19 0.44
Atlanta 3.87 0.30 −0.19 −0.19 0.27 −0.18
Indianapolis 3.83 −0.19 −0.07 0.38 0.09 0.02
San Francisco 3.83 0.09 −1.60 0.01 −0.32 −0.32
Seattle 3.82 0.02 0.09 −0.18 1.19 −0.41
Denver 3.80 0.24 0.27 −1.60 0.30 0.27
Tampa Bay 3.77 −0.41 0.30 −0.09 0.01 0.01
New England 3.60 −0.18 −0.41 0.27 0.04 −0.19
Buffalo 3.53 0.63 0.27 −0.81 0.10 −0.09
Detroit 3.38 0.04 0.44 0.44 −0.09 −0.49
NY Giants 3.27 −0.32 0.04 0.30 0.48 0.09
Dallas 3.15 0.23 −0.81 −0.19 −0.19 0.04
Houston 2.88 0.38 0.63 0.63 0.24 0.30
Miami 2.80 −1.60 0.24 −0.73 0.23 0.63
Correlation 0.43 −0.02 0.23 −0.26 0.08
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Figure 4.33 Randomization distribution of NFL_Malevolence vs ZPenYds correlations when 𝝆 = 0
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Randomization Test for a Proportion: CAOS Exam
Example 4.30 on page 350 describes a situation where a statistics instructor is

interested in evaluating the performance of a sample of 30 students on a particular
question of a multiple choice exam. Each question had four possible choices, so the
proportioncorrectwouldbep = 0.25 if studentsare just randomlyguessing,buthigher
if the students know something about the substance of the question.

Example 4.37
Describe how we might use cards to create a randomization sample of 30 values that
satisfies H0 ∶ p = 0.25. Also, explain how to compute a randomization statistic for
that sample.

Solution Since themultiple choice question has four choices, we can use four cards, one labeled
“Right” and the other three labeled “Wrong.” To simulate an answer for a student
who is just guessing, we just select a card at random and record the result. To get a
randomization sample for 30 such students, we repeat this process 30 times, returning
the chosen card and reshuffling after each selection to keep p = 0.25. Thus we sample
with replacement from the four cards until we have 30 answers, then find the sample
statistic as the proportion of right answers in the randomization sample.

We can easily generalize this process to test any null proportion. The CAOS
example also included a test ofH0 ∶ p = 0.42 vsHa ∶ p > 0, 42 to see if the proportion
correct for the professor’s students was clearly higher than a benchmark proportion
for this question. We could match this null hypothesis by sampling with replacement
from100 cardswhichhad 42 labeled “Right.”Of course, in practiceweuse technology
such as StatKey to simulate this process much more efficiently.

Randomization Test for aMean: Body Temperature

iStock.com/fotofrog

Is the average body temperature 98.6∘F?
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D A T A 4 . 8 Body Temperature
What is the average body temperature for healthy humans? Most people using a
Fahrenheit scale will say 98.6∘F. This “fact” has been well established for many
years. But is it possible that the average body temperature has changed over
time? Perhaps people are getting warmer in response to global warming of the
environment or have slightly lower temperatures than they had in past centuries.
Allen Shoemaker63 presented some data derived from a study of healthy adults
which contains body temperature, sex, and pulse rate for each subject. The data
in BodyTemp50 contains a sample of n = 50 cases from that dataset with
information for 25 males and 25 females. Figure 4.34 shows a dotplot of the body
temperature readings in the variable BodyTemp. The mean in this sample is
x = 98.26 and the standard deviation is s = 0.765. Do these data provide
significant evidence (at a 5% level) that the average body temperature is really
different from the standard 98.6∘F? ◼

Figure 4.34 Sample of
body temperatures for
50 people

BodyTemp50
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mean (   ) = 98.26

97 98
BodyTemp

99 100 101

Dot Plot

Of course, we don’t expect every sample of 50 people to have a mean body
temperature of exactly 98.6. There will be some variation from sample to sample.
Once again, the important question is whether a sample mean of 98.26 is farther
away than we would expect to see by random chance alone if the true mean body
temperature, 𝜇, is really 98.6. The relevant hypotheses for a two-tailed test are

H0 ∶ 𝜇 = 98.6

Ha ∶ 𝜇 ≠ 98.6

In order to construct a randomization distribution to assess the evidence in this
sample,weneed tofindaway togeneratenewsamples that are consistentwith thenull
hypothesis that the population mean is 98.6. We also want the simulated samples to
reflect the structure in the population that is represented by our original sample of 50
values. In Chapter 3 we saw that sampling with replacement from the original sample
(bootstrapping) is a good way to simulate samples from a population that is similar
to our sample. The same idea applies here, except that we now have the additional
constraint that we need to require that “population” to have a specific mean (98.6).

Example 4.38
Describe how to construct one randomization sample using the original data and
assuming the null hypothesis is true. What statistic do we record for that sample?

Solution One easy way to use the original data while simultaneously ensuring that the null
hypothesis (𝜇 = 98.6) is satisfied is to add a constant amount to every value in our
original sample. Since the sample mean, x = 98.26, is 0.34∘ below the hypothesized
mean, 𝜇 = 98.6, we can add 0.34 to each temperature reading to produce a new set

63Shoemaker, A., “What’s Normal? – Temperature, Gender and Heartrate,” Journal of Statistics Educa-
tion, 1996; 4(2).
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of temperatures with a mean exactly equal to 98.6. This has the advantage of pre-
serving the general structure of the original sample data, while shifting the mean to
be consistent with the null hypothesis. To generate a randomization distribution of
sample means assuming the null hypothesis is true, we select samples of 50 temper-
atures at a time (with replacement) from the shifted data values and compute the
mean for each sample. A set of sample means generated by this process will be a
randomization distribution of values produced at random under the null hypothesis
that 𝜇 = 98.6.

Example 4.39
Use StatKey or other technology to generate a randomization distribution for the test
about body temperature. Find and interpret the p-value.

Solution Figure 4.35 shows a dotplot of the sample means for 10,000 samples generated by
the randomization process described in Example 4.38. As expected, the distribution
is centered at the null value of 98.6. As with any randomization distribution, the key
question is where does the original sample mean (x = 98.26) fall in the distribution?
In this instance, we see in Figure 4.35 that only 8 of the 10,000 simulated means are
as small (or smaller) than 98.26. This is a two-tail test since the alternative hypothesis
isHa ∶ 𝜇 ≠ 98.6. Doubling to account for both tails gives

p-value = 2 ⋅ (8∕10000) = 0.0016

This very small p-value (well below 𝛼 = 0.05) gives strong evidence against the null
hypothesis that the average body temperature is 98.6∘F and indicates that the mean
human body temperature is probably lower. Note that, even though the sample leads
to convincingly rejecting the null hypothesis, the practical effect of assuming the
average body temperature may be closer to 98.3∘F than 98.6∘F is pretty minimal.

Choosing a RandomizationMethod
For a specific hypothesis test we may have several valid options for generating

randomization samples. Recall that the key requirements are to be consistent with
the null hypothesis and use the original data.When testing for a relationship between
two variables, such as uniform malevolence and penalty yards (page 356) or drug

98.6

xbar
98.2 98.3

98.26

98.4 98.5 98.7 98.8 98.9 99.0

Figure 4.35 Randomization distribution of body temperature means when 𝝁 = 98.6



4.5 Making Connections 361

treatment and cocaine relapse (page 354), the null hypothesis is often “no relation-
ship.” This can be simulated in randomization samples by scrambling the values of
one of the variables so that we know the results are unrelated to the other variable. In
other situations, such as testing the proportion of correct answers on the CAOS exam
(page 358) or mean body temperature (page 359) we created a new population that
matched the null hypothesis and then took new randomization samples with replace-
ment from that null population. These are just some ways to simulate randomization
samples, but not the only possibilities. Exercises 4.215 and 4.216 on page 369 illustrate
several different randomization methods we could use to test the same hypotheses
about a difference in means.

A randomization distribution shows what kinds of statistics we would observe
by random chance if the null hypothesis is true. So far, we’ve focused on the “null
hypothesis is true” part of the definition, but a more subtle point is that “random
chance” can depend on the type of randomness in the data collection. For example,
wemight have random sampling of cases in an observational study or random assign-
ment of subjects to treatment groups in an experiment. In simulating randomization
samples for the body temperatures in Example 4.38, we randomly resample from a
“population” with a mean of 98.6, reflecting the random sampling of participants in
that study. In Example 4.33 on cocaine relapse, we randomly reassign the values to
groups, reflecting the random assignment to groups in that experiment. Although
reflecting the way the original data were collected like this is desirable, it usually does
not make much of a difference in practice, and as long as we generate randomization
samples based on the sample data and satisfying the null hypothesis, we should get
an accurate p-value.

Another Look atConnecting Intervals andTests
We take a more explicit look here at the connection between randomization and
bootstrap distributions, and between intervals and tests. In Data 4.8, we consider
measurements of body temperature for a sample of n = 50 individuals to test H0 ∶
𝜇 = 98.6 vs Ha ∶ 𝜇 ≠ 98.6, where 𝜇 is the average body temperature. The mean in
the sample is x = 98.26, so we construct a randomization distribution by adding the
difference, 0.34, to each of the sample values, creating a “population” that matches
the nullmean of 98.6, and then samplingwith replacement from that new sample. The
original sample mean (98.26) is well out in the tail of this randomization distribution
(estimated p-value = 0.0016). This shows significant evidence in the sample to reject
H0 and conclude that the average body temperature is probably less than 98.6∘F.

Nowsuppose thatweuse theoriginaldata tofinda95%confidence interval for the
average body temperature, 𝜇, by constructing a bootstrap distribution. This involves
sampling (with replacement) from the original sample and computing the mean for
each sample. How does this differ from the randomization distribution we use in the
test? The procedures are exactly the same, except that one set of values has been
shifted by 0.34∘F. The two distributions are displayed in Figure 4.36. Note that any of
the bootstrap samplesmight have been selected as a sample in the randomization dis-
tribution,with the only difference being that each of the valueswould be 0.34∘F larger
in the randomization sample to account for the adjustment to a null mean of 98.6∘F.

To find a 95% confidence interval from the bootstrap distribution of Figure 4.36
we need to find values with just 2.5% of the samples beyond them in each tail. This
interval goes from 98.05 to 98.47. Thus, based on this sample, we are relatively sure
that mean body temperature for the population is somewhere between 98.05∘F and
98.47∘F.

Note that, looking at the bootstrap confidence interval, the hypothesized value,
𝜇 = 98.6, is notwithin the 95% confidence interval and, looking at the randomization
distribution for the test, the mean of the sample, x = 98.26, falls in the extreme tail
of the distribution. This is not a coincidence! If 98.6∘F is not a plausible value for
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Figure 4.36 Bootstrap
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the population mean, we should see this with both the confidence interval and the
hypothesis test. The values in the lower and upper 2.5% tails of the randomization
distribution (including the original sample mean of x = 98.26) are values of sample
means that would be extreme if H0 were true and thus would lead to rejecting H0 ∶
𝜇 = 98.6 at a 5% level. The values in the lower and upper 2.5% tails of the bootstrap
distribution (including the null mean of 𝜇 = 98.6) are values of means that would be
outside of the 95% confidence bounds and thus are considered unlikely candidates
to be the actual mean for the population.

Example 4.40
Supposeweobserve the samedata (sox = 98.26)but are instead testingH0 ∶ 𝜇 = 98.4
versus Ha ∶ 𝜇 ≠ 98.4. How would Figure 4.36 change? Would the confidence inter-
val contain the null value of 𝜇 = 98.4? Would we reject the null hypothesis when
x = 98.26?

Solution Since the bootstrap distribution and corresponding confidence interval don’t depend
on the hypotheses, they would remain unchanged. When testing H0 ∶ 𝜇 = 98.4 the
randomization samples would only be shifted to the right by 0.14 to be centered at
98.4 as shown in Figure 4.37. Now we see that the hypothesized value, 𝜇 = 98.4 is
contained within the 95% confidence interval and the sample mean, x = 98.26, falls
in the “typical” regionof the randomization distribution, so the null hypothesiswould
not be rejected at a 5% level.

In general, we see that a sample statistic lies in the tail of the randomization dis-
tribution when the null hypothesized parameter lies in the tail of the bootstrap
distribution, and that the sample statistic lies in the typical part of the randomiza-
tion distribution when the null hypothesized parameter lies in the typical part of

Figure 4.37 Bootstrap
and randomization
distributions for body
temperatures with
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the bootstrap distribution (i.e., in the confidence interval). While this relationship
is precise for a mean, the idea extends (somewhat more loosely) to any parameter,
leading to the box earlier in this section. Note that, especially when doing confidence
intervals and tests using simulation methods, the correspondence is not exact. For
example, the precise boundaries for the 2.5%-points in the tails of either a random-
ization or a bootstrap distributionwill vary slightly depending on the particular batch
of simulated samples.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Interpret a confidence interval as the plausible values of a parameter
that would not be rejected in a two-tailed hypothesis test

• Determine the decision for a two-tailed hypothesis test from an appro-
priately constructed confidence interval

• Recognize whether inference is applicable in a given situation, and
if so, whether a confidence interval and/or hypothesis test is most
appropriate

• For a given sample and null hypothesis, describe the process of creating
a randomization distribution

Exercises forSection4.5

SKILL BUILDER 1
For each question in Exercises 4.184 and 4.185, indi-
cate whether it is best assessed by using a confidence
interval or a hypothesis test or whether statistical
inference is not relevant to answer it.

4.184 (a) What percent of US voters support insti-
tutinganationalkindergarten through12th grade
math curriculum?

(b) Do basketball players hit a higher proportion of
free throws when they are playing at home than
when they are playing away?

(c) Do a majority of adults riding a bicycle wear a
helmet?

(d) On average, were the 23 players on the 2018
Canadian Olympic hockey team older than the
23playersonthe2018USOlympichockey team?

4.185 (a) What proportion of people using a pub-
lic restroom wash their hands after going to the
bathroom?

(b) On average, how much more do adults who
played sports in high school exercise than adults
who did not play sports in high school?

(c) In 2018, what percent of the US Senate voted
to confirm Brett Kavanaugh as a member of the
Supreme Court?

(d) What is the average daily calorie intake of 20-
year-old males?

SKILL BUILDER 2
In Exercises 4.186 to 4.189, hypotheses for a statisti-
cal test are given, followed by several possible con-
fidence intervals for different samples. In each case,
use the confidence interval to state a conclusion of
the test for that sample andgive the significance level
used.

4.186 Hypotheses:H0 ∶ 𝜇 = 15 vsHa ∶ 𝜇 ≠ 15

(a) 95% confidence interval for 𝜇: 13.9 to 16.2
(b) 95% confidence interval for 𝜇: 12.7 to 14.8
(c) 90% confidence interval for 𝜇: 13.5 to 16.5

4.187 Hypotheses:H0 ∶ p = 0.5 vsHa ∶ p ≠ 0.5

(a) 95% confidence interval for p: 0.53 to 0.57
(b) 95% confidence interval for p: 0.41 to 0.52
(c) 99% confidence interval for p: 0.35 to 0.55

4.188 Hypotheses:H0 ∶ 𝜌 = 0vsHa ∶ 𝜌 ≠ 0. Inaddi-
tion, in each case forwhich the results are significant,
give the sign of the correlation.

(a) 95% confidence interval for 𝜌: 0.07 to 0.15.
(b) 90% confidence interval for 𝜌: −0.39 to −0.78.
(c) 99% confidence interval for 𝜌: −0.06 to 0.03.
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4.189 Hypotheses:H0 ∶ 𝜇1 = 𝜇2 vsHa ∶ 𝜇1 ≠ 𝜇2. In
addition, in each case for which the results are sig-
nificant, state which group (1 or 2) has the larger
mean.

(a) 95% confidence interval for 𝜇1 − 𝜇2:
0.12 to 0.54

(b) 99% confidence interval for 𝜇1 − 𝜇2:
−2.1 to 5.4

(c) 90% confidence interval for 𝜇1 − 𝜇2:
−10.8 to −3.7

SKILL BUILDER 3
In Exercises 4.190 to 4.192, a confidence interval for
a sample is given, followed by several hypotheses
to test using that sample. In each case, use the con-
fidence interval to give a conclusion of the test (if
possible) and also state the significance level you are
using.

4.190 A 95% confidence interval for p: 0.48 to 0.57

(a) H0 ∶ p = 0.5 vsHa ∶ p ≠ 0.5

(b) H0 ∶ p = 0.75 vsHa ∶ p ≠ 0.75

(c) H0 ∶ p = 0.4 vsHa ∶ p ≠ 0.4

4.191 A 99% confidence interval for 𝜇: 134 to 161

(a) H0 ∶ 𝜇 = 100 vsHa ∶ 𝜇 ≠ 100

(b) H0 ∶ 𝜇 = 150 vsHa ∶ 𝜇 ≠ 150

(c) H0 ∶ 𝜇 = 200 vsHa ∶ 𝜇 ≠ 200

4.192 A 90% confidence interval for p1 − p2: 0.07
to 0.18

(a) H0 ∶ p1 = p2 vsHa ∶ p1 ≠ p2
(b) H0 ∶ p1 = p2 vsHa ∶ p1 > p2
(c) H0 ∶ p1 = p2 vsHa ∶ p1 < p2
4.193 Approval Rating for Congress In a Gallup
poll64 conducted in May 2019, a random sample
of n = 1009 American adults were asked “Do you
approve or disapprove of the way Congress is han-
dling its job?”Theproportionwho said they approve
is p̂ = 0.20, and a 95% confidence interval for Con-
gressional job approval is 0.175 to 0.225. If we use
a 5% significance level, what is the conclusion if we
are:

(a) Testing to see if there is evidence that the job
approval rating is different than 21%. (This hap-
pens to be the average sample approval rating
from the six months prior to this poll.)

(b) Testing to see if there is evidence that the job
approval rating is different than 17%. (This was
the approval rating in May of 2018.)

64https://news.gallup.com/poll/257762/congressional-approval-
steady.aspx.

4.194 Car Window Skin Cancer? A study suggests
that exposure to UV rays through the car window
may increase the risk of skin cancer.65 The study
reviewed the records of all 1050 skin cancer patients
referred to the St. LouisUniversityCancerCenter in
2004. Of the 42 patients with melanoma, the cancer
occurred on the left side of the body in 31 patients
and on the right side in the other 11.

(a) Is this an experiment or an observational study?

(b) Of the patients withmelanoma,what proportion
had the cancer on the left side?

(c) Abootstrap 95%confidence interval for thepro-
portion of melanomas occurring on the left is
0.579 to 0.861. Clearly interpret the confidence
interval in the context of the problem.

(d) Suppose the question of interest is whether
melanomas are more likely to occur on the left
side than on the right. State the null and alterna-
tive hypotheses.

(e) Is this a one-tailed or two-tailed test?

(f) Use the confidence interval given in part (c)
to predict the results of the hypothesis test in
part (d). Explain your reasoning.

(g) A randomization distribution gives the p-value
as 0.003 for testing the hypotheses given in
part (d). What is the conclusion of the test in the
context of this study?

(h) The authors hypothesize that skin cancers are
more prevalent on the left because of the sun-
light coming in through car windows. (Windows
protect againstUVBrays but notUVArays.)Do
the data in this study support a conclusion that
more melanomas occur on the left side because
of increased exposure to sunlight on that side for
drivers?

4.195 Print vs E-books Suppose you want to find
out if reading speed is any different between a print
book and an e-book.

(a) Clearly describe how you might set up an exper-
iment to test this. Give details.

(b) Why is a hypothesis test valuable here? What
additional information does a hypothesis test
give us beyond the descriptive statistics we dis-
cuss in Chapter 2?

(c) Why is a confidence interval valuable here?
What additional information does a confidence

65“Surprising Skin Cancer Risk: Too Much Driving,” Live-
Science.com, May 7, 2010, reporting on Butler, S., and Fosko,
S., “Increased Prevalence of Left-sided Skin Cancers,” Journal
of the American Academy of Dermatology, published online,
March 12, 2010.
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interval give us beyond the descriptive statistics
of Chapter 2 and the results of a hypothesis test
described in part (b)?

(d) A similar study66 has been conducted, and
reports that “the difference between Kindle and
the book was significant at the p < .01 level, and
the difference between the iPad and the book
wasmarginally significant atp = .06.”The report
also stated that “the iPad measured at 6.2%
slower reading speed than the printed book,
whereas the Kindle measured at 10.7% slower
than print. However, the difference between the
two devices [iPad and Kindle] was not statisti-
cally significant because of the data’s fairly high
variability.” Can you tell from the first quotation
which method of reading (print or e-book) was
faster in the sample or do you need the second
quotation for that? Explain the results in your
own words.

4.196 AreYou“InaRelationship”?Astudy67 shows
that relationship status on Facebook matters to cou-
ples. The study included 58 college-age heterosexual
coupleswhohadbeen inarelationship foranaverage
of 19 months. In 45 of the 58 couples, both partners
reported being in a relationship on Facebook. In 31
of the 58 couples, both partners showed their dat-
ing partner in their Facebook profile picture. Men
were somewhat more likely to include their partner
in the picture than vice versa. However, the study
states: “Females’ indication that they are in a rela-
tionship was not as important to their male partners
comparedwith how females felt aboutmale partners
indicating they are in a relationship.” Using a popu-
lation of college-age heterosexual couples who have
been in a relationship for an average of 19 months:

(a) A 95% confidence interval for the proportion
with both partners reporting being in a relation-
shiponFacebookisabout0.66to0.88.What is the
conclusion in a hypothesis test to see if the pro-
portion is different from 0.5? What significance
level is being used?

(b) A 95% confidence interval for the proportion
with both partners showing their dating part-
ner in their Facebook profile picture is about
0.40 to 0.66. What is the conclusion in a hypoth-
esis test to see if the proportion is differ-
ent from 0.5? What significance level is being
used?

66Neilsen, J., “iPad and Kindle Reading Speeds,” www.useit
.com/alertbox/ipad-kindle-reading.html, accessed July 2010.
67Roan, S., “The TrueMeaning of Facebook’s ‘in aRelationship’,”
Los Angeles Times, February 23, 2012, reporting on a study in
Cyberpsychology, Behavior, and Social Networking.

4.197 Testing for aSexDifference inCompassionate
Rats In Exercise 3.98 on page 260, we found a 95%
confidence interval for the difference in proportion
of rats showing compassion, using the proportion of
female rats minus the proportion of male rats, to be
0.104 to 0.480. In testingwhether there is a difference
in these two proportions:

(a) What are the null and alternative hypotheses?
(b) Using the confidence interval, what is the con-

clusion of the test? Include an indication of the
significance level.

(c) Based on this study would you say that female
rats or male rats are more likely to show com-
passion (or are the results inconclusive)?

4.198 Testing for aHomeFieldAdvantage in Soccer
In Exercise 3.141 on page 275, we see that the home
team was victorious in 70 games out of a sample of
120 games in the FA premier league, a football (soc-
cer) league in Great Britain. We wish to investigate
the proportion p of all games won by the home team
in this league.

(a) UseStatKeyorother technologytofindandinter-
preta90%confidence interval for theproportion
of games won by the home team.

(b) State the null and alternative hypotheses for a
test to see if there is evidence that the proportion
is different from 0.5.

(c) Use the confidence interval from part (a) to
make a conclusion in the test frompart (b). State
the confidence level used.

(d) Use StatKey or other technology to create a ran-
domization distribution and find the p-value for
the test in part (b).

(e) Clearly interpret the result of the test using the
p-value and using a 10% significance level. Does
your answer match your answer from part (c)?

(f) What information does the confidence interval
give that the p-value doesn’t? What information
does thep-value give that the confidence interval
doesn’t?

(g) What’s the main difference between the boot-
strap distribution of part (a) and the randomiza-
tion distribution of part (d)?

4.199 Change in Stock Prices Standard & Poor’s
maintains one of themost widely followed indices of
large-cap American stocks: the S&P 500. The index
includes stocks of 500 companies in industries in the
US economy. A random sample of 50 of these com-
panies was selected, and the change in the price of
the stock (in dollars) over the 5-day period from
August 2 to6,2010wasrecordedforeachcompany in
the sample. The data are available in StockChanges.
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S&P change
543210–1–2–3–4

* * * * *

Figure 4.38 Changes in stock prices on the S&P 500
over a 5-day period

(a) Is this an experiment or an observational study?
How was randomization used in the study, if at
all?Doyoubelieve themethodofdata collection
introduced any bias?

(b) Describe one way to select a random sample of
size 50 from a population of 500 stocks.

(c) Figure 4.38 showsaboxplotof thedata.Describe
what this plot shows about the distribution of
stock price changes in this sample.

(d) Give relevant summary statistics to describe the
distribution of stock price changes numerically.

(e) Use StatKey or other technology to calculate a
95% confidence interval for the mean change in
all S&P stock prices. Clearly interpret the result
in context.

(f) Use the confidence interval from part (e) to
predict the results of a hypothesis test to see if
the mean change for all S&P 500 stocks over
this period is different from zero. State the
hypotheses and significance level you use and
state the conclusion.

(g) Now give the null and alternative hypotheses in
a test to see if the average five-day change is pos-
itive.UseStatKeyor other technology to findap-
value of the test and clearly state the conclusion.

(h) If youmade an error in your decision in part (g),
would it be a Type I error or a Type II error?
Can you think of a way to actually find out if this
error occurred?

Table 4.18 Finger tap rates for subjects with and without caffeine

Caffeine 246 248 250 252 248 250 246 248 245 250 xc = 248.3
No caffeine 242 245 244 248 247 248 242 244 246 242 xn = 244.8

4.200 How Long Do Mammals Live? Data 2.2 on
page 72 includes information on longevity (typical
lifespan), in years, for 40 species of mammals.

(a) Use the data, available in MammalLongevity,
and StatKey or other technology to test to see
if average lifespan of mammal species is differ-
ent from 10 years. Include all details of the test:
the hypotheses, the p-value, and the conclusion
in context.

(b) Use the result of the test to determine whether
𝜇 = 10 would be included as a plausible value in
a 95% confidence interval of average mammal
lifespan. Explain.

4.201 HowLongAreMammals Pregnant?Data 2.2
on page 72 includes information on length of gesta-
tion (length of pregnancy in days) for 40 species of
mammals.

(a) Use the data, available in MammalLongevity,
and StatKey or other technology to test to see
if average gestation of mammals is different
from 200 days. Include all details of the test: the
hypotheses, the p-value, and the conclusion in
context.

(b) Use the result of the test to indicate whether
𝜇 = 200 would be included as a plausible value
in a 95%confidence interval of averagemammal
gestation time. Explain.

4.202 Finger Tapping and Caffeine In Exercise 4.75
on page 310 we look at finger-tapping rates to see
if ingesting caffeine increases average tap rate. The
sample data for the 20 subjects (10 randomly get-
ting caffeine and 10 with no caffeine) are given in
Table 4.18. To create a randomization distribution
for this test, we assume the null hypothesis 𝜇c = 𝜇n

is true, that is, there is no difference in average tap
rate between the caffeine and no caffeine groups.

(a) Create one randomization sample by randomly
separating the 20 data values into two groups.
(One way to do this is to write the 20 tap rate
values on index cards, shuffle, and deal them into
two groups of 10.)

(b) Find the sample mean of each group and cal-
culate the difference, xc − xn, in the simulated
sample means.
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(c) Thedifference in samplemeans found inpart (b)
is onedata point in a randomization distribution.
Make a rough sketch of the randomization dis-
tribution shown in Figure 4.21 on page 310 and
locateyour randomizationstatisticon thesketch.

4.203 Arsenic in Chicken Data 4.3 on page 287
introduces a situation in which a restaurant chain
is measuring the levels of arsenic in chicken from
its suppliers. The question is whether there is evi-
dence that the mean level of arsenic is greater than
80 ppb, so we are testing H0 ∶ 𝜇 = 80 vs Ha ∶
𝜇 > 80, where 𝜇 represents the average level of
arsenic in all chicken from a certain supplier. It takes
money and time to test for arsenic, so samples are
often small. Suppose n = 6 chickens from one sup-
plier are tested, and the levels of arsenic (in ppb) are:

68, 75, 81, 93, 95, 134

(a) What is the sample mean for the data?

(b) Translate the original sample data by the appro-
priate amount to create a new dataset in which
the null hypothesis is true. How do the sample
size and standard deviation of this new dataset
compare to the sample size and standard devia-
tion of the original dataset?

(c) Write the six newdata values frompart (b) on six
cards. Sample from these cardswith replacement
to generate one randomization sample. (Select
a card at random, record the value, put it back,
select another at random, until you have a sam-
ple of size 6, to match the original sample size.)
List the values in the sample and give the sample
mean.

(d) Generate 9 more simulated samples, for a total
of 10 samples for a randomization distribution.
Give the sample mean in each case and create a
small dotplot.Use an arrow to locate the original
sample mean on your dotplot.

4.204 A Randomization Distribution for Arsenic in
Chicken For the study in Exercise 4.203, use StatKey
or other technology to create the randomization dis-
tribution for this test. Find the p-value and give a
conclusion for the test. Should the restaurant chain
stop ordering chickens from that supplier?

4.205 Effect of Sleep and Caffeine on Memory
Exercise 4.118 describes a study in which a ran-
dom sample of 24 adults are divided equally into
two groups and given a list of 24 words to memorize.

Table 4.19 Number of words recalled

Sleep 14 18 11 13 18 17 21 9 16 17 14 15 Mean = 15.25
Caffeine 12 12 14 13 6 18 14 16 10 7 15 10 Mean = 12.25

During a break, one group takes a 90-minute nap
while another group is given a caffeine pill. The
response variable of interest is the number of words
participantsareable torecall following thebreak.We
are testing to see if there is a difference in the average
number of words a person can recall depending on
whether the person slept or ingested caffeine. The
data68 are shown in Table 4.19 and are available in
SleepCaffeine.

(a) Define any relevant parameter(s) and state the
null and alternative hypotheses.

(b) Whatassumptiondowemake increating theran-
domization distribution?

(c) What statistic will we record for each of the sim-
ulated samples to create the randomization dis-
tribution? What is the value of that statistic for
the observed sample?

(d) Where will the randomization distribution be
centered?

(e) Findonepointon therandomizationdistribution
by randomly dividing the 24 data values into two
groups. Describe how you divide the data into
two groups and show the values in each group
for the simulated sample. Compute the sample
mean in each group and compute the difference
in the sample means for this simulated result.

(f) Use StatKey or other technology to create a ran-
domization distribution. Estimate the p-value
for the observed difference in means given in
part (c).

(g) At a significance level of 𝛼 = 0.01, what is the
conclusion of the test? Interpret the result in
context.

4.206 Hurricane Rate The data in Hurricanes2018
contains the number of hurricanes in the North
Atlantic over the 105 years from 1914 to 2018. Sup-
poseweare interested in testingwhether thenumber
of hurricanes is increasing over time.

(a) State thenull andalternativehypotheses for test-
ing whether the correlation between year and
number of hurricanes is positive, which would
indicate the number of hurricanes is increasing.

(b) Describe in detail how you would create a ran-
domization distribution to test this claim (if you
had many more hours to do this exercise and no
access to technology).

68These data are recreated from the published summary statistics
and are estimates of the actual data.
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4.207 Finding the Hurricane Rate P-value Use
StatKey or other technology to create a random-
ization distribution for the correlation described in
Exercise 4.206. What is the p-value for this test? Is
this convincing evidence that the number of hurri-
canes in the North Atlantic is increasing over time?

4.208 Hockey Malevolence Data 4.2 on page 285
describes a study of a possible relationship between
the perceived malevolence of a team’s uniforms and
penalties calledagainst the team. InExample 4.36on
page 356 we construct a randomization distribution
to testwhether there is evidenceof apositive correla-
tion between these two variables forNFL teams. The
data in MalevolentUniformsNHL has information
on uniform malevolence and penalty minutes (stan-
dardized as z-scores) for National Hockey League
(NHL) teams. Use StatKey or other technology to
perform a test similar to the one in Example 4.36
using the NHL hockey data. Use a 5% significance
level and be sure to show all details of the test.

4.209 Desipramine vs Placebo in Cocaine Addic-
tion In this exercise, we see that it is possible to use
counts instead of proportions in testing a categorical
variable. Data 4.7 describes an experiment to inves-
tigate the effectiveness of the two drugs desipramine
andlithiuminthetreatmentofcocaineaddiction.The
results of the study are summarized in Table 4.16 on
page 353.Thecomparisonof lithiumto theplacebo is
the subject of Example 4.34. In this exercise, we test
the success of desipramine against a placebo using a
different statistic than that used inExample 4.34. Let
pd andpc be theproportionofpatientswhorelapse in
thedesipraminegroupand the control group, respec-
tively. We are testing whether desipramine has a
lower relapse rate then a placebo.

(a) What are the null and alternative hypotheses?

(b) From Table 4.16 we see that 20 of the 24 placebo
patients relapsed, while 10 of the 24 desipramine
patients relapsed. The observed difference in
relapses for our sample is

D = desipramine relapses − placebo relapses

= 10 − 20 = −10

If we use this difference in number of relapses as
our sample statistic, where will the randomiza-
tion distribution be centered? Why?

(c) If the null hypothesis is true (and desipramine
has no effect beyond a placebo), we imagine that
the 48 patients have the same relapse behavior
regardless of which group they are in. We cre-
ate the randomization distribution by simulating
lots of randomassignments of patients to the two
groups and computing the difference in number
of desipramine minus placebo relapses for each

assignment. Describe how you could use index
cards to create one simulated sample.Howmany
cards do you need? What will you put on them?
What will you do with them?

4.210 Testing Desipramine vs Placebo in Cocaine
Addiction

(a) For the study in Exercise 4.209, use StatKey or
other technology to create a randomization dis-
tribution for these data. Use the distribution to
calculate a p-value. Interpret the results.

(b) In Example 4.34 on page 354, we saw that the
p-value was 0.36 for testing whether lithium is
better than a placebo in battling cocaine addic-
tion. Using this p-value and your result from
part (a), which drug shows stronger evidence
that it is better than a placebo? Explain.

4.211 The Lady Tasting Tea Exercises 4.31 on
page 293 and 4.89 on page 314 describe a historical
scenario in which a British woman, Muriel Bristol-
Roach, claimed to be able to tell whether milk had
been poured into a cup before or after the tea. An
experiment was conducted in whichMuriel was pre-
sentedwith 8 cups of tea, and asked to guesswhether
the milk or tea was poured first. Our null hypothe-
sis (H0) is that Muriel has no ability to tell whether
the milk was poured first. We would like to create a
randomization distribution for p̂, the proportion of
cups out of 8 thatMuriel guesses correctly underH0.
Describe a possible approach to generate random-
ization samples for each of the following scenarios:

(a) Muriel does not know beforehand how many
cups have milk poured first.

(b) Muriel knows that 4 cups will have milk poured
first and 4 will have tea poured first.

4.212 Quiz vs Lecture Pulse Rates Do you think
that students undergo physiological changeswhen in
potentially stressful situations such as taking a quiz
or exam? A sample of statistics students were inter-
rupted in the middle of a quiz and asked to record
their pulse rates (beats for a 1-minute period). Ten of
the students had alsomeasured their pulse ratewhile
sitting in class listening to a lecture, and these values
were matched with their quiz pulse rates. The data
appear in Table 4.20 and are stored inQuizPulse10.
Note that this is paired data since we have two val-
ues, aquiz anda lecturepulse rate, for each student in
the sample. The question of interest is whether quiz
pulse rates tend tobehigher, onaverage, than lecture
pulse rates. (Hint: Since this is paired data, we work
with the differences in pulse rate for each student
between quiz and lecture. If the differences areD =
quiz pulse rateminus lecture pulse rate, the question
of interest is whether 𝜇D is greater than zero.)
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Table 4.20 Quiz and Lecture pulse rates for
10 students

Student 1 2 3 4 5 6 7 8 9 10

Quiz 75 52 52 80 56 90 76 71 70 66
Lecture 73 53 47 88 55 70 61 75 61 78

(a) Define the parameter(s) of interest and state the
null and alternative hypotheses.

(b) Determine an appropriate statistic to measure
and compute its value for the original sample.

(c) Describe a method to generate randomization
samples that is consistent with the null hypoth-
esis and reflects the paired nature of the data.
There are several viablemethods. Youmight use
shuffled index cards, a coin, or some other ran-
domization procedure.

(d) Carry out your procedure to generate one ran-
domization sample and compute the statistic you
chose in part (b) for this sample.

(e) Is the statistic for your randomization sample
moreextreme(in thedirectionof thealternative)
than the original sample?

4.213 Testing Quiz vs Lecture Pulse Rates Use
StatKey or other technology to create a random-
ization distribution for the paired data in the quiz-
lecture pulse test described in Exercise 4.212. Find
the p-value for the original sample and determine
if there is sufficient evidence to conclude that the
mean pulse rate during a quiz is larger than the
meanpulserateduring lecture. (Hint:Asdescribed in
Exercise 4.212, be sure to pay attention to the paired
nature of the data. In particular, you will need to use
the differences [D = Quiz pulse−Lecture pulse] for
each person as your data and conduct a test for a
mean to determine whether the average difference
is larger than zero.)

4.214 Clicker Questions A statistics instructor
would like to ask “clicker” questions that about
80% of her students in a large lecture class will
get correct. A higher proportion would be too easy
and a lower proportion might discourage students.
Suppose that she tries a sample of questions and
receives 76 correct answers and 24 incorrect answers
among 100 responses. The hypotheses of interest are
H0 ∶ p = 0.80 vs Ha ∶ p ≠ 0.80. Discuss whether or
not themethodsdescribedbelowwouldbeappropri-
ate ways to generate randomization samples in this
setting. Explain your reasoning in each case.

(a) Sample100answers (with replacement) fromthe
original student responses. Count the number of
correct responses.

(b) Sample 100 answers (with replacement) from
a set consisting of 8 correct responses and 2
incorrect responses.Count thenumberof correct
responses.

4.215 Exercise Hours Introductory statistics stu-
dents fill out a survey on the first day of class. One of
the questions asked is “Howmany hours of exercise
do you typically get each week?” Responses for a
sampleof50studentsare introduced inExample 3.25
onpage 265andstored in thefileExerciseHours.The
summary statistics are shown in the computer output
below. Themean hours of exercise for the combined
sample of 50 students is 10.6 hours per week and
the standard deviation is 8.04. We are interested in
whether these sample data provide evidence that the
mean number of hours of exercise per week is differ-
ent between male and female statistics students.

Variable Sex N Mean StDev Minimum Maximum

Exercise F 30 9.40 7.41 0.00 34.00

M 20 12.40 8.80 2.00 30.00

Discuss whether or not the methods described
below would be appropriate ways to generate ran-
domization samples that are consistent with H0 ∶
𝜇F = 𝜇M vs Ha ∶ 𝜇F ≠ 𝜇M. Explain your reasoning
in each case.

(a) Randomly label 30 of the actual exercise values
with “F” for the female group and the remaining
20 exercise values with “M” for the males. Com-
pute thedifference in thesamplemeans,xF − xM.

(b) Add 1.2 to every female exercise value to give
a new mean of 10.6 and subtract 1.8 from each
male exercise value to move their mean to 10.6
(andmatch the females). Sample 30 values (with
replacement) from the shifted female values and
20 values (with replacement) from the shifted
male values. Compute the difference in the sam-
ple means, xF − xM.

(c) Combine all 50 sample values intoone set of data
having a mean amount of 10.6 hours. Select 30
values (with replacement) to represent a sam-
ple of female exercise hours and 20 values (also
with replacement) for a sample of male exercise
values. Compute the difference in the sample
means, xF − xM.

4.216 Different Randomization Distributions for
ExerciseHoursUseStatKeyor other technology and
the data inExerciseHours to carry out any twoof the
threerandomizationproceduresasdescribed inparts
(a) to (c) in Exercise 4.215 comparingmean hours of
exercise per week by sex. Are the results relatively
consistent or are they quite different? What conclu-
sion would you draw about the relationship (if any)
between sex and amount of exercise?
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Unit B introduces the key ideas of statistical inference. Statistical inference enables
us to use information in a sample to understand properties of a population. Statisti-
cal inference can be very powerful. As we have seen, data from just a small subset
of a population can often be used to give very accurate estimates and make very
specific conclusions about the entire population. We can use the data in a sample to
estimate one or more population parameter(s), create a confidence interval for the
parameter(s), and test a hypothesis about the parameter(s).

For any of the methods discussed in Chapters 3 and 4, it is important to remem-
ber the lessons of Chapter 1: For statistical inference to be valid, the data must be
collected in a way that does not introduce bias. If the data are collected in an appro-
priate way, we can learn remarkable things from just one sample.

Summary: Confidence Intervals
Weestimate a population parameter using a sample statistic. Since such statistics vary
from sample to sample, we need to get some sense of the accuracy of the statistic, for
example, with a margin of error. This leads to the concept of an interval estimate as
a range of plausible values for the population parameter. When we construct this
interval using a method that has some predetermined chance of capturing the true
parameter, we get a confidence interval. The correct interpretation of a confidence
interval is important:

We have some level of confidence that the population parameter is contained
within the confidence interval.

We describe two methods to compute a confidence interval. Both use a boot-
strap distribution, created using the key idea that if the sample is representative of
the population, then the population can be approximated by many, many copies
of the sample. To construct a bootstrap distribution we:

• Generate bootstrap samples, with replacement, from the original sample, using the
same sample size

• Compute the statistic of interest for each of the bootstrap samples

• Collect the statistics from many (usually at least 1000) bootstrap samples into a
bootstrap distribution

Once we have a bootstrap distribution, we have two methods to construct an
interval estimate:

Method 1: Estimate SE, the standard error of the statistic, as the standard devi-
ation of the bootstrap distribution. The 95% confidence interval is then

Sample statistic ± 2 ⋅ SE

Method 2: Use percentiles of the bootstrap distribution to chop off the tails of
the bootstrap distribution and keep a specified percentage (determined by the con-
fidence level) of the values in the middle.

Both methods apply to a wide variety of parameters and situations, and can
be used whenever the bootstrap distribution is approximately symmetric. They
each have strengths in helping us understand the ideas behind interval estimation.
For 95% confidence, the two methods usually give very similar answers. In later
chapters we will learn other methods for constructing confidence intervals for
specific parameters.

371
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Summary: Hypothesis Tests
Hypothesis tests are used to investigate claims about population parameters.
We use the question of interest to determine the two competing hypotheses:
The null hypothesis is generally that there is no effect or no difference while the
alternative hypothesis is the claim for which we seek evidence. The null hypothesis
is the default assumption; we only conclude in favor of the alternative hypothesis if
the evidence in the sample supports the alternative hypothesis and provides strong
evidence against the null hypothesis. If the evidence is inconclusive, we stick with
the null hypothesis.

We measure the strength of evidence against the null hypothesis using a p-value.
A p-value is the probability of obtaining a sample statistic as extreme as (or more
extreme than) the observed sample statistic, when the null hypothesis is true. A
small p-value means that the observed sample results would be unlikely to happen
just by random chance, if the null hypothesis were true, and thus provides evidence
against the null hypothesis. The smaller the p-value, the stronger the evidence against
the null hypothesis and in support of the alternative hypothesis.

When making specific decisions based on the p-value, we use a pre-specified sig-
nificance level. If the p-value is less than the significance level, we rejectH0, conclude
that there is evidence to support the alternative hypothesis, and say the results are
statistically significant. If the p-value is not less than the significance level, we do not
reject H0, we have an inconclusive test, and we say the results are not statistically
significant at that level. The conclusion should always be given in context to answer
the question of interest.

We calculate a p-value by constructing a randomization distribution of possible
sample statistics that we might see by random chance, if the null hypothesis were
true. A randomization distribution is constructed by simulating many samples in a
way that:

• Assumes the null hypothesis is true

• Uses the original sample data

The p-value is the proportion of the randomization distribution that is as
extreme as, or more extreme than, the observed sample statistic. If the original
sample falls out in the tails of the randomization distribution, then a result this
extreme is unlikely to occur if the null hypothesis is true, and we have evidence
against the null hypothesis in favor of the alternative.

Connecting Confidence Intervals and Hypothesis Tests
The two processes of interval estimation and significance testing are related,

and, in many circumstances, each one can tell us something about the other. If
the null parameter in a test falls outside the corresponding confidence interval
for the same data, we are likely to reject that null hypothesis. On the other hand,
if the null parameter in a test falls inside the confidence interval, we will likely
not have sufficient evidence to reject the null hypothesis. The two processes are
designed to give different information, but both are based on understanding how
far the sample statistic might be from an unknown population parameter (in
interval estimation) or a hypothesized population parameter (in testing). Creating a
bootstrap distribution or randomization distribution helps us visualize and estimate
this variability.

Case Study: Restaurant Tips
The exercises at the end of this section include several case studies that ask you to tie
together the pieces of statistical inference learned so far. In addition to connecting
the ideas that we have already discussed, you now have the power to extend these
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ideas to new situations. The methods we have covered have few conditions and great
flexibility. To illustrate that flexibility, we ask you, in the examples that follow, to
extend these ideas to a new parameter: the slope of a regression line.

Data 2.12 on page 137 describes information from a sample of 157 restaurant
bills collected at the First Crush bistro. The relevant data file is RestaurantTips. In
Chapter 2 we calculated a regression line with these data to investigate how the
tip amount is related to the bill size. However, in Chapter 2 our analysis was lim-
ited to just the sample data. Now, with our newfound ability to perform statistical
inference, we can extend the results from the sample to make conclusions about
the population!

Example B.1
Data Collection

What population can we draw inferences about from the data in RestaurantTips?
The sample was generated by collecting all bills over several nights at the restaurant.
Is this a problem for making inferences?

Solution Because the data are all from one restaurant, the population of interest is all bills
and tips at this restaurant. The original sample was not a random sample of all bills,
but rather the data were collected from all bills in a certain time frame. That might
introduce bias if the days for the bills in the sample are different in some substantial
way (for example, over a holiday season or only weekends). However, the owner
indicates that the days for which bills were sampled are representative of the busi-
ness at his restaurant. As data analysts we might alert the owner to the possibility of
bias when reporting our findings, but we proceed for now with the assumption that
the sample is representative of all bills at this restaurant.

Example B.2
Interval or Test?

There are many questions we could ask about the RestaurantTips dataset. For each
question below, indicate whether it is best assessed by using a confidence interval, a
hypothesis test, or whether statistical inference is not relevant to answer it. Assume
the population is all bills given to customers of the First Crush bistro.

(a) Estimate the size of an average bill at this restaurant.

(b) Is there evidence that customers at this restaurant leave an average tip greater
than 15% of the bill?

(c) For what proportion of the 157 bills included in the dataset did the customer
leave a tip greater than 20% of the bill?

(d) Is there a significant difference in the average tip left between waitress A and
waitress B?

(e) What proportion of customers at the restaurant have a bill greater than $30?

Solution (a) We want to find an estimate and are not given any specific claim to test, so a
confidence interval is most appropriate.

(b) Since we are specifically testing a claim about the average tip percentage, we use
a hypothesis test to address this claim.

(c) This is a question about the 157 values in the dataset, not about the population.
Statistical inference is not appropriate here, since we can find the proportion
exactly from the dataset.
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(d) Since we are testing a claim about a difference in means, we use a hypothesis
test.

(e) We are estimating a proportion and are not given any specific claim to test, so a
confidence interval is most appropriate.

Example B.3
Find the Regression Line

Find the equation of the least squares line for predicting the Tip amount based on
the Bill. Interpret the slope of that line in context and include a plot to show the
relationship.

Solution Using statistical software with the data in RestaurantTips gives the prediction
equation

̂Tip = −0.292 + 0.182 ⋅ Bill

The slope of 0.182 indicates that for every extra dollar in the restaurant bill the
tip will increase, on average, by about $0.18. This means the typical tip rate at this
restaurant is roughly 18% of the total bill.

Figure B.1 shows a scatterplot of the relationship between Tip and Bill with the
regression line drawn on it. We see a fairly strong, positive, linear association.

Figure B.1 Tip vs Bill
for n = 157 restaurant
customers
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Example B.4
Confidence Interval for a Slope

(a) Describe how to use this sample to construct a bootstrap distribution for the
slope of the regression line of Tip on Bill.

(b) A dotplot for one such bootstrap distribution from 100 bootstrap samples is
shown in Figure B.2. Use the plot to estimate a 90% confidence interval for the
slope of this regression line. Be sure to include an interpretation (in context) of
the interval.
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Figure B.2 Bootstrap
distribution of 100
sample slopes
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Solution (a) To construct a bootstrap distribution for the sample slope, we select samples of
size n = 157, with replacement, from the cases in theRestaurantTips dataset. For
each sample, we run the regression model, compute the sample slope, and save
it to form the bootstrap distribution.

(b) Because the dotplot in Figure B.2 is based on the slopes from 100 bootstrap
samples, we need to find the cutoffs for the upper and lower 5% in each tail to
get the boundaries for a 90% confidence interval. Removing the smallest 5 and
largest 5 bootstrap slopes leaves values ranging from about 0.168 to 0.197. Thus
we are roughly 90% sure that the slope (or average tip rate) for the population
of customers at this restaurant is somewhere between 0.168 and 0.197. Note that
100 bootstrap samples is a convenient number for finding the boundaries by
eye from a dotplot, but in practice we should use a larger number of simulated
samples and rely on technology to help with the counting.

Example B.5
Test for Slope Using a Confidence Interval

(a) If the amount of tip is unrelated to the size of the bill, the population slope for
this relationship would be zero. On the other hand, we generally suspect that
the Tip tends to increase as the Bill increases. What are the null and alternative
hypotheses for testing whether the sample provides evidence that the slope of
the regression relationship between these two variables is positive? (Hint: Use
the Greek letter 𝛽 [beta] to represent the slope for the population.)

(b) Can we make a decision about the outcome of the test (assuming a 10% sig-
nificance level) based solely on the confidence interval for the slope found in
Example B.4? If so, explain the decision. If not, explain why we cannot reach a
conclusion.

Solution (a) If we let 𝛽 denote the population slope for the relationship between amount of
tips and size of bills at this restaurant, the hypotheses to test whether or not
there is a positive slope are

H0 ∶ 𝛽 = 0

Ha ∶ 𝛽 > 0

(b) The 90% confidence interval for the slope, found in Example B.4, is (0.168,
0.197). It does not include the null value of zero, so we reject H0 in favor of
a two-tailed alternative at a 10% level. In fact, since the confidence interval
includes only positive values, we can be fairly sure that the true slope is above
zero. Thus we have evidence that there is some positive slope for the relationship
between the amount of a tip and the size of a bill at this restaurant.
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What about Tip Percentage?
The data in RestaurantTips also include a variable showing the tip amount

expressed as a percentage of the bill (PctTip). Most people use a fairly regular per-
centage (which may vary from person to person) of the total bill when deciding how
big a tip to leave. Some economists49 have theorized that people tend to reduce that
percentage when the bill gets large, but larger groups of customers might be more
generous as a group due to peer pressure. We can use the RestaurantTip data to see
if there is evidence to support either theory—or perhaps there is no consistent rela-
tionship between the size of the bill and percent tip. Figure B.3 shows a scatterplot
with regression line for this relationship. The sample slope in the regression line,
̂PctTip = 15.5 + 0.0488 ⋅ Bill, is positive, but looks pretty close to zero. Just looking
at this scatterplot, it is hard to tell whether this slope is significantly different from
zero. We need to conduct a hypothesis test.

Example B.6
Another Test for Slope, Using a Randomization Distribution

Perform a hypothesis test based on a randomization distribution to see if there is
sufficient evidence to conclude that the slope of the relationship between PctTip
and Bill is different from zero.

Figure B.3 Tip
percentage vs size of
restaurant bill
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Solution If we now let 𝛽 denote the slope for predicting tip percentage based on bills at this
restaurant, the relevant hypotheses are

H0 ∶ 𝛽 = 0

Ha ∶ 𝛽 ≠ 0

Borrowing an idea from the randomization test for correlation in Example 4.35 on
page 356, we can simulate data under the null hypothesis of no relationship (𝛽 = 0)

49Loewenstein, G. and Prelec, D. Anomalies in Intertemporal Choice: Evidence and an Inter-
pretation, Quarterly Journal of Economics, 1992;107:573–97.
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Figure B.4
Randomization
distribution for slopes of
PctTip vs Bill under
H0 ∶ 𝜷 = 0 Slope
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by randomly assigning the tip percentages in the dataset to the bill amounts. For
each rearrangement, we compute the new regression line and save the sample slope
to create a randomization distribution. Figure B.4 shows one such distribution with
slopes for 10,000 simulated samples.

The location of the slope from our original sample, b = 0.0488, is indicated on
the randomization distribution. It turns out that 545 of the 10,000 samples simulated
under the null hypothesis of zero slope produced sample slopes above 0.0488. Dou-
bling to account for a two-tail test gives a p-value of 2 ⋅ 545∕10, 000 = 0.109, which
is not very small. The sample does not have enough evidence to conclude that the
slope between PctTip and Bill is different from zero. Since the slope in our sample is
positive, there is certainly no evidence to support the economists’ claim of a negative
relationship.

Example B.7
What About the Outliers?

Figures B.1 and B.3 both show a few possible outliers from the pattern of the rest
of the data. Three very generous customers left tips that were more than 30% of
the bill. Do those points have a large effect on the conclusions of the slopes for
either of these relationships (Tip vs Bill or PctTip vs Bill)? One way to investigate
this question is to omit those cases from the data and re-run the analysis without
them.

Solution After dropping the three generous data points, the new least squares lines with the
remaining 154 cases for both relationships are shown in Figure B.5. The outliers have
a negligible effect on the slope of the relationship between Tip and Bill. It barely
changes from 0.182 with the outliers to 0.183 without them. A 90% confidence inter-
val for this slope, based on the data without outliers, goes from 0.173 to 0.193, which
is a bit narrower, but otherwise similar to the 90% interval, (0.168, 0.197), from the
full data.

The regression equation for predicting percentage tip, ̂PctTip = 14.9 + 0.056 ⋅
Bill, is a bit steeper when the outliers are removed. When testingH0 ∶ 𝛽 = 0 vsHa ∶
𝛽 ≠ 0 for this new slope, the p-value for one set of 10,000 randomizations turns out
to be 0.006. This p-value is quite small, showing that, when we remove the outlier
big tippers, there is a significant positive association with the percentage of the tip
tending to increase with larger bills.
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Figure B.5 Regressions based on Bill with three outliers removed

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Demonstrate an understanding of estimation and testing and how they
fit together

• Distinguish whether an interval or a test is more appropriate for
addressing a particular question

• Apply the concepts of estimation and testing to answer questions using
real data

Exercises for UNIT B: Essential Synthesis

B.1 Does Vitamin C Cure the Common Cold? A
study conducted on a college campus tested to see
whether students with colds who are given large
doses of vitamin C recover faster than students who
are not given vitamin C. The p-value for the test
is 0.003.

(a) Given the p-value, what is the conclusion of the
test: Reject H0 or do not reject H0?

(b) Results of statistical inference are only as good
as the data used to obtain the results. No matter
how low a p-value is, it has no relevance (and
we can’t trust conclusions from it) if the data
were collected in a way that biases the results.
Describe an inappropriate method of collecting
the data for this study that would bias the results
so much that a conclusion based on the p-value
is very unreliable.

(c) Describe a method of collecting the data
that would allow us to interpret the p-value

appropriately and to extend the results to the
broader student population.

(d) Assuming the data were collected as you
describe in part (c), use the p-value to make a
conclusion about vitamin C as a treatment for
students with a common cold.

B.2 Can Dogs Smell Cancer? Can dogs provide
an easy noninvasive way to detect cancer? Several
methods have been used to test this. In a recent
study,50 five dogs were trained over a three-week
period to smell cancer in breath samples. To collect
the data, cancer patients who had just been diag-
nosed and had not yet started treatment were asked
to breathe into a tube. Breath samples were also
collected from healthy control adults. Dogs were

50McCulloch, M., et al., “Diagnostic Accuracy of Canine Scent
Detection in Early- and Late-Stage Lung and Breast Cancers,”
Integrative Cancer Therapies, 2006;5(1):30–39.
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trained to sit if a breath sample came from a can-
cer patient. After training, the dogs were presented
with breath samples from new subjects, with the
samples randomly presented in a double-blind envi-
ronment. The study was done for patients who were
in different stages of cancer and for lung and breast
cancer patients. The results for all groups were sim-
ilar. The data for early-stage breast cancer are pre-
sented in Table B.1.

(a) Discuss the data collection for this study. Why
is it important that the samples are from new
subjects whose samples the dogs have not
encountered before? That they are randomly
presented? That the study is double-blind? That
patients have not yet started treatment? Do you
think this experiment was well designed?

(b) In the study for lung cancer, the experimenters
had to account for the effect of smoking. Why?

(c) The question of interest is whether dogs are
more likely to sit if the subject has cancer than
if the subject does not have cancer. State the
null and alternative hypotheses and give the rel-
evant sample statistics.

(d) Without doing any computations, just look-
ing at the data, do you expect the p-value to
be relatively large or relatively small? Why?
How strong is the evidence? (Sometimes, in
extreme cases such as this one, we see results
so obvious that a formal test may not be nec-
essary. Unless results are exceptionally obvious,
however, you should confirm your intuition
with statistical inference.)

Table B.1 Can dogs smell cancer?

Control Cancer

Dog doesn’t sit 99 3
Dog sits 6 45

B.3 Diet Cola and Calcium A study51 examined
the effect of diet cola consumption on calcium
levels in women. A sample of 16 healthy women
aged 18 to 40 were randomly assigned to drink
24 ounces of either diet cola or water. Their urine
was collected for three hours after ingestion of the
beverage and calcium excretion (in mg) was mea-
sured. The researchers were investigating whether

51Larson, N.S., et al., “Effect of Diet Cola on Urine Calcium
Excretion,” Endocrine Reviews, 2010;31(3):S1070. These data
are recreated from the published summary statistics and are esti-
mates of the actual data.

diet cola leaches calcium out of the system, which
would increase the amount of calcium in the
urine for diet cola drinkers. The data are given in
Table B.2 and stored in ColaCalcium.

(a) Using StatKey or other technology, carry out an
appropriate inference procedure to address the
question of whether or not the mean amount of
calcium lost for women who drink diet cola is
more than for women who drink water.

(b) If the analysis in part (a) indicates that the
results are significant, construct a 95% confi-
dence interval to estimate the size of the effect.
If the results in part (a) are not significant, com-
bine the data into one sample of 16 values and
use it to construct a 95% confidence interval
for the average amount of calcium excreted. Be
sure to interpret whichever interval you con-
struct.

Table B.2 Do diet cola drinkers excrete more
calcium?

Diet cola 50 62 48 55 58 61 58 56

Water 48 46 54 45 53 46 53 48

B.4 NFL Overtime The National Football League
(NFL) has used a sudden death overtime period
since 1974 to help decide a winner in games that are
tied at the end of regulation time. Before the over-
time starts, a coin flip is used to determine which
team gets the ball first. Some critics of the system
complain that the team that wins the coin flip has an
unfair advantage. In the 445 overtime NFL games
in the period between 1974 and 2009, the team win-
ning the coin toss has won 240 times and lost 188
times and 17 games have ended in a tie when neither
team scored during the overtime. When consider-
ing the impact of overtime policy for future games,
we’ll consider these games as a sample of all possi-
ble NFL games.

(a) Discarding the 17 tie games, we see that the win-
ner of the coin flip has gone on to win 240 of
the 428 games where a winner is determined in
overtime. Does this provide sufficient evidence
to show that the team winning the coin flip has
an advantage? Use StatKey or other technology
and assume that the league uses a 5% signifi-
cance level.

(b) The NFL changed a rule before the 1994 season
(moving the kickoff line back 5 yards) thatmight
affect this analysis. For 188 games (again ignor-
ing ties) from 1974 to 1993, the winner of the
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Table B.3 Videogames and GPA

Student Brought Roommate Brought
Videogame Videogame Sample Size Mean GPA Std. Dev.

No No 88 3.128 0.590
Yes No 44 3.039 0.689
No Yes 38 2.932 0.699
Yes Yes 40 2.754 0.639

coin flip won 94 times and lost 94 times. In 240
games played between 1994 and 2009 (after the
rule change) the winner of the coin flip won 146
games and lost 94. Organize this information in
a two-way table and discuss any statistical evi-
dence for a difference in the advantage (if any
exists at all) for the team winning the coin flip
under the new and old rules.

B.5 Impact of College Roommates on Grades
How much of an effect does your roommate
have on your grades? In particular, does it matter
whether your roommate brings a videogame to col-
lege? A study52 examining this question looked at
n = 210 students entering Berea College as first-
year students in the Fall of 2001 who were randomly
assigned a roommate. The explanatory variable is
whether or not the roommate brought a videogame
to college and the response variable is grade point
average (GPA) for the first semester.

(a) Discuss one of the important strengths of the
method of data collection.

(b) In conducting a test to see whether GPA is
lower on average for students whose room-
mate brings a videogame to campus, define the
parameter(s) of interest and state the null and
alternative hypotheses.

(c) The p-value for the test in part (b) is 0.036.
What is the conclusion for a 5% significance
level?

(d) We are interested in seeing how large the room-
mate effect is on GPA. A 90% confidence inter-
val for 𝜇

𝑣
− 𝜇n is (−0.315,−0.015), where 𝜇

𝑣
is

the average GPA for first-year students whose
roommate brings a videogame to college and
𝜇n is the average GPA for first-year students
whose roommate does not bring a videogame to
college. Explain how you can tell just from the
confidence interval which group has a higher
average GPA. Interpret the confidence interval
in terms of roommates, videogames, and GPA.

52Stinebrickner, R. and Stinebrickner, T., “The Causal Effect of
Studying on Academic Performance,” The B.E. Journal of Eco-
nomic Analysis & Policy, 2008; 8(1) (Frontiers), Article 14.

(e) The researchers also record whether the stu-
dent him- or herself brought a videogame to
college. We conduct the same test as in part (b),
to see if having a roommate bring a videogame
to college hurts GPA, for each of these groups
separately. For the test for students who do not
themselves bring a videogame to college, the
p-value is 0.068. What is the conclusion, using
a 5% significance level?

(f) For the test for students who themselves bring a
videogame to campus, the p-value for the test is
0.026. What is the conclusion, again using a 5%
significance level?

(g) Using the p-values in parts (e) and (f), for which
group of students (those who bring a videogame
or those who do not) does having a room-
mate bring a videogame have a larger effect on
GPA? Does this match what you would expect?
Explain.

(h) For students who bring a videogame to cam-
pus, a 90% confidence interval for 𝜇

𝑣
− 𝜇n is

(−0.526,−0.044). Interpret this confidence inter-
val in context and compare the effect size to that
found for all students in part (d).

(i) The summary statistics are in Table B.3. Com-
ment on the effect on GPA of videogames at
college in general.

(j) Describe at least one additional test you might
conduct using the data summarized in Table B.3.

B.6 Husbands Older Than Wives? A sample
of marriage licenses in St. Lawrence County53 in
NorthernNewYork State gives the ages of husbands
and wives at the time of marriage for 105 newlymar-
ried couples. The data are stored in MarriageAges
and the first few cases from this file are shown in
Table B.4. The question of interest is whether or
not husbands tend to be older than their wives. Use
StatKey or other technology and statistical infer-
ence to address this issue based on the questions

53Thanks to Linda Casserly at the County Clerk’s office for the
data.
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in parts (a) and (b). In all cases be sure to interpret
your findings in the context of this problem, stating
to what population (if any) your findings apply.

(a) When getting married, is the average age for
husbands greater than the average age for
wives? (Hint: The data are paired.)

(b) Is the proportion of couples for which the hus-
band is older greater than 50%?

(c) For any significant results in parts (a) and (b),
construct and interpret an interval for the size
of the effect.

Table B.4 First ten cases in MarriageAges,
giving ages from marriage licenses

Husband 53 38 46 30 31 26 29 48 65 29 …
Wife 50 34 44 36 23 31 25 51 46 26 …

B.7 Correlation between Ages of Husbands and
Wives Exercise B.6 describes data on ages of hus-
bands and wives at the time of marriage.

(a) Do you expect the correlation between the ages
at marriage of husbands and wives to be posi-
tive, negative, or near zero? Explain.

(b) Using the data in MarriageAges, find the sam-
ple correlation and display the data in a scatter-
plot. Describe what you observe about the data
in the scatterplot.

(c) Use StatKey or other technology to construct
and interpret a 95% confidence interval for the
correlation between the ages of husbands and
wives when they get married.

(d) Does the correlation between ages help address
the question in the previous exercise about
whether husbands tend to be older than their
wives?

Review Exercises for UNIT B

B.8 Customized Home Pages A random sample
of n = 1675 Internet users in the US in January 2010
found that 469 of them have customized their web
browser’s home page to include news from sources
and on topics that particularly interest them.54 State
the population and parameter of interest. Use the
information from the sample to give the best esti-
mate of the population parameter. What would we
have to do to calculate the value of the parameter
exactly?

B.9 Laptop Computers A survey conducted in
May of 2010 asked 2252 adults in the US “Do you
own a laptop computer?” The number saying yes
was 1238. What is the best estimate for the pro-
portion of US adults owning a laptop computer?
Give notation for the quantity we are estimating,
notation for the quantity we are using to make the
estimate, and the value of the best estimate. Be sure
to clearly define any parameters in the context of
this situation.

B.10 Do Violent Movies Lead to Violence in
Society?A national telephone survey55 reports that
57% of those surveyed think violent movies lead to
54Purcell, K., Rainie, L., Mitchell, A., Rosenthal, T., and
Olmstead, K., “Understanding the Participatory News Con-
sumer,” Pew Research Center, March 1, 2010, http://www
.pewinternet.org/Reports/2010/Online-News.aspx.
55“57% Believe Violence in Movies Leads to Violence in Soci-
ety,” Rasmussen Reports, February 14, 2012.

more violence in society. The survey included a ran-
dom sample of 1000 American adults and reports:
“The margin of sampling error is +∕− 3 percentage
points with a 95% level of confidence.”

(a) Define the relevant population and parameter.
Based on the data given, what is the best esti-
mate for this parameter?

(b) Find and interpret a 95% confidence interval for
the parameter defined in part (a).

B.11 Carbon Stored in Forest Biomass Scientists
hoping to curb deforestation estimate that the car-
bon stored in tropical forests in Latin America,
sub-Saharan Africa, and southeast Asia has a total
biomass of 247 gigatons spread over 2.5 billion
hectares. The scientists56 measured carbon levels
at 4079 inventory plots and also used information
from satellite images. A 95% confidence interval
for the mean amount of carbon per square kilo-
meter in tropical forests in Latin America, sub-
Saharan Africa, and southeast Asia is 9600 to
13,600 tons. Interpret this confidence interval. In
addition, explain what the scientists would have to
do to calculate the estimated quantity exactly.

56Saatchi, S.S., et al., “Benchmark Map of Forest Carbon Stocks
in Tropical Regions Across Three Continents,” Proceedings of
the National Academy of Sciences, May 31, 2011.
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FISH DEMOCRACIES
Exercises B.12 to B.14 consider the question (using
fish) of whether uncommitted members of a group
make it more democratic. It has been argued
that individuals with weak preferences are partic-
ularly vulnerable to a vocal opinionated minor-
ity. However, recent studies, including computer
simulations, observational studies with humans,
and experiments with fish, all suggest that adding
uncommitted members to a group might make for
more democratic decisions by taking control away
from an opinionated minority.57 In the experiment
with fish, golden shiners (small freshwater fish who
have a very strong tendency to stick together in
schools) were trained to swim toward either yel-
low or blue marks to receive a treat. Those swim-
ming toward the yellow mark were trained more to
develop stronger preferences and became the fish
version of individuals with strong opinions. When a
minority of five opinionated fish (wanting to aim for
the yellow mark) were mixed with a majority of six
less opinionated fish (wanting to aim for the blue
mark), the group swam toward the minority yel-
low mark almost all the time. When some untrained
fish with no prior preferences were added, how-
ever, the majority opinion prevailed most of the
time.58 Exercises B.12 to B.14 elaborate on this
study.

B.12 Training Fish to Pick a Color Fish can be
trained quite easily. With just seven days of train-
ing, golden shiner fish learn to pick a color (yellow
or blue) to receive a treat, and the fish will swim
to that color immediately. On the first day of train-
ing, however, it takes them some time. In the study
described under Fish Democracies above, the mean
time for the fish in the study to reach the yellow
mark is x = 51 seconds with a standard error for
this statistic of 2.4. Find and interpret a 95% con-
fidence interval for the mean time it takes a golden
shiner fish to reach the yellow mark. Is it plausible
that the average time it takes fish to find the mark is
60 seconds? Is it plausible that it is 55 seconds?

B.13 How Often Does the Fish Majority Win? In
a school of fish with a minority of strongly opinion-
ated fish wanting to aim for the yellow mark and a
majority of less passionate fish wanting to aim for
the blue mark, as described under Fish Democracies

57Milius, S., “Uncommitted Newbies Can Foil Forceful Few,”
Science News, 2012: 181(1); 18.
58Couzin, I., et al., “Uninformed Individuals Promote Demo-
cratic Consensus in Animal Groups,” Science, 2011; 334(6062):
1578–80.

above, a 95% confidence interval for the propor-
tion of times the majority wins (they go to the
blue mark) is 0.09 to 0.26. Interpret this confidence
interval. Is it plausible that fish in this situation are
equally likely to go for either of the two options?

B.14 What Is the Effect of Including Some Indif-
ferent Fish? In the experiment described above
under Fish Democracies, the schools of fish in the
study with an opinionated minority and a less pas-
sionate majority picked the majority option only
about 17% of the time. However, when groups also
included 10 fish with no opinion, the schools of fish
picked the majority option 61% of the time. We
want to estimate the effect of adding the fish with
no opinion to the group, which means we want to
estimate the difference in the two proportions. We
learn from the study that the standard error for
estimating this difference is about 0.14. Define the
parameter we are estimating, give the best point
estimate, and find and interpret a 95% confidence
interval. Is it plausible that adding indifferent fish
really has no effect on the outcome?

B.15 What Proportion of Hollywood Movies Are
Dramas? Data 2.7 on page 105 introduces the
dataset HollywoodMovies, which contains infor-
mation on 1295 movies to come out of Hollywood
between 2012 and 2018 (consider this the popu-
lation of all movies from this period). Using the
Genre variable, we see that 386 of these movies are
classified as dramas.

(a) What proportion of Hollywood movies from
this period are dramas? Use the correct nota-
tion with your answer.

(b) If we took many samples of size 50 from the
population of all Hollywood movies with gen-
res listed from this period and recorded the
proportion of dramas for each sample, what
shape do we expect the distribution of sample
proportions to have? Where do we expect it to
be centered?

B.16 Sampling Distributions for Proportion of
Hollywood Movies That Are Dramas The dataset
HollywoodMovies contains information on movies
to come out of Hollywood between 2012 and 2018.
We see in Exercise B.15 that 386 of the 1295 movies
are dramas. If we take 1000 samples of size n = 50
from the population of movies in this period and
record the proportion of movies in the sample that
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are dramas, we get the sampling distribution shown
in Figure B.6. In each case below, fill in the blank
with the best option provided.

(a) The standard error of this sampling distribution
is approximately .

0.02 0.06 0.13 0.17 0.20

(b) If we create a new sampling distribution using
samples of size n = 100, we expect the center
of the new distribution to be the
center of the distribution shown in Figure B.6.

smaller than about the same as larger than

(c) If we create a new sampling distribution
using samples of size n = 100, we expect the
standard error of the new distribution to be

the standard error of the distri-
bution shown in Figure B.6.

smaller than about the same as larger than

(d) If we create a new sampling distribution
using 5000 samples of size n = 50, we expect
the center of the new distribution to be

the center of the distribution
shown in Figure B.6.

smaller than about the same as larger than

(e) If we create a new sampling distribution using
5000 samples of size n = 50, we expect the
standard error of the new distribution to be

the standard error of the distri-
bution shown in Figure B.6.

smaller than about the same as larger than
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Figure B.6 Sampling distribution using 1000 samples
of size n = 50

B.17 Defective Screws Suppose that 5% of the
screws a company sells are defective. Figure B.7
shows sample proportions from two sampling dis-
tributions: One shows samples of size 100, and the
other shows samples of size 1000.

(a) What is the center of both distributions?

(b) What is the approximate minimum and maxi-
mum of each distribution?

(c) Give a rough estimate of the standard error in
each case.

(d) Suppose you take onemore sample in each case.
Would a sample proportion of 0.08 (that is, 8%
defective in the sample) be reasonably likely
from a sample of size 100? Would it be reason-
ably likely from a sample of size 1000?

Proportion Defective (n = 100)

0.04 0.06 0.08 0.10 0.120.020.00
0

15
0

Proportion Defective (n = 1000)

0.04 0.06 0.08 0.10 0.120.020.00

0
20

0

Figure B.7 Sampling distributions for n = 100 and
n = 1000 screws

B.18 Number of Screws in a Box A company that
sells boxes of screws claims that a box of its screws
contains on average 50 screws (𝜇 = 50). Figure B.8
shows a distribution of sample means collected
from many simulated random samples of size 10
boxes.

(a) For a random sample of 10 boxes, is it unlikely
that the sample mean will be more than 2 screws
different from 𝜇? What about more than 5? 10?

(b) If you bought a random sample of 10 boxes
at the hardware store and the mean number
of screws per box was 42, would you conclude
that the company’s claim (𝜇 = 50) is likely to be
incorrect?

(c) If you bought a random box at the hardware
store and it only contained 42 screws, would you
conclude that the company’s claim is likely to be
incorrect?
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Figure B.8 Sampling distribution for average number
of screws in a box

B.19 Average Points for a Hockey Player Table 3.4
on page 226 gives the number of points for
all 26 regular players on the Ottawa Senators
NHL hockey team, also available in the dataset
OttawaSenators2019.

(a) Use StatKey, other technology, or a random
number table to select a random sample of 5
of the 26 Points values. Indicate which values
you’ve selected and compute the sample mean.

(b) Repeat part (a) by taking a second sample and
calculating the mean.

(c) Find the mean for the entire population of
these 26 players on the Ottawa team. Use cor-
rect notation for your answer. Comment on
the accuracy of using the sample means found
in parts (a) and (b) to estimate the population
mean.

(d) Give a rough sketch of the sampling distribution
if we calculate many sample means taking sam-
ples of size n = 5 from this population of Points
values. What shape will it have and where will it
be centered?

B.20 Time to Finish in 2016 Olympic Men’s
Marathon In the 2016 Olympic Men’s Marathon,
140 athletes finished the race. Their times are stored
in the file OlympicMarathon2016. Use the times
stored in theMinutes column.

(a) Use StatKey, other technology, or a random
number table to randomly select 10 values. Indi-
cate which values you’ve selected and compute
the sample mean.

(b) Repeat part (a) by taking a second sample and
calculating the mean. Make a mini-dotplot by
plotting the two sample means on a dotplot.

(c) Find the mean for the entire population of
140 race times. Use correct notation for your
answer. Comment on the accuracy of using the
sample means found in parts (a) and (b) to esti-
mate the population mean.

(d) Suppose we take many samples of size n = 10
from this population of values and plot themean
for each sample on a dotplot.Describe the shape
and center of the result. Draw a rough sketch of
a possible distribution for these means.

B.21 A Sampling Distribution for Average Points
for a Hockey Player Use StatKey or other tech-
nology to generate a sampling distribution of sam-
ple means using a sample size of n = 5 from the
Points values in Table 3.4 on page 226, which gives
the number of points for all 26 regular players on
the Ottawa Senators NHL hockey team, also avail-
able in the dataset OttawaSenators2019. What are
the smallest and largest sample means in the dis-
tribution? What is the standard deviation of the
sample means (in other words, what is the standard
error)?

B.22 A Sampling Distribution for Time to Finish
in 2016 Olympic Men’s Marathon Use StatKey or
other technology to generate a sampling distribu-
tion of sample means using a sample size of n = 10
from the population of all times to finish the 2016
Olympic Men’s Marathon, available in the Minutes
column of the fileOlympicMarathon2016. What are
the smallest and largest sample means in the dis-
tribution? What is the standard deviation of the
sample means (in other words, what is the standard
error)?

B.23 Cell Phones in the Classroom Many profes-
sors do not like having cell phones ring during class.
A recent study59 appears to justify this reaction,
by showing that a ringing cell phone can adversely
affect student learning. In the experiment, students
in a college classroom were exposed to a ringing cell
phone during a psychology lecture. In the first part
of the experiment, performance on a quiz revealed
significantly lower accuracy rates on material pre-
sented while the phone was ringing. In a second
part of the experiment, proximity of the students to
the ringing phone was measured and results showed
that the location of the ringing phone within the
classroom was not associated with performance.
The p-values for the two tests were 0.93 and 0.0004.
Which p-value goes with which test? For the signifi-
cant result, describe the strength of the evidence in
context.

B.24 Better Traffic Flow Exercise A.87 on
page 203 introduces the dataset TrafficFlow, which
gives delay time in seconds for 24 simulation runs

59Shelton, J., Elliott, E., Eaves, S., and Exner, A., “The Distract-
ing Effects of a Ringing Cell Phone: An Investigation of the
Laboratory and the Classroom Setting,” Journal of Environmen-
tal Psychology, 2009.
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in Dresden, Germany, comparing the current timed
traffic light system on each run to a proposed flex-
ible traffic light system in which lights communi-
cate traffic flow information to neighboring lights.
On average, public transportation was delayed 105
seconds under the timed system and 44 seconds
under the flexible system. Since this is a matched
pairs experiment, we are interested in the differ-
ence in times between the two methods for each
of the 24 simulations. For the n = 24 differences D,
we saw in Exercise A.87 that xD = 61 seconds with
sD = 15.19 seconds. We wish to estimate the average
time savings for public transportation on this stretch
of road if the city of Dresden moves to the new
system.

(a) What parameter are we estimating? Give cor-
rect notation.

(b) Suppose that we write the 24 differences on
24 slips of paper. Describe how to physi-
cally use the paper slips to create a bootstrap
sample.

(c) What statistic do we record for this one boot-
strap sample?

(d) If we create a bootstrap distribution using many
of these bootstrap statistics, what shape do we
expect it to have and where do we expect it to
be centered?

(e) How can we use the values in the bootstrap dis-
tribution to find the standard error?

(f) The standard error is 3.1 for one set of 10,000
bootstrap samples. Find and interpret a 95%
confidence interval for the average time savings.

B.25 Do Ovulating Women Affect Men’s Speech?
Studies suggest that when young men interact with
a woman who is in the fertile period of her men-
strual cycle, they pick up subconsciously on subtle
changes in her skin tone, voice, and scent. A new
study60 suggests that they may even change their
speech patterns. The experiment included 123 male
and 5 female college students, all of them hetero-
sexual. The men were randomly divided into two
groups with one group paired with a woman in the
fertile phase of her cycle and the other group with a
woman in a different stage of her cycle. The women
were used equally in the two different stages. For
the men paired with a less fertile woman, 38 of the
61 men copied their partner’s sentence construction

60Data approximated from information given in “How Ovulat-
ing Women Affect Men’s Speech,” the chart, CNNHealth.com,
February 8, 2012.

in a task to describe an object. For the men paired
with a woman at peak fertility, 30 of the 62 men
copied their partner’s sentence construction. The
experimenters hypothesized that men might be less
likely to copy their partner during peak fertility in
a (subconscious) attempt to attract more attention
to themselves. Use StatKey or other technology to
create a randomization distribution and conduct
a hypothesis test to see if the proportion copying
sentence structure is less when the woman is at
peak fertility. Include all details of the test. Are the
results significant at a 5% level? Are they significant
at a 10% level?

B.26 Estimating Pizza Girl’s Tips A pizza delivery
person was interested in knowing how she spends
her time and what her actual hourly earnings are, so
she recorded all of her deliveries and tips and how
she spent every minute of her time over three shifts,
on one Friday night and two Saturday nights. She
discusses the results, and much more, on “Diary of
a Pizza Girl” on the Slice website.61 Some of these
data are available in PizzaGirl. The average tip for
pizza deliveries on the nights sampled is x = $3.04.
If we want to use this sample mean to estimate the
average tip for all deliveries, the margin of error is
$0.86. Find an interval estimate for the average tip
for all pizza deliveries she makes. What do we have
to assume about the sample in order for this point
estimate and interval estimate to be valid?

B.27 Price of Textbooks We select a random sam-
ple of n = 10 textbooks at a university bookstore
and are testing to see if there is evidence that the
average price of textbooks at that store is greater
than $100. Give an example of possible sets of 10
prices that would provide:

(a) Strong evidence that the average price of the
store’s textbooks is greater than $100.

(b) No evidence at all that the average price is
greater than $100.

(c) Some evidence that the average price is greater
than $100 but not strong evidence.

B.28 Most Americans Don’t Go Out to Movies
According to a survey,62 most Americans prefer to
watch a movie in the comfort of their own home
rather than going out to a theater. In the telephone

61http://slice.seriouseats.com/archives/2010/04/statistical-analysis
-of-a-pizza-delivery-shift-20100429.html.
62“56% Rarely Go To Movies,” Rasmussen Reports, February 7,
2012.
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Table B.5 Prices of skateboards for sale online

19.95 24.99 39.99 34.99 30.99 92.50 84.99 119.99 19.99 114.99

44.99 50.00 84.99 29.91 159.99 61.99 25.00 27.50 84.99 199.00

survey of 1000 randomly selected American adults,
56% say they rarely or never go out to the movies,
while 32% go “occasionally” and 12% go at least
once a month. We wish to estimate the proportion
of American adults that rarely or never go out to the
movies, and the report tells us: “The margin of sam-
pling error is +∕− 3 percentage points with a 95%
level of confidence.” Find and interpret a 95% con-
fidence interval for the proportion rarely or never
going out. Can we be relatively sure that the percent
rarely or never going out to the movies is greater
than 50%?

B.29 Skateboard Prices A sample of prices of
skateboards for sale online63 is shown in Table B.5
and is available in the dataset SkateboardPrices.

(a) What are the mean and standard deviation of
the 20 skateboard prices?

(b) Describe how to use the data to select one boot-
strap sample. What statistic is recorded from the
sample?

(c) What shape and center do we expect the boot-
strap distribution to have?

(d) One bootstrap distribution gives a standard
error of 10.9. Find and interpret a 95% confi-
dence interval.

B.30 Comparing Methods for Having Dogs Iden-
tify Cancer in People Exercise 2.28 on page 66
describes a study in which scientists train dogs
to smell cancer. Researchers collected breath and
stool samples from patients with cancer as well
as from healthy people. A trained dog was given
five samples, randomly displayed, in each test, one
from a patient with cancer and four from healthy
volunteers. The results are displayed in Table B.6.
Use StatKey or other technology to use a bootstrap
distribution to find and interpret a 90% confidence

63Random sample taken from all skateboards available for sale
on eBay on February 12, 2012.

Table B.7 Land area (in 1000 sq km) and percent living in rural areas

Country SRB BHS SVN UZB TUN ARM ROU MKD LBN PRK

Land Area: 87.46 10.01 20.14 425.40 155.36 28.47 230.08 25.22 10.23 120.41
Rural: 43.9 17.0 45.5 49.5 31.1 36.9 46.0 42.0 11.4 38.1

interval for the difference in the proportion of
times the dog correctly picks out the cancer sample,
between the two types of samples. Is it plausible that
there is no difference in the effectiveness in the two
types of methods (breath or stool)?

Table B.6 Can dogs smell cancer?

Breath Test Stool Test Total

Dog selects cancer 33 37 70
Dog does not select
cancer

3 1 4

Total 36 38 74

B.31 Standard Deviation of Penalty Minutes in the
NHL Exercise 3.111 on page 262 asked you to use
the standard error to construct a 95% confidence
interval for the standard deviation of penalty min-
utes for NHL players.

(a) Assuming the data in OttawaSenators2019 can
be viewed as a reasonable sample of all NHL
players, use StatKey or other technology and
percentiles of a bootstrap distribution to find
and interpret a 95% confidence interval for the
standard deviation of NHL penalty minutes for
players in a season.

(b) What is the standard deviation for the original
sample? Is the standard deviation for the orig-
inal sample exactly in the middle of the confi-
dence interval found in part (a)?

B.32 Average LandArea in Countries of theWorld
Table B.7 shows land area (in 1000 sq km) and per-
cent living in rural areas for a random sample of
10 countries selected from theAllCountries dataset.
The data for this sample is stored in TenCountries.
Use StatKey or other technology and this sample to
find and interpret a 99% confidence interval for the
average country size, in 1000 sq km.
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B.33 Land Area and Percent Rural in Countries
of the World Table B.7 shows land area (in 1000
sq km) and percent living in rural areas for a ran-
dom sample of 10 countries from the AllCountries
dataset that are stored in TenCountries.

(a) Using the data in the sample, find the slope of
the regression line to predict the percent of the
population living in rural areas using the land
area (in 1000 sq km).

(b) Using StatKey or other technology and per-
centiles from a bootstrap distribution of this
sample, find a 95% confidence interval to esti-
mate the true slope (for all 217 countries) for
predicting percent rural using the land area.

(c) The actual population slope is essentially 0.
Does your 95% confidence interval from part
(b) succeed in capturing the true slope from all
217 countries?

B.34 Effect of Smoking on Pregnancy Rate Exer-
cise A.53 on page 196 introduces a study of 678
women who had gone off birth control with the
intention of becoming pregnant. Table B.8 includes
information on whether or not a woman was a
smoker and whether or not the woman became
pregnant during the first cycle. We wish to estimate
the difference in the proportion who successfully
get pregnant, between smokers and non-smokers.

(a) Find the best point estimate for the difference
in proportions.

(b) Use StatKey or other technology to find and
interpret a 90% confidence interval for the dif-
ference in proportions. Is it plausible that smok-
ing has no effect on pregnancy rate?

Table B.8 Smoking and pregnancy rate

Smoker Non-smoker Total

Pregnant 38 206 244
Not pregnant 97 337 434

Total 135 543 678

B.35 Testing the Effect of Smoking on Pregnancy
Rate Exercise B.34 discusses a study to see if
smoking might be negatively related to a woman’s
ability to become pregnant. The study looks at the
proportion of successful pregnancies in two groups,
smokers and non-smokers, and the results are
summarized in Table B.8. In this exercise, we are
interested in conducting a hypothesis test to deter-
mine if there is evidence that the proportion of

successful pregnancies is lower among smokers than
non-smokers.

(a) Is this a one- or two-tailed test?

(b) What are the null and alternative hypotheses?

(c) If the null hypothesis is true (and smoking has
no effect on pregnancy rate), we expect the
678 women to have the same pregnancy success
rate regardless of smoking habits. We might cre-
ate a randomization distribution by simulating
many random assignments of women to the two
groups. Howmany women would you randomly
assign to the smoking group? The nonsmoking
group?

(d) Figure B.9 shows the counts for successful preg-
nancies in the smoking group from 1000 such
simulations. Using the same statistic (count for
successful pregnancies in the smoking group)
from the original sample and using this figure,
which value would best approximate the p-value
for our test?
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Figure B.9 Randomization distribution for 1000
simulations H0 ∶ ps = pns

B.36 Taxes and Soda Consumption: Dotplots of
Samples The average American drinks approxi-
mately 50 gallons of soda (pop) a year, delivering
approximately 50,000 calories and no nutrition.64

Some legislators are recommending instituting a
sales tax on soda to raise revenue and fight obesity.
Will a sales tax impact consumption? Suppose that

64Kiviat, B., “Tax and Sip,” Time Magazine, July 12, 2010,
p. 51–52.
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Gallons of soda per year

36
Sample B

Sample A

5439 42 45 48 51

(a)
Gallons of soda per year

40
Sample B

Sample A

5442 44 46 48 50 52

(b)

Gallons of soda per year

44
Sample B

Sample A

6848 52 56 60 64

(c)

Figure B.10 Samples for Exercise B.36

a sales tax on soda will be added in a random sam-
ple of communities to measure the impact on soda
consumption. We wish to determine whether aver-
age per-capita consumption of taxed soda is sig-
nificantly less than 50 gallons a year. Figure B.10
shows dotplots of three pairs of possible sample
results. In each case, indicate whether the results
of Sample A or Sample B show stronger evidence
that average consumption of taxed soda is below
50, or state that neither sample shows evidence that
the mean is below 50. Explain your reasoning in
each case.

B.37 Taxes and Soda Consumption: Boxplots of
Samples We extend the situation described in
Exercise B.36 to each of the pairs of boxplots in

Gallons of soda per year

555045

(a)

4035

Sample B (n=30)

Sample A (n=30)

(b)

65605550454030 35

Gallons of soda per year

Sample A (n=30)

Sample B (n=30)

(c)

525048464440 42

Gallons of soda per year

Sample A (n=500)

Sample B (n=10)

Figure B.11 Samples for Exercise B.37

Figure B.11. In each case, indicate whether the
results of Sample A or Sample B show stronger evi-
dence that average consumption of taxed soda is
below 50, or state that neither sample shows evi-
dence of this. Notice that sample sizes are shown on
the side of the boxplots.

B.38 Taxes on Soda: Interpreting P-values Exer-
cises B.36 and B.37 describe a study to determine
whether a sales tax on soda will reduce consumption
of soda in the US below the current per-capita level
of about 50 gallons of soda per year. The hypothe-
ses for the test are H0 ∶ 𝜇 = 50 vs Ha ∶ 𝜇 < 50,
where 𝜇 represents the average annual consump-
tion of soda in communities where the sales tax is
implemented.
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(a) Suppose sample results give a p-value of 0.02.
Interpret this p-value in terms of random chance
and in the context of taxes and soda consump-
tion.

(b) Now suppose sample results give a p-value of
0.41. Interpret this p-value in terms of random
chance and in the context of taxes and soda con-
sumption.

(c) Which p-value, 0.02 or 0.41, gives stronger evi-
dence that a sales tax will reduce soda consump-
tion?

(d) Which p-value, 0.02 or 0.41, is more statistically
significant?

B.39 Standard Error for Proportion of Holly-
wood Movies That Are Action Movies Data 2.7 on
page 105 introduces the dataset HollywoodMovies,
which contains information on 1295 movies that
came out of Hollywood between 2012 and 2018.
Using the Genre variable, we see that 170 of these
movies are classified as action movies.

(a) What proportion of Hollywood movies in the
population of movies in this period are action
movies? Use the correct notation with your
answer.

(b) Use StatKey or other technology to generate
a sampling distribution for the proportion of
action movies in samples of size n = 100. Give
the shape and center of the sampling distribu-
tion and give the standard error.

B.40 Average Size of a Performing Group in the
Rock and Roll Hall of Fame From its founding
through 2019, the Rock and Roll Hall of Fame
has inducted 329 groups or individuals, and 230 of
the inductees have been performers while the rest
have been related to the world of music in some
way other than as a performer. The full dataset is
available atRockandRoll2019. Some of the 230 per-
former inductees have been solo artists while some
are groups with a large number of members. We are
interested in the average number of members across
all groups or individuals inducted as performers.

(a) What is the mean size of the performer inductee
groups (including individuals)? Use the correct
notation with your answer.

(b) Use technology to create a graph of all 230 val-
ues. Describe the shape, and identify the two
groups with the largest number of people.

(c) Use technology to generate a sampling distribu-
tion for the mean size of the group using sam-
ples of size n = 10. Give the shape and center of

the sampling distribution and give the standard
error.

(d) What does one dot on the sampling distribution
represent?

B.41 Sampling Distributions vs Bootstrap Distri-
butionsGiven a specific sample to estimate a specific
parameter from a population, what are the expected
similarities and differences in the corresponding
sampling distribution (using the given sample size)
and bootstrap distribution (using the given sample)?
In particular, for each aspect of a distribution listed
below, indicate whether the values for the two distri-
butions (sampling distribution and bootstrap distri-
bution) are expected to be approximately the same
or different. If they are different, explain how.

(a) The shape of the distribution

(b) The center of the distribution

(c) The spread of the distribution

(d) What one value (or dot) in the distribution rep-
resents

(e) The information needed in order to create the
distribution

B.42 Bootstrap Distributions for Intervals vs Ran-
domization Distributions for Tests What is the
expected center of a bootstrap distribution gen-
erated to find a confidence interval? What is the
expected center of a randomization distribution
generated to test a hypothesis?

B.43 Paul the Octopus In the 2010 World Cup,
Paul the Octopus (in a German aquarium) became
famous for being correct in all eight of the pre-
dictions it made, including predicting Spain over
Germany in a semifinal match. Before each game,
two containers of food (mussels) were lowered into
the octopus’s tank. The containers were identical,
except for country flags of the opposing teams,
one on each container. Whichever container Paul
opened was deemed his predicted winner.65 Does
Paul have psychic powers? In other words, is an
8-for-8 record significantly better than just guessing?

(a) State the null and alternative hypotheses.

(b) Simulate one point in the randomization distri-
bution by flipping a coin eight times and count-
ing the number of heads. Do this five times.
Did you get any results as extreme as Paul the
Octopus?

(c) Why is flipping a coin consistent with assuming
the null hypothesis is true?

65For video of Paul go to http://www.cnn.com/2010/SPORT/
football/07/08/germany.octopus.explainer/index.html.
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B.44 How Unlikely Is Paul the Octopus’s Success?
For the Paul the Octopus data in Exercise B.43, use
StatKey or other technology to create a randomiza-
tion distribution. Calculate a p-value. How unlikely
is his success rate if Paul the Octopus is really not
psychic?

B.45 Red or Pink Display of Fertility Female pri-
mates visibly display their fertile window, often with
red or pink coloration. Do humans also do this? A
study66 looked at whether human females are more
likely to wear red or pink during their fertile win-
dow (days 6–14 of their cycle). They collected data
on 24 female undergraduates at the University of
British Columbia, and asked each how many days
it had been since her last period, and observed the
color of her shirt. Of the 10 females in their fertile
window, 4 were wearing red or pink shirts. Of the 14
females not in their fertile window, only 1 was wear-
ing a red or pink shirt.

(a) State the null and alternative hypotheses.

(b) Calculate the relevant sample statistic, p̂f − p̂nf ,
for the difference in proportion wearing a pink
or red shirt between the fertile and not fertile
groups.

(c) For the 1000 statistics obtained from the sim-
ulated randomization samples, only 6 differ-
ent values of the statistic p̂f − p̂nf are possible.
Table B.9 shows the number of times each dif-
ference occurred among the 1000 randomiza-
tions. Calculate the p-value.

Table B.9 Randomization distribution for
difference in proportion wearing red or pink in
1000 samples

p̂f − p̂nf −0.357 −0.186 −0.014 0.157 0.329 0.500

Count 39 223 401 264 68 5

B.46 Exercise Hours: Males vs Females In
Example 3.25 on page 265, we compare the mean
hours of exercise per week between male and
female college students. The sample results are
included in the dataset ExerciseHours, where we
see that the 20 men in the sample exercised for an
average of 12.4 hours per week and the 30 women
in the sample exercised for an average of 9.4 hours
per week. Using the standard error for a bootstrap

66Beall, A.T. and Tracy, J.L. (2013). “Women AreMore Likely to
Wear Red or Pink at Peak Fertility,”Psychological Science, 24(9):
1837–1841. doi: 10.1177/0956797613476045

distribution, we find a 95% confidence interval for
the difference in means (𝜇m − 𝜇f ) to go from −1.75
hours to 7.75 hours. Use StatKey or other technology
and a bootstrap distribution to find and interpret a
90% confidence interval for the difference in mean
hours of exercise between males and females. How
does your interval compare to the 95% confidence
interval based on the standard error?

B.47 What ProportionWatch the Super Bowl? The
Super Bowl is the final championship game in the
National Football League in the US, and is one of
the most watched television events of the year. In
January 2016, just before Super Bowl 50, a random
sample67 of 7293 American adults were asked if
they plan to watch the Super Bowl. A 95% confi-
dence interval for the proportion planning to watch
is 0.573 to 0.597.

(a) What is the population? What is the sample?

(b) Interpret the confidence interval in context.

(c) What is the best estimate for the proportion
watching Super Bowl 50 and the margin of error
for that estimate?

B.48 A Possible Fast-Acting Antidepressant Tradi-
tional antidepressants often take weeks or months
to improve symptoms. A new study68 may provide
a faster acting option. The anesthetic ketamine is
very dangerous and can be deadly at high doses.
However, low doses appear to have a rapid effect
on levels of a brain compound linked to depression.
In the study, mice receiving a single injection of
ketamine showed fewer signs of depression within
30 minutes and the results lasted almost a week.
One standard test of depression in mice is called
the forced-swim test: Mice who are not depressed
will struggle longer to stay afloat rather than giving
up and sinking. The quantity measured is seconds
that the mouse is immobilized, and lower numbers
mean less depression. In a sample of 10 depressed
mice 30 minutes after receiving a shot of ketamine,
the mean number of seconds immobile was 135 with
a standard error for the estimate of 6.

(a) Describe carefully how to use slips of paper con-
taining the sample data to generate one boot-
strap statistic. In particular, how many slips of

67“An Estimated 189 Million Americans Expected to Watch
Super Bowl 50,” National Retail Federation, January 28,
2016, https://nrf.com/media/press-releases/estimated-189-million-
americans-expected-watch-super-bowl-50
68Autry, A., et al., “NMDA Receptor Blockade at Rest Triggers
Rapid Behavioural Antidepressant Responses,” Nature, online,
June 15, 2011.
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paper are needed and what is on them?What do
we do with them to obtain a bootstrap sample?
What statistic do we then record?

(b) Find and interpret a 95% confidence interval for
the mean time immobile in a forced-swim test
for mice receiving a shot of ketamine.

(c) Researchers report that the average immobile
time for depressed mice is about 160 seconds.
Based on the interval in part (b), is 160 a plausi-
ble value for the mean immobile time for mice
treated with ketamine?

B.49 A Test for a Possible Fast-Acting Antide-
pressant Exercise B.48 describes a study on the use
of ketamine in treating depression in mice. Ten
depressed mice given the drug had a mean score of
135 seconds on a forced-swim test used to measure
depression (lower scores indicate less depression).
The usual mean for depressed mice on this test is
about 160 seconds.

(a) Using the parameter 𝜇 to denote themean score
on this test for depressed mice after treatment
with ketamine, what are the null and alternative
hypotheses for seeing if there is evidence that
the mean score is lower than 160?

(b) Describe carefully how to use slips of paper
to generate one randomization statistic for this
test. In particular, how many slips of paper are
needed and what do we write on them? What
do we do with them to obtain a randomization
sample? What statistic do we then record?

B.50 Proportion of a Country’s Population with
Access to the Internet One of the variables in
the AllCountries dataset gives the percent of the
population of each country with access to the Inter-
net. This information is available for all 204 coun-
tries (ignoring a few with missing values). We are
interested in the average percent with Internet
access.

(a) What is the mean percent with Internet access
across all countries?What is the standard devia-
tion of the values? Use the correct notation with
your answers.

(b) Which country has the highest Internet access
rate, and what is that percent? Which country
has the lowest Internet access rate, and what is
that percent? What is the Internet access rate
for your country?

(c) Use StatKey or other technology to generate
a sampling distribution for the mean Internet
access rate using samples of size n = 10. Give
the shape and center of the sampling distribu-
tion and give the standard error.

B.51 Cell Phones and Cancer Does heavy cell
phone use increase the incidence of brain tumors?
A study of cell phone use among 10,000 participants
found that “the 10% who used their phones most
often and for the longest time had a 40% higher risk
of developing some form of brain cancer than those
who didn’t use a mobile phone.”69 Nonetheless, the
results were not statistically significant. Epidemi-
ologists Saracci and Samet write that the results
“tell us that the question of whether mobile-phone
use increases risks for brain cancers remains open.”
Based on this study, describe whether each state-
ment below is plausible for this population:

(a) Heavy cell phone use has no effect on develop-
ing brain cancer.

(b) Heavy cell phone use is associated with an
increased risk of brain cancer.

(c) Heavy cell phone use causes an increased risk
of brain cancer.

B.52 Infections in Childbirth The Centers for Dis-
ease Control and Prevention (CDC) conducted a
randomized trial in South Africa designed to test
the effectiveness of an inexpensive wipe to be used
during childbirth to prevent infections.70 Half of the
mothers were randomly assigned to have their birth
canal wiped with a wipe treated with a drug called
chlorohexidine before giving birth, and the other
half to get wiped with a sterile wipe (a placebo).
The response variable is whether or not the new-
borns develop an infection. The CDC hopes to find
out whether there is evidence that babies delivered
by the women getting the treated wipe are less likely
to develop an infection.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) What is/are the sample statistic(s) to be used to
test this claim?

(c) If the results are statistically significant, what
would that imply about the wipes and infec-
tions?

(d) If the results are not statistically significant,
what would that imply about the wipes and
infections?

69Walsh, B., “A Study on Cell Phones and Cancer,” Time Maga-
zine, May 31, 2010, p. 15, reporting on a study in the International
Journal of Epidemiology, May 17, 2010.
70Eriksen, N., Sweeten, K., and Blanco, J., “Chlorohexidine Vs.
Sterile Vaginal Wash During Labor to Prevent Neonatal Infec-
tion,” Infectious Disease in Obstetrics and Gynecology, 1997;
5(4): 286–290.
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B.53 Mice and Pain Can you tell if a mouse is in
pain by looking at its facial expression? One study
believes you can. The study71 created a “mouse gri-
mace scale” and tested to see if there was a pos-
itive correlation between scores on that scale and
the degree and duration of pain (based on injections
of a weak and mildly painful solution). The study’s
authors believe that if the scale applies to other
mammals as well, it could help veterinarians test
how well painkillers and other medications work in
animals.

(a) Define the relevant parameter(s) and state the
null and alternative hypotheses.

(b) Since the study authors report that you can tell
if a mouse is in pain by looking at its facial
expression, do you think the data were found
to be statistically significant? Explain.

(c) If another study were conducted testing the
correlation between scores on the “mouse
grimace scale” and a placebo (non-painful)
solution, should we expect to see a sample cor-
relation as extreme as that found in the original
study? Explain. (For simplicity, assume we use a
placebo that has no effect on the facial expres-
sions of mice. Of course, in real life, you can
never automatically assume that a placebo has
no effect!)

(d) Howwould your answer to part (c) change if the
original study results showed no evidence of a
relationship between mouse grimaces and pain?

B.54 Measuring the Impact of Great Teachers An
education study in Tennessee in the 1980s (known as
Project Star) randomly assigned 12,000 students to
kindergarten classes, with the result that all classes
had fairly similar socioeconomicmixes of students.72

The students are now about 35 years old, and
the study is ongoing. In each case below, assume
that we are conducting a test to compare perfor-
mance of students taught by outstanding kinder-
garten teachers with performance of students taught
by mediocre kindergarten teachers. What does
the quoted information tell us about whether the
p-value is relatively large or relatively small in a test
for the indicated effect?

(a) On the tests at the end of the kindergarten
school year, “some classes did far better than
others. The differences were too big to be
explained by randomness.”

71“Of Mice and Pain,” The Week, May 28, 2010, p. 21.

(b) By junior high and high school, the effect
appears to be gone: “Children who had excel-
lent early schooling do little better on tests than
similar children who did not.”

(c) Results reported in 2010 by economist Chetty,
show that the effects seem to re-emerge in adult-
hood. The students whowere in a classroom that
made significant gains in kindergarten were sig-
nificantly “more likely to go to college,…less
likely to become single parents,…more likely
to be saving for retirement,…Perhaps most
striking, they were earning more.” (Economists
Chetty and Saez estimate that a standout kinder-
garten teacher is worth about $320,000 a year
in increased future earnings of one class of
students. If you had an outstanding grade-
school teacher, consider sending a thank you
note!)

B.55 Smiles and Leniency Data 4.2 on page 320
describes an experiment to study the effects of smil-
ing on leniency in judging students accused of cheat-
ing. The full data are in Smiles. In Example 4.21 we
consider hypotheses H0 ∶ 𝜇s = 𝜇n vs Ha ∶ 𝜇s > 𝜇n
to test if the data provide evidence that average
leniency score is higher for smiling students (𝜇s)
than for students with a neutral expression (𝜇n). A
dotplot for the difference in sample means based on
1000 random assignments of leniency scores from
the original sample to smile and neutral groups is
shown in Figure B.12.

(a) The difference in sample means for the orig-
inal sample is D = xs − xn = 4.91 − 4.12 = 0.79
(as shown in Figure B.12). What is the p-value
for the one-tailed test? (Hint: There are 23 dots
in the tail beyond 0.79.)

(b) In Example 4.22 on page 322 we consider the
test with a two-tailed alternative, H0 ∶ 𝜇s = 𝜇n
vs Ha ∶ 𝜇s ≠ 𝜇n, where we make no assumption
in advance on whether smiling helps or discour-
ages leniency. How would the randomization
distribution in Figure B.12 change for this test?
How would the p-value change?

B.56 Estimating the Proportion with Employer-
Based Health Insurance In Exercise 3.66 on
page 244, we discuss a Gallup poll stating that the
proportion of American adults getting health insur-
ance from an employer is estimated to be 0.45.
We are also told that, with 95% confidence, “the

72Leonhardt, D., “The Case for $320,000 Kindergarten Teach-
ers,” The New York Times, July 27, 2010, reporting on a study by
R. Chetty, a Harvard economist, and his colleagues.
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D = 0.79
Diff

–1.0 –0.5 0.0 0.5 1.0

Figure B.12 Randomization distribution for 1000 samples testing H0 ∶ 𝝁s = 𝝁n using Smiles data

maximum margin of sampling error is ±1 percent-
age point” for this estimate. In fact, the Gallup
organization rounded up the margin of error to
the nearest whole number and the actual margin
of error is quite a bit less. Figure B.13 shows a
bootstrap distribution based on the sample results.
Use the bootstrap distribution to estimate the stan-
dard error and find and interpret a 95% confidence
interval.
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Figure B.13 Bootstrap proportions for 10,000 samples
based on a Gallup poll with n = 147, 291 and p̂ = 0.45

B.57 False Positives in Lie Detection Is lie detec-
tion software accurate? Exercise A.23 on page 147
describes a study in which 48 individuals read a
truthful passage while under stress and while con-
nected to a lie detector. The lie detection software
inaccurately reported deception in 57% of the cases.
A bootstrap distribution shows an estimated stan-
dard error of 0.07.

(a) Give a best estimate for the population param-
eter of interest.

(b) Give a 95% confidence interval for this popula-
tion parameter.

(c) Comment on the accuracy of this lie detec-
tor. Do you think results from this lie detector
should hold up in court?

B.58 How Common are False Positives in Lie
Detection? In Exercise B.57, we learn that when
48 stressed individuals read a truthful passage while
being hooked up to a lie detector, the lie detection
software inaccurately reported deception by 27 of
them. Does this sample provide evidence that lie
detection software will give inaccurate results more
than half the time when used in situations such as
this? State the null and alternative hypotheses. Use
StatKey or other technology to create a random-
ization distribution, find a p-value, and give a clear
conclusion in context.

B.59 Red Wine and Weight Loss Resveratrol,
an ingredient in red wine and grapes, has been
shown to promote weight loss in rodents. One
study73 investigates whether the same phenomenon
holds true in primates. The grey mouse lemur, a
primate, demonstrates seasonal spontaneous obe-
sity in preparation for winter, doubling its body
mass. A sample of six lemurs had their resting
metabolic rate, body mass gain, food intake, and
locomotor activity measured for one week prior
to resveratrol supplementation (to serve as a base-
line) and then the four indicators were measured
again after treatment with a resveratrol supple-
ment for four weeks. Some p-values for tests com-
paring the mean differences in these variables

73BioMed Central. “Lemurs Lose Weight with ‘Life-Extending’
Supplement Resveratrol,” ScienceDaily, June 22, 2010.
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(before vs after treatment) are given below. In
parts (a) to (d), state the conclusion of the test using
a 5% significance level, and interpret the conclusion
in context.

(a) In a test to see if mean resting metabolic rate is
higher after treatment, p = 0.013.

(b) In a test to see if mean body mass gain is lower
after treatment, p = 0.007.

(c) In a test to see if mean food intake is affected
by the treatment, p = 0.035.

(d) In a test to see if mean locomotor activity is
affected by the treatment, p = 0.980.

(e) In which test is the strongest evidence found?
The weakest?

(f) How do your answers to parts (a) to (d) change
if the researchers make their conclusions using
a stricter 1% significance level?

(g) For each p-value, give an informal conclusion in
the context of the problem describing the level
of evidence for the result.

(h) The sample only included six lemurs. Do you
think that we can generalize to the population
of all lemurs that body mass gain is lower on
average after four weeks of a resveratrol sup-
plement? Why or why not?

B.60 Radiation from Cell Phones and Brain
Activity Does heavy cell phone use affect brain
activity? There is some concern about possible neg-
ative effects of radiofrequency signals delivered to
the brain. In a randomized matched-pairs study,74

47 healthy participants had cell phones placed on
the left and right ears. Brain glucose metabolism (a
measure of brain activity) was measured for all par-
ticipants under two conditions: with one cell phone
turned on for 50 minutes (the “on” condition) and
with both cell phones off (the “off” condition).
The amplitude of radiofrequency waves emitted by
the cell phones during the “on” condition was also
measured.

(a) Is this an experiment or an observational study?
Explain what it means to say that this was a
“matched-pairs” study.

(b) How was randomization likely used in the
study?Why did participants have cell phones on
their ears during the “off” condition?

74Volkow, et al., “Effects of Cell Phone Radiofrequency Signal
Exposure on Brain Glucose Metabolism,” Journal of the Ameri-
can Medical Association, 2011; 305(8): 808–13.

(c) The investigators were interested in seeing
whether average brain glucose metabolism was
different based on whether the cell phones were
turned on or off. State the null and alternative
hypotheses for this test.

(d) The p-value for the test in part (c) is 0.004. State
the conclusion of this test in context.

(e) The investigators were also interested in see-
ing if brain glucose metabolism was significantly
correlated with the amplitude of the radiofre-
quency waves. What graph might we use to visu-
alize this relationship?

(f) State the null and alternative hypotheses for the
test in part (e).

(g) The article states that the p-value for the test in
part (e) satisfies p < 0.001. State the conclusion
of this test in context.

B.61 Genetic Component of Autism It is esti-
mated that in the general population, about 9 out
of every 1000, or 0.009, children are diagnosed
with autism. One study75 included 92 six-month-old
babies who had a sibling with autism. Twenty-eight
of these babies were later diagnosed with autism.
Use StatKey or other technology to find a 99% con-
fidence interval for the proportion of siblings of
autistic children likely to have autism. (In the study,
brain scans taken at six-months old predicted almost
perfectly which children would later be diagnosed
with autism, providing the earliest known method
for diagnosing the disease.)

B.62 Commuting Distances in Atlanta In addition
to the commute time (in minutes), theCommuteAt-
lanta dataset gives the distance for the commutes (in
miles) for 500 workers sampled from the Atlanta
metropolitan area.

(a) Find the mean and standard deviation of the
commute distances in CommuteAtlanta.

(b) Use StatKey or other technology to create a
bootstrap distribution of the sample means of
the distances. Describe the shape and center of
the distribution.

(c) Use the bootstrap distribution to estimate the
standard error for mean commute distance
when using samples of size 500.

(d) Use the standard error to find and interpret a
95% confidence interval for the mean commute
distance of Atlanta workers.

75CBS Evening News, February 17, 2012.
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B.63 Mean of Atlanta Commuting Distances
Exercise B.62 describes the variableDistance for the
Atlanta commuter sample stored in CommuteAt-
lanta, giving the distance of each commute (in
miles). Use StatKey or other technology to create a
distribution with the mean distances for 5000 boot-
strap samples and use it to find and interpret a 90%
confidence interval for the mean commute distance
in metropolitan Atlanta.

B.64 Correlation between Distance and Time for
Atlanta Commutes The data in CommuteAtlanta
contains information on both the Distance (in
miles) and Time (in minutes) for a sample of
500 Atlanta commutes. We expect the correlation
between these two variables to be positive, since
longer distances tend to take more time.

(a) Find the correlation betweenDistance and Time
for the original sample of 500 Atlanta com-
mutes.

(b) Use StatKey or other technology to create
a bootstrap distribution of correlations of
Distance vs Time for at least 1000 bootstrap
samples using the Atlanta commuting data.
Give a rough sketch of the bootstrap distribu-
tion, find its center, and describe the shape.

(c) Estimate the standard error of the bootstrap
correlations and use it to find a 95% confidence
interval for the correlation between distance
and time of Atlanta commutes.

(d) Mark where the interval estimate lies on your
plot in part (b).

B.65 Confidence Intervals for Correlation using
Atlanta Commutes InExercise B.64weuse the stan-
dard error to construct a 95% confidence interval
for the correlation between Distance (in miles) and
Time (in minutes) for Atlanta commuters, based on
the sample of size n = 500 in CommuteAtlanta.

(a) Describe a process that could be used to gener-
ate one value in the bootstrap distribution for
this situation.

(b) Use StatKey or other technology to generate
1000 bootstrap correlations to find and inter-
pret a 99% confidence interval for the correla-
tion in this setting.

(c) Repeat (b) for 95% and 90% confidence levels.
You do not need to repeat the interpretation.

(d) Describe how the interval changes as the confi-
dence level decreases.

B.66 Classroom Games Two professors76 at the
University of Arizona were interested in whether
having students actually play a game would help
them analyze theoretical properties of the game.
The professors performed an experiment in which
students played one of two games before com-
ing to a class where both games were discussed.
Students were randomly assigned to which of the
two games they played, which we’ll call Game 1 and
Game 2. On a later exam, students were asked to
solve problems involving both games, with Ques-
tion 1 referring to Game 1 and Question 2 referring
to Game 2. When comparing the performance of
the two groups on the exam question related to
Game 1, they suspected that the mean for students
who had played Game 1 (𝜇1) would be higher than
the mean for the other students, 𝜇2, so they consid-
ered the hypotheses H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 > 𝜇2.

(a) The paper states: “test of difference in means
results in a p-value of 0.7619.” Do you think this
provides sufficient evidence to conclude that
playing Game 1 helped student performance on
that exam question? Explain.

(b) If they were to repeat this experiment 1000
times, and there really is no effect from play-
ing the game, roughly how many times would
you expect the results to be as extreme as those
observed in the actual study?

(c) When testing a difference in mean performance
between the two groups on exam Question 2
related to Game 2 (so now the alternative
is reversed to be Ha ∶ 𝜇1 < 𝜇2 where 𝜇1 and
𝜇2 represent the mean on Question 2 for the
respective groups), they computed a p-value of
0.5490. Explain what it means (in the context
of this problem) for both p-values to be greater
than 0.5.

B.67 Classroom Games: Is One Question Harder?
Exercise B.66 describes an experiment involving
playing games in class. One concern in the experi-
ment is that the exam question related to Game 1
might be a lot easier or harder than the question
for Game 2. In fact, when they compared the mean
performance of all students on Question 1 to Ques-
tion 2 (using a two-tailed test for a difference in
means), they report a p-value equal to 0.0012.

76Dufewenberg, M. and Swarthout, J.T., “Play to Learn?
An Experiment,” from a working paper, at http://econ
.arizona.edu/docs/Working_Papers/2009/Econ-WP-09-03.pdf.
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(a) If you were to repeat this experiment 1000
times, and there really is no difference in the
difficulty of the questions, how often would you
expect the means to be as different as observed
in the actual study?

(b) Do you think this p-value indicates that there is
a difference in the average difficulty of the two
questions? Why or why not?

(c) Based on the information given, can you tell
which (if either) of the two questions is easier?

B.68 Classroom Games Exercise B.66 describes
a situation in which game theory students are
randomly assigned to play either Game 1 or
Game 2, and then are given an exam contain-
ing questions on both games. Two one-tailed tests
were conducted: one testing whether students who
played Game 1 did better than students who played
Game 2 on the question about Game 1, and one
testing whether students who played Game 2 did
better than students who played Game 1 on the
question about Game 2. The p-values were 0.762
and 0.549, respectively. The p-values greater than
0.5 mean that, in the sample, the students who
played the opposite game did better on each ques-
tion. What does this study tell us about possible
effects of actually playing a game and answering a
theoretical question about it? Explain.

B.69 Mercury Levels in Fish and pH in LakeWater
Data 2.4 on page 80 introduces the dataset Flori-
daLakes and discusses the correlation between the
acidity (pH) for a sample of n = 53 Florida lakes
and the average mercury level (ppm) found in fish
taken from each lake. We saw in Chapter 2 that
there appears to be a negative trend in the scat-
terplot between the two variables. We wish to test
whether there is significant evidence of a negative
correlation between pH and mercury levels. A ran-
domization distribution based on the data is shown
in Figure B.14. The sample statistic of interest is the
sample correlation.

(a) What are the null and alternative hypotheses?

(b) Use Figure B.14 to give a very rough estimate
of the sample correlation corresponding to a
p-value of 0.30. Explain your reasoning.

(c) Use Figure B.14 to give a very rough estimate
of the sample correlation corresponding to a
p-value of 0.01. Explain your reasoning.
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Figure B.14 Randomization distribution of
correlations for 10,000 samples using H0 ∶ 𝝆 = 0

B.70 Arsenic in Chicken In Data 4.3 on page 287
we describe a situation in which a restaurant chain
will test for arsenic levels in a sample of chickens
from a supplier. If there is evidence that the average
level of arsenic is over 80 ppb, the chain will perma-
nently cancel its relationship with the supplier. The
null and alternative hypotheses are H0 ∶ 𝜇 = 80 vs
Ha ∶ 𝜇 > 80.

(a) What would it mean for analysts at the restau-
rant chain to make a Type I error in the context
of this situation?

(b) What would it mean to make a Type II error in
this situation?

(c) Does the word “error” mean that the person
doing the test did something wrong (perhaps by
sampling in a way that biased the results, mak-
ing a mistake in data entry, or an arithmetic
error)? Explain.

B.71 Medicinal Marijuana in HIV Treatment In
1980, the active ingredient in marijuana was shown
to outperform a placebo in reducing nausea in
chemotherapy patients, with a p-value of 0.0004.
Many studies77 are now underway to see if the
drug has additional medicinal uses. In one con-
trolled, randomized trial, 55 patients with HIV were
randomly assigned to two groups, with one group
getting cannabis (marijuana) and the other getting
a placebo. All of the patients had severe neuro-
pathic pain, and the response variable is whether or

77Seppa, N., “Not Just a High: Scientists Test Medicinal Mar-
ijuana Against MS, Inflammation, and Cancer,” ScienceNews,
June 19, 2010.



B Review Exercises 397

Table B.10 Is marijuana effective at relieving
pain in HIV patients?

Pain Reduced Pain Not Reduced

Cannabis 14 13
Placebo 7 21

not pain was reduced by 30% or more (a stan-
dard benchmark in pain measurement). The results
are shown in Table B.10. The question of interest is
whether marijuana is more effective than a placebo
in relieving pain.

(a) What are the null and alternative hypotheses?

(b) What are the sample proportions of patients
with reduced pain in each group? Are the sam-
ple results in the direction of the alternative
hypothesis?

(c) The US Food and Drug Administration (FDA)
is reluctant to approve the medicinal use of
cannabis unless the evidence supporting it is
very strong because the drug has significant side
effects. Do you expect the FDA to use a rela-
tively small or relatively large significance level
in making a conclusion from this test?

(d) What assumption do we make in creating the
randomization distribution? If we use the dif-
ference in sample proportions, D = p̂1 − p̂2, as
our sample statistic, where will the distribu-
tion be centered? Give a rough sketch of
the general shape of the randomization dis-
tribution, showing the shape and where it is
centered.

(e) What is the observed statistic from the sample?
If the p-value for this test is 0.02, locate the
observed statistic on your rough sketch of the
randomization distribution.

(f) Use the p-value given in part (e) to give an
informal conclusion to the test by describing the
strength of evidence for the result.

(g) Combining your answers to parts (c) and (f),
what is the likely formal conclusion of the
test?

B.72 Finding a P-value for Marijuana for HIV
Patients For the study in Exercise B.71, use StatKey
or other technology to create the randomization dis-
tribution for this data. Use the distribution to calcu-
late a p-value for the test, and compare this p-value
to the one given in Exercise B.71(e). Use the p-value
obtained in this exercise to assess the strength of evi-
dence against the null hypothesis, in context.

B.73 Possible Errors in Testing Infections in
Childbirth Exercise B.52 on page 391 describes a
randomized trial in South Africa to test whether the
proportion of babies born with infections is smaller
if women in labor are treated with a wipe contain-
ing chlorohexidine rather than a sterile wipe (the
placebo). A sample of n = 481 pregnant women
were randomly split into the two groups. One goal
of the study is to test H0 ∶ pc = p

𝑤
vs Ha ∶ pc <

p
𝑤
, where pc and p

𝑤
are the proportion of babies

who develop infections during childbirth with the
respective treatments.

(a) What does it mean to make a Type I error in this
situation?

(b) What does it mean to make a Type II error in
this situation?

(c) In which of the following two situations should
we select a smaller significance level:

• The drug chlorohexidine is very safe and
known to have very few side effects.

• The drug chlorohexidine is relatively new and
may have potentially harmful side effects for
the mother and newborn child.

(d) The p-value for the data in this study is 0.32.
What is the conclusion of the test?

(e) Does this conclusion mean that the treated
wipes do not help prevent infections? Explain.

B.74 Mercury Levels in Fish The dataset Flori-
daLakes is introduced in Data 2.4 on page 80,
and we return to the dataset in Exercise B.69 on
page 396. To see if there is evidence of a negative
correlation between pH in lakes and mercury levels
in fish, the hypotheses are H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 < 0.
For the observed sample, with n = 53, we have
r = −0.575.
(a) What assumption do we make in creating the

randomization distribution?

(b) Where will the randomization distribution be
centered?

(c) Describe how you could use index cards to cre-
ate one simulated sample. How many cards do
you need? What will you put on them? What
will you do with them? Once you have used
the cards to create a simulated sample, what
statistic will you calculate from it to use in a
randomization distribution? (You don’t have to
actually create a simulated sample, just give a
description of the process you would follow.)

B.75 A Randomization Distribution for Mercury
Levels in Fish Use StatKey or other technology
to create the randomization distribution for the
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situation in Exercise B.74. Use the distribution to
calculate a p-value. Using 𝛼 = 0.05, state the con-
clusion in context.

B.76 Heart Rates and Blood Pressure Table B.11
shows the heart rates and systolic blood pressure
for eight 55-year-old patients from the Intensive
Care Unit data introduced in Data 2.3 on page 77
and available at ICUAdmissions. We are testing to
see if the data provide evidence of a positive corre-
lation between these two variables for 55-year-old
ICU patients.

Table B.11 Are heart rate and systolic
blood pressure positively correlated?

Heart Rate Systolic BP

86 110
86 188
92 128

100 122
112 132
116 140
136 190
140 138

(a) Define any relevant parameter(s) and state the
null and alternative hypotheses.

(b) What assumption do we make in creating the
randomization distribution?

(c) What statistic will we record for each of the
simulated samples to create the randomization
distribution? What is the value of that statistic
for the observed sample?

(d) Where will the randomization distribution be
centered?

(e) Explain how we can create randomization sam-
ples to be consistent with the null hypothesis.

(f) Find one point on the randomization distribu-
tion by carrying out the procedure in part (e).
Show the resulting values for the variables, and
compute the sample correlation for the ran-
domization sample.

(g) Find a second randomization sample and record
its sample correlation.

B.77 Randomization Distribution for Heart Rate
and Blood Pressure Use StatKey or other technol-
ogy to create the randomization distribution for the
data in Exercise B.76. Use the distribution to esti-
mate the p-value for the test. Are the results statis-
tically significant?

RANDOMIZATION SAMPLES
In Exercises B.78 to B.82, a situation is described
for a statistical test. In Section 4.1 you were
asked to state the null and alternative hypothe-
ses (Exercises 4.9 to 4.13). Here, for each situation,
describe how you might physically create one ran-
domization sample and compute one randomiza-
tion statistic (without using any technology) from
a given sample. Be explicit enough that a classmate
could follow your instructions (even if it might take
a very long time).

B.78 Testing to see if there is evidence that the pro-
portion of people who smoke is greater for males
than for females.

B.79 Testing to see if there is evidence that a corre-
lation between height and salary is significant (that
is, different than zero).

B.80 Testing to see if there is evidence that the
percentage of a population who watch the Home
Shopping Network is less than 20%.

B.81 Testing to see if average sales are higher in
stores where customers are approached by sales-
people than in stores where they aren’t.

B.82 Testing to see if there is evidence that the
mean time spent studying per week is different
between first-year students and upperclass students.
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Inference with
Normal and

t-Distributions
“Statistics is now the sexiest subject around.”

Hans Rosling, Professor of International Health∗

U N I T O U T L I N E

5 Approximating with a
Distribution

6 Inference for Means and
Proportions

Essential Synthesis

In this unit, we use the normal and t-distribu-

tions, together with formulas for standard er-

rors, to create confidence intervals and conduct

hypothesis tests involving means and propor-

tions.

∗“When the Data Struts its Stuff,” The New York Times, April 3, 2011, p. B3
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C H A P T E R 5

Approximating
with a
Distribution

“The
normal

law of error
stands out in the
experience of man-

kind as one of the broad-
est generalizations of natural

philosophy. It serves as the guiding
instrument in researches in the physical

and social sciences and in medicine, agriculture and
engineering. It is an indispensable tool for the analysis and the

interpretation of the basic idea obtained by observation and experiment.”

–W. J. Youden∗

Source: W. J. Youden, Experimentation and measurement, Scholastic Book Services, 1962.
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Questions and Issues

C H A P T E R O U T L I N E

5 Approximating with a
Distribution 400

5.1 Hypothesis Tests Using Normal
Distributions 402

5.2 Confidence Intervals Using
Normal Distributions 417

Here are some of the questions and issues we will discuss in this chapter:

• How strong are the benefits of eating organic food?

• What proportion of US adults have used online dating or a dating app?

• Is there a home field advantage in American football?

• Do dogs notice whether someone is reliable or unreliable?

• What incentives are most effective in getting people to exercise?

• What incentives are most effective at helping people quit smoking?

• What is the most common sleep position?

• What proportion of adults say television is their main source of news?

• How often will a soccer goalie correctly guess the direction of a penalty kick?

• How helpful is it to use self-quizzes when studying?

• What proportion of teenagers have some hearing loss?

• What percent of air travelers prefer a window seat?

• Has smoke-free legislation had an effect on asthma rates?

• What percent of people rarely use cash?

401
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5.1HYPOTHESIS TESTS USING NORMAL DISTRIBUTIONS

If you skim through Chapters 3 and 4, you will notice that many of the graphs of sam-
pling, bootstrap, and randomization distributions (for example, those reproduced
in Figure 5.1) have a similar shape. This is not a coincidence. Under fairly general
circumstances, the distribution of many common statistics will follow this same bell-
shaped pattern. The formal name for this shape is a normal distribution. In this
section we exploit this common shape to find p-values for hypothesis tests, and in
the next section we use it to find confidence intervals.
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Figure 5.1 Some bootstrap and randomization distributions

Normal Distributions
A normal distribution has the shape of a bell-shaped curve. Every normal distri-
bution has the same shape, but we get different normal distributions by changing
either the mean (center) or the standard deviation (spread). The mean, 𝜇, deter-
mines the center of the distribution, and the standard deviation, 𝜎, determines the
spread. Knowing just the mean and standard deviation of a normal distribution tells
us what the entire distribution looks like.

Normal Distribution

A normal distribution follows a bell-shaped curve. We use the two
parametersmean, 𝜇, and standard deviation, 𝜎, to distinguish one nor-
mal curve from another.

For shorthand we often use the notationN(𝜇, 𝜎) to specify that a distri-
bution is normal (N) with some mean (𝜇) and standard deviation (𝜎).
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(a) Different means
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Figure 5.2 Comparing normal curves

Figure 5.2 shows how the normal distribution changes as the mean 𝜇 is shifted
to move the curve horizontally or the standard deviation 𝜎 is changed to stretch or
shrink the curve.

In a bootstrap distribution or randomization distribution, we are often inter-
ested in finding the proportion of statistics to the right or left of a certain value, with
the total proportion of all the statistics being 1. When we use a normal distribution,
this corresponds to finding an area to the right or left of a certain value, given that
the total area under the curve is 1. Many technology options exist for finding the
proportion of a normal distribution that falls beyond a specified endpoint.1

Example 5.1
Find the area to the right of 95 in a normal distribution with mean 80 and standard
deviation 10.

Solution There are many different methods that can be used to find this area, and this is a
good time to get comfortable with the method that you will use. Figure 5.3 shows
how we find the area using StatKey. We see that the area to the right of 95 in the
N(80, 10) distribution is 0.067.

The Standard Normal Distribution
Because all the normal distributions look the same except for the horizontal

scale, another common way to use normal distributions is to convert everything to

Figure 5.3 Finding an
area in the normal
distribution N(80, 10)

50 60 70 80 90 100 110
95.000

0.067

Left Tail Two-Tail Right Tail

1For more information on specific options, see the technology manuals available in the online resources
for this book.



404 CHA P T E R 5 Approximating with a Distribution

one specific standard normal scale. The standard normal, N(0, 1), has a mean of 0
and a standard deviation of 1. We often use the letter Z to denote a standard normal
distribution.

To convert a value from a N(𝜇, 𝜎) scale to a standard normal scale, we subtract
themean 𝜇 to shift the center to zero, then divide the result by the standard deviation
𝜎 to stretch (or shrink) the difference to match a standard deviation of one. If X is
a value on the N(𝜇, 𝜎) scale, then Z = (X − 𝜇)∕𝜎 is the corresponding point on the
N(0, 1) scale.2 You should recognize this as the z-score from page 91, because the
standardized value just measures how many standard deviations a value is above or
below the mean.

Standard Normal Distribution

The standard normal distribution has mean zero and standard devia-
tion equal to one, N(0, 1).
To convert from anX value on aN(𝜇, 𝜎) scale to a Z value on aN(0, 1)
scale, we standardize values with the z-score:

Z = X − 𝜇

𝜎

Example 5.2
In Example 5.1, we find the area to the right of 95 in a normal distribution with
mean 80 and standard deviation 10. Find the z-score for the endpoint of 95 and use
the standard normal distribution to find the area to the right of that point.

Solution We see that the z-score for 95 in a N(80, 10) distribution is given by

z = X − 𝜇

𝜎

= 95 − 80
10

= 1.5.

We see in Figure 5.4 that the area above 1.5 in the standard normal distribution is
0.067. This matches the area we found in Example 5.1, since it is the same area but
converted to a standardized scale.

Figure 5.4 Finding an
area in a standard
normal distribution

–3 –2 –1 0 1 2 3
1.500

0.067

Left Tail Two-Tail Right Tail

2When technology is not available, a printed table with probabilities for certain standard normal end-
points can be used.
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The Central Limit Theorem
The fact that so many sampling, bootstrap, and randomization distributions follow
a normal distribution is not a coincidence. Statistical theory confirms that, for a
large enough sample size, the distribution of many common sample statistics, such
as means, proportions, differences in means, and differences in proportions, will all
follow the pattern of a normal distribution. These results follow from one of the
most important results in all of statistics: the Central Limit Theorem.

Central Limit Theorem (General)

For random samples with a sufficiently large sample size, the distribu-
tion of many common sample statistics can be approximated with a
normal distribution.

What do we mean by “sufficiently large” sample size? We return to specific ver-
sions of the Central Limit Theorem for different parameters (such as means, propor-
tions and differences) in Chapter 6 and address “sufficiently large” in each situation,
as well as how to determine the mean and standard deviation for the approximating
normal distribution. It is worth noting now that, in general, as the sample size n gets
larger, the distribution of sample statistics tends to more closely resemble a normal
distribution. In cases where a bootstrap distribution or randomization distribution
follows the pattern of a normal distribution we can readily compute a confidence
interval or p-value using that normal distribution.

Aleksandra Zaitseva / Shutterstock.com

Eating organic: Does it offer health benefits?

D A T A 5 . 1 Eating Organic
Many people pay more to eat organic when possible, but does eating organic
food actually offer health benefits? Spurred on by her parents debating this
question, a 16-year-old girl decided to investigate it with a science project. She
randomly divided fruit flies into two groups, and fed one group conventional
food (potatoes, raisins, bananas, or soybeans) and the other group the same
type of food, but the organic version. She then followed the flies and measured
variables like longevity, fertility, stress resistance, and activity. Her results
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earned her honors in a national science competition, and publication in a
prestigious journal.3 Here we examine the survival of fruit flies eating potatoes.
After 13 days, 318 of the 500 flies fed organic potatoes were still alive, as
compared to 285 of the 500 flies fed conventional potatoes.4 ◼

Example 5.3
State the null and alternative hypotheses for a test to investigate whether eating
organic potatoes improves survival of fruit flies. Define the parameters and give the
notation and value of the observed sample statistic.

Solution Define po and pc to be the proportion of flies alive after 13 days of eating organic and
conventional potatoes, respectively. We are interested in whether the proportion of
flies alive is higher for the flies that eat organic than for the flies that do not eat
organic, so the hypotheses are

H0∶ po = pc
Ha∶ po > pc

The observed sample statistic, the difference in proportions, is

p̂o − p̂c =
318
500

− 285
500

= 0.636 − 0.570 = 0.066.

The next step in the hypothesis test is to find the p-value and we illustrate below
three different ways of accomplishing this goal.

Review: P-value from a Randomization Distribution

Figure 5.5
Randomization
distribution and p-value
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Example 5.4
Use a randomization distribution to find the p-value and complete the test about the
effect of organic eating on fruit fly survival started in Example 5.3.

3Chhabra, R., Kolli, S., Bauer, J.H. (2013). “Organically Grown Food Provides Health Benefits to
Drosophila melanogaster,” PLoS ONE, 8(1): e52988. doi:10.1371/journal.pone.0052988
4Data approximated from paper.
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Solution We use technology to generate a randomization distribution and find the propor-
tion of randomization values at or above the sample difference of p̂o − p̂c = 0.066.
Figure 5.5 shows this p-value to be 0.015. Using 𝛼 = 0.05, this is low enough to reject
H0, and thus we have convincing evidence that eating organic as opposed to con-
ventional potatoes causes fruit flies to live longer. We can make conclusions about
causality because this was a randomized experiment.5

P-value from a Normal Distribution
When a randomization distribution displays the bell-shaped pattern of a normal dis-
tribution, as in Figure 5.5, we can use a normal distribution to compute a p-value
in a hypothesis test. The process of choosing a null and alternative hypothesis in
a particular situation is the same as in Chapter 4, and our interpretation of the
outcome of the test remains the same: The smaller the p-value, the stronger the
evidence against the null hypothesis. The only difference in the test is that we use a
smooth normal distribution (rather than the empirical randomization distribution)
to compute the p-value.

Example 5.5
What normal distribution best approximates the randomization distribution shown
in Figure 5.5?

Solution To choose a normal distribution, we need to specify both its mean and standard
deviation. The randomization distribution in Figure 5.5 is centered at the null value6

of 0, so the mean of the normal distribution would be 0. The standard deviation of
the randomization distribution is the standard error, shown to be 0.03. This random-
ization distribution would be best approximated by a N(0, 0.03) distribution, shown
by the blue curve in Figure 5.6.

Figure 5.6
Randomization
distribution with
corresponding normal
distribution
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5The results are just starting to be significant after 13 days, but after 3 weeks the p-value is less than one in
a trillion! For the flies eating soybeans, after 10 days none of the flies eating conventional soybeans were
alive, as opposed to 60% of the flies eating organic soybeans (p-value ≈ 0). These experiments provide
very strong evidence that eating organic has health benefits.
6The actual mean of the 1000 randomizations shown in the StatKey output is 0.00092, but this is just ran-
dom fluctuation. If we use many, many randomizations, a bell-shaped randomization distribution should
always be centered at the null value.
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Once we have the normal distribution that approximates the randomization dis-
tribution, we no longer need all the dots under the curve, and can work directly with
just the normal distribution. Exactly as we did with the randomization distribution,
we find the p-value as the proportion of the distribution beyond the observed sample
statistic.

Example 5.6
Use the N(0, 0.03) distribution from Example 5.5 to find the p-value for the test
described in Example 5.3.

Solution We use the N(0, 0.03) distribution to find the proportion beyond the observed sam-
ple statistic of 0.066, as shown in Figure 5.7. Note that the p-value of 0.014 obtained
from the normal distribution is very close to the p-value of 0.015 found from the
randomization distribution (which might vary slightly for a different set of random-
izations). The interpretation of the p-value is exactly the same as in Example 5.4.
The only thing different is that, in this example, we use a theoretical normal curve
instead of a randomization distribution to find the p-value.

Figure 5.7 P-value from
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P-value from a Normal Distribution

The normal distribution that best approximates a bell-shaped random-
ization distribution has mean equal to the null value of the parameter,
with standard deviation equal to the standard error:

N(null parameter,SE).

When the randomization distribution is shaped like a normal distri-
bution, a p-value can be found as the proportion of this normal dis-
tribution beyond the observed sample statistic in the direction of the
alternative (or twice the smaller tail for two-tailed tests).
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P-value from a Standard Normal Distribution
We have seen how to use the original sample statistic compared to the normal
distribution on the original data scale to find a p-value. Another option is to
standardize the sample statistic to give a standardized test statistic which we then
compare to a standard normal distribution. Recall that we convert to a standard
normal distribution using a z-score. We convert from the original sample statistic
on a N(null parameter,SE) scale to a standardized statistic on a N(0, 1) scale by
subtracting the null parameter value and dividing by the standard error. The result
is often called a z-statistic, and is then used with a standard normal distribution to
find the p-value.

P-value from a Standard Normal Distribution

When the distribution of the statistic underH0 is normal, we compute
a standardized test statistic using

z =
Sample Statistic −Null Parameter

SE

The p-value for the test is the proportion of a standard normal distri-
bution beyond this standardized test statistic, depending on the direc-
tion of the alternative hypothesis.

Example 5.7
Find the standardized test statistic and compare to the standard normal distribution
to find the p-value for the test described in Example 5.3.

Solution Recall that the original sample statistic for this test is p̂o − p̂c = 0.066. The null
hypothesis is H0∶po = pc so the null parameter value is po − pc = 0. The standard
error for p̂o − p̂c obtained from the randomization distribution in Figure 5.6 is 0.03.
Thus, we compute the standardized test statistic as

z =
Sample Statistic −Null Parameter

SE
= 0.066 − 0

0.03
= 2.2.

We find the p-value as the proportion of the standard normal distribution beyond
2.2, as shown in Figure 5.8, yielding a p-value of 0.014.

Figure 5.8 P-value from
a standard normal
distribution
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Figure 5.9 Three ways of computing a p-value

Note that the picture and p-value using the standard normal in Figure 5.8 are
identical to the picture and p-value using the normal distribution on the original
scale shown in Figure 5.7, except for the numeric scale on the horizontal axis. If
the randomization distribution is shaped like a normal distribution, the picture and
p-values resulting from the randomization distribution, the un-standardized normal,
and the standard normal should all be similar, as shown in Figure 5.9.

Example 5.8
Testing Average Body Temperature

In the examples that follow Data 4.8 on page 359, we use the data in BodyTemp50
to test whether average body temperature is different from 98.6∘F. The hypotheses
are

H0∶ 𝜇 = 98.6

Ha∶ 𝜇 ≠ 98.6

The sample of body temperatures for n = 50 subjects has mean x = 98.26 and
standard deviation s = 0.765. Figure 4.35 shows a randomization distribution, with
a standard error of 0.1066 for these randomization means. Compute a z-statistic and
use the standard normal distribution to find the p-value for this test and interpret
the result.
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Figure 5.10
Randomization
distribution of body
temperature means with
a normal distribution 98.2 98.3 98.4 98.5 98.6

xbar

N (98.6, 0.1066)

98.7 98.8 98.9 99.0

Solution The histogram of the randomization means in Figure 5.10 shows that an overlayed
normal curve is an appropriate model. Based on the null hypothesis, we use 98.6 as
the mean for this normal distribution and the standard error, SE = 0.1066, from the
randomization means as the standard deviation.

To find a p-value, we need to measure how unusual the original x = 98.26 is
within this N(98.6, 0.1066) distribution. Converting to a standard normal, we find

z =
Sample statistic −Null parameter

SE
= 98.26 − 98.6

0.1066
= −3.19

We use technology to find the area in a standard normal curve below −3.19 and then,
since the alternative hypothesis, Ha∶𝜇 ≠ 98.6, is two-tailed, we double the result to
account for the two tails. Figure 5.11 shows that the area below −3.19 is about 0.0007,
so we have

p-value = 2 ⋅ 0.0007 = 0.0014

As always, we interpret this p-value in terms of the question that motivated the test
in the first place. The very small p-value (0.0014) indicates strong evidence against
H0∶𝜇 = 98.6 and we conclude that the average body temperature is probably less
than 98.6∘F.

Figure 5.11 P-value
based on the normal
distribution for the test of
body temperature
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The small region beyond −3.19 in the standard normal curve in Figure 5.11 cor-
responds to the small region below 98.26 in the histogram of Figure 5.10. In fact,
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for the randomization distribution in Figure 4.35 on page 360, the p-value obtained
by counting the outcomes more extreme than x = 98.26 was 0.0016, so the normal
distribution results are quite consistent with those obtained earlier directly from the
randomization distribution.

Example 5.9
Home Field Advantage in American Football

In the 2018 National Football League (NFL) regular season, there were 256 games
played, and the home team won 153 of those games.7 If we use this as a sample of
all NFL games, do the data provide evidence that the home team wins more than
half the time in the NFL? Assume that a randomization distribution for the test
is normally distributed with a standard error of SE = 0.031. Use a 5% significance
level.

Solution We are testing to see if there is evidence that the proportion, p, of all NFL games
won by the home team is greater than 0.5. The relevant hypotheses are

H0∶ p = 0.5

Ha∶ p > 0.5

The sample statistic of interest is p̂ = 153∕256 = 0.598.We compute the standardized
test statistic using the fact that the null parameter from the null hypothesis is 0.5, and
the standard error is 0.031. The test statistic is

z =
Sample Statistic −Null Parameter

SE
= 0.598 − 0.5

0.031
= 3.161

This is a right-tailed test, so we find the proportion of a standard normal distribution
larger than 3.161. The area in this upper tail is 0.001, so we have

p-value = 0.001

Since the p-value is smaller than the 5% significance level, we find enough evidence
to conclude that the home team wins more than half the games in the National
Football League.

One advantage of calculating a standardized test statistic is that the stan-
dard normal distribution shown in Figure 5.8 and Figure 5.11 (ignoring the shaded
p-values) is always exactly the same. About 95% of the distribution falls between −2
and 2, and values rarely fall below −3 or above 3. Because we have this consistent
shape, we can start to recognize extremity from the standardized test statistic alone,
before we compute a formal p-value. In Examples 5.8 and 5.9, the test statistics
are −3.19 and 3.16, more than three standard deviations below and above the mean,
so we should not be surprised by the small p-values.

In Examples 5.8 and 5.9, we could have conducted the test using another
normal distribution rather than the standard normal. We chose to use a standard
normal distribution here to help build intuition about test statistics as z-scores and
to lead in to the methods we use in Chapter 6.

7https://www.nfl.com/standings/division/2018/REG.
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize the shape of a normal distribution, and how the mean
and standard deviation relate to the center and spread of a normal
distribution

• Find an area in a normal distribution

• Compute a standardized test statistic

• Compute a p-value using a normal distribution

Exercises for Section 5.1

SKILL BUILDER 1
In Exercises 5.1 to 5.6, find the given area in a stan-
dard normal distribution.

5.1 The area in the right tail more extreme than
z = 2.20

5.2 The area in the right tail more extreme than
z = 0.80

5.3 The area in the right tail more extreme than
z = −1.25
5.4 The area in the right tail more extreme than
z = 3.0

5.5 The area in the left tail more extreme than
z = −1.75
5.6 The area in the left tail more extreme than
z = −2.60

SKILL BUILDER 2
Exercises 5.7 to 5.12 include a set of hypotheses,
some information from one or more samples, and
a standard error from a randomization distribution.
Find the value of the standardized z-test statistic in
each situation.

5.7 TestH0∶𝜇 = 80 vsHa∶𝜇 > 80 when the sample
has n = 20, x = 82.4, and s = 3.5, with SE = 0.8.

5.8 Test H0∶p = 0.25 vs Ha∶p < 0.25 when the
sample has n = 800 and p̂ = 0.235, with SE = 0.018.

5.9 Test H0∶p = 0.5 vs Ha∶p ≠ 0.5 when the sam-
ple has n = 50 and p̂ = 0.41, with SE = 0.07.

5.10 TestH0∶𝜇 = 10 vsHa∶𝜇 ≠ 10 when the sample
has n = 75, x = 11.3, and s = 0.85, with SE = 0.10.

5.11 Test H0∶p1 = p2 vs Ha∶p1 < p2 when the sam-
ples have n1 = 150 with p̂1 = 0.18 and n2 = 100 with
p̂2 = 0.23. The standard error of p̂1 − p̂2 from the
randomization distribution is 0.05.

5.12 Test H0∶𝜇1 = 𝜇2 vs Ha∶𝜇1 > 𝜇2 when the sam-
ples have n1 = n2 = 50, x1 = 35.4, x2 = 33.1, s1 =
1.28, and s2 = 1.17. The standard error of x1 − x2
from the randomization distribution is 0.25.

SKILL BUILDER 3
In Exercises 5.13 and 5.14, find the p-value based on
a standard normal distribution for each of the fol-
lowing standardized test statistics.

5.13 (a) z = 0.84 for a right-tail test for a difference
in two proportions

(b) z = −2.38 for a left-tail test for a difference in
two means

(c) z = 2.25 for a two-tailed test for a proportion

5.14 (a) z = −1.08 for a left-tail test for a mean

(b) z = 4.12 for a right-tail test for a proportion

(c) z = −1.58 for a two-tailed test for a difference
in means

SKILL BUILDER 4
In Exercises 5.15 to 5.17, find the specified areas for
a normal distribution.

5.15 For a N(60, 10) distribution
(a) The area to the right of 65

(b) The area to the left of 48

5.16 For a N(15, 5) distribution
(a) The area to the right of 28

(b) The area to the left of 12

5.17 For a N(160, 25) distribution
(a) The area to the right of 140

(b) The area to the left of 200
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MORE BENEFITS OF EATING ORGANIC
UsingData 5.1 on page 405, we find a significant dif-
ference in the proportion of fruit flies surviving after
13 days between those eating organic potatoes and
those eating conventional (not organic) potatoes.
Exercises 5.18 to 5.21 ask you to conduct a hypoth-
esis test using additional data from this study.8 In
every case, we are testing

H0∶ po = pc
Ha∶ po > pc

where po and pc represent the proportion of fruit
flies alive at the end of the given time frame of those
eating organic food and those eating conventional
food, respectively. In each exercise, show all remain-
ing details of the test, including standardized test
statistic, p-value from a standard normal distribu-
tion, generic conclusion, and an informative conclu-
sion in context. Use a 5% significance level.

5.18 Effect of Organic Soybeans after 5 DaysAfter
5 days, the proportion of fruit flies eating organic
soybeans still alive is 0.90, while the proportion still
alive eating conventional soybeans is 0.84. The stan-
dard error for the difference in proportions is 0.021.

5.19 Effect of Organic Bananas after 25 DaysAfter
25 days, the proportion of fruit flies eating organic
bananas still alive is 0.42, while the proportion still
alive eating conventional bananas is 0.40. The stan-
dard error for the difference in proportions is 0.031.

5.20 Effect of Organic Potatoes after 11 DaysAfter
11 days, the proportion of fruit flies eating organic
potatoes still alive is 0.68, while the proportion still
alive eating conventional potatoes is 0.66. The stan-
dard error for the difference in proportions is 0.030.

5.21 Effect of Organic Soybeans after 8 DaysAfter
8 days, the proportion of fruit flies eating organic
soybeans still alive is 0.79, while the proportion still
alive eating conventional soybeans is 0.32. The stan-
dard error for the difference in proportions is 0.031.

5.22 How Do You Get Your News? A study by the
Pew Research Center9 reports that in 2010, for the
first time, more adults aged 18 to 29 got their news
from the Internet than from television. In a random
sample of 1500 adults of all ages in the US, 66% said
television was one of their main sources of news.
Does this provide evidence that more than 65% of
all adults in the US used television as one of their
main sources for news in 2010? A randomization

8Proportions approximated from information given in the paper.
9Pew Research Center, “Internet Gains on Television as Public’s
Main News Source,” January 4, 2011.

distribution for this test shows SE = 0.013. Find a
standardized test statistic and compare to the stan-
dard normal to find the p-value. Show all details of
the test.

5.23 To Study Effectively, Test Yourself! Cognitive
science consistently shows that one of the most
effective studying tools is to self-test. A recent
study10 reinforced this finding. In the study, 118 col-
lege students studied 48 pairs of Swahili and English
words. All students had an initial study time and
then three blocks of practice time. During the prac-
tice time, half the students studied the words by
reading them side by side, while the other half
gave themselves quizzes in which they were shown
one word and had to recall its partner. Students
were randomly assigned to the two groups, and total
practice time was the same for both groups. On the
final test one week later, the proportion of items
correctly recalled was 15% for the reading-study
group and 42% for the self-quiz group. The stan-
dard error for the difference in proportions is about
0.07. Test whether giving self-quizzes is more effec-
tive and show all details of the test. The sample size
is large enough to use the normal distribution.

5.24 Penalty Shots in World Cup Soccer A study11

of 138 penalty shots in World Cup Finals games
between 1982 and 1994 found that the goalkeeper
correctly guessed the direction of the kick only 41%
of the time. The article notes that this is “slightly
worse than random chance.” We use these data as
a sample of all World Cup penalty shots ever. Test
at a 5% significance level to see whether there is
evidence that the percent guessed correctly is less
than 50%. The sample size is large enough to use
the normal distribution. The standard error from a
randomization distribution under the null hypothe-
sis is SE = 0.043.

5.25 Dogs Ignore an Unreliable Person A study12

investigated whether dogs change their behavior
depending on whether a person displays reliable or
unreliable behavior. Dogs were shown two contain-
ers, one empty and one containing a dog biscuit. An
experimenter pointed to one of the two containers.
If the experimenter pointed to the container with
the treat on the first trial, 16 of 26 dogs followed

10Pyc, M. and Rawson, K., “Why testing improves memory:
Mediator effectiveness hypothesis,” Science, October 15, 2010;
330:335.
11St. John, A., “Physics of a World Cup Penalty-Kick
Shootout—2010 World Cup Penalty Kicks,” Popular Mechanics,
June 14, 2010.
12Takaoka, A., Maeda, T., Hori. Y., and Fujita, K., “Do dogs fol-
low behavioral cues from an unreliable human?,”Animal Cogni-
tion (2015), 18: 475–483.



5.1 Hypothesis Tests Using Normal Distributions 415

the experimenter’s cue on the second trial. How-
ever, if the experimenter misled the dog on the first
trial, only 7 of 26 dogs followed the cue on the sec-
ond trial. Test to see if the proportion following the
cue is different depending on whether the person
exhibited reliable or unreliable behavior. The stan-
dard error for the difference in proportions is 0.138.
Use a 5% significance level and show all details of
the test.

5.26 Exercise and Sex The dataset ExerciseHours
contains information on the amount of exercise
(hours per week) for a sample of statistics stu-
dents. The mean amount of exercise was 9.4 hours
for the 30 female students in the sample and 12.4
hours for the 20 male students. A randomization
distribution of differences in means based on these
data, under a null hypothesis of no difference in
mean exercise time between females and males, is
centered near zero and reasonably normally dis-
tributed. The standard error for the difference in
means, as estimated from the randomization distri-
bution, is SE = 2.38. Use this information to test,
at a 5% level, whether the data show that the
mean exercise time for female statistics students is
less than the mean exercise time of male statistics
students.

5.27 Smile Leniency Data 4.5 on page 320 des-
cribes an experiment to study the effects of smiling
on leniency in judging students accused of cheating.
Exercise B.55 on page 392 shows a dotplot, repro-
duced in Figure 5.12, of a randomization distribu-
tion of differences in sample means. The relevant
hypotheses are H0∶𝜇s = 𝜇n vs Ha∶𝜇s > 𝜇n, where
𝜇s and 𝜇n are the mean leniency scores for smiling
and neutral expressions, respectively. This distribu-
tion is reasonably bell-shaped and we estimate the
standard error of the differences in means under
the null hypothesis to be about 0.393. For the actual
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Figure 5.12 Randomization distribution for 1000 samples testing H0∶𝝁s = 𝝁n using Smiles data

sample in Smiles, the original difference in the sam-
ple means isD = xs − xn = 4.91 − 4.12 = 0.79. Use a
normal distribution to find and interpret a p-value
for this test.

5.28 How Often Do You Use Cash? In a survey13

of 1000 American adults conducted in April 2012,
43% reported having gone through an entire week
without paying for anything in cash. Test to see if
this sample provides evidence that the proportion
of all American adults going a week without paying
cash is greater than 40%. Use the fact that a ran-
domization distribution is approximately normally
distributed with a standard error of SE = 0.016.
Show all details of the test and use a 5% signifi-
cance level.

5.29 Incentives to Exercise: How Well Do They
Work? A study14 was designed to see what type of
incentive might be most effective in encouraging
people to exercise. In the study, 281 overweight or
obese people were assigned the goal to walk 7000
steps a day, and their activity was tracked for 100
days. The participants were randomly assigned to
one of four groups, with different incentives for
each group. In this problem, we look at the over-
all success rate. For each participant, we record the
number of days that the participant met the goal.
For all 281 participants, the average number of days
meeting the goal is 36.5. The standard error for this
estimate is 1.80. Test to see if this provides evidence
that the mean number of days meeting the goal, for
people in a 100-day program to encourage exercise,
is greater than 35. Show all details of the test.

13“43% Have Gone Through a Week Without Paying Cash,”
Rasmussen Reports, April 11, 2011.
14Patel, M.S., et al., “Framing Financial Incentives to Increase
Physical Activity Among Overweight and Obese Adults: A Ran-
domized, Controlled Trial,” Annals of Internal Medicine, 2016;
164(6):385–94.
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5.30 Incentives to Exercise: What Works Best? In
the study described in Exercise 5.29, the goal for
each of the overweight participants in the study was
to walk 7000 steps a day. The study lasted 100 days
and the number of days that each participant met
the goal was recorded. The participants were ran-
domly assigned to one of four different incentive
groups: for each day they met the goal, participants
in the first group got only an acknowledgement,
participants in the second group got entered into a
lottery, and participants in the third group received
cash (about $1.50 per day). In the fourth group,
participants received all the money up front and lost
money (about $1.50 per day) if they didn’t meet the
goal. The success rate was almost identical in the
first three groups (in other words, giving cash did
not work much better than just saying congratula-
tions) and the mean number of days meeting the
goal for these participants was 33.7. For the partic-
ipants who would lose money, however, the mean
number of days meeting the goal was 45.0. (Peo-
ple really hate to lose money!) Test to see if this
provides evidence of a difference in means between
those losing money and those with other types of
incentives, using the fact that the standard error for
the difference in means is 4.14.

5.31 Incentives for Quitting Smoking: Group or
Individual? In a smoking cessation program, over
2000 smokers who were trying to quit were ran-
domly assigned to either a group program or an
individual program. After six months in the pro-
gram, 148 of the 1080 in the group program were
successfully abstaining from smoking, while 120 of
the 990 in the individual program were successful.15

We wish to test to see if this data provide evidence
of a difference in the proportion able to quit smok-
ing between smokers in a group program and smok-
ers in an individual program.

(a) State the null and alternative hypotheses, and
give the notation and value of the sample
statistic.

(b) Use a randomization distribution and the ob-
served sample statistic to find the p-value.

(c) Give the mean and standard error of the nor-
mal distribution that most closely matches the
randomization distribution, and then use this
normal distribution with the observed sample
statistic to find the p-value.

15Halpern, S.D., and French, B., et al., “Randomized Trial of Four
Financial-Incentive Programs for Smoking Cessation,” The New
England Journal of Medicine, 2015; 372:2108–17, May 13, 2015.

(d) Use the standard error found from the random-
ization distribution in part (b) to find the stan-
dardized test statistic, and then use that test
statistic to find the p-value using a standard nor-
mal distribution.

(e) Compare the p-values from parts (b), (c),
and (d). Use any of these p-values to give the
conclusion of the test.

5.32 Incentives for Quitting Smoking: Do They
Work? Exercise 5.31 describes a study examining
incentives to quit smoking. With no incentives, the
proportion of smokers trying to quit who are still
abstaining six months later is about 0.06. Partici-
pants in the study were randomly assigned to one
of four different incentives, and the proportion suc-
cessful was measured six months later. Of the 498
participants in the group with the least success, 47
were still abstaining from smoking six months later.
We wish to test to see if this provides evidence that
even the smallest incentive works better than the
proportion of 0.06 with no incentive at all.

(a) State the null and alternative hypotheses, and
give the notation and value of the sample
statistic.

(b) Use a randomization distribution and the ob-
served sample statistic to find the p-value.

(c) Give the mean and standard error of the nor-
mal distribution that most closely matches the
randomization distribution, and then use this
normal distribution with the observed sample
statistic to find the p-value.

(d) Use the standard error found from the random-
ization distribution in part (b) to find the stan-
dardized test statistic, and then use that test
statistic to find the p-value using a standard nor-
mal distribution.

(e) Compare the p-values from parts (b), (c),
and (d). Use any of these p-values to give the
conclusion of the test.

5.33 Lucky numbers If people choose lottery num-
bers at random, the last digit should be equally
likely to be any of the ten digits from 0 to 9. Let
p measure the proportion of choices that end with
the digit 7. If choices are random, we would expect
p = 0.10, but if people have a special preference for
numbers ending in 7 the proportion will be greater
than 0.10. Suppose that we test this by asking a ran-
dom sample of 20 people to give a three-digit lottery
number and find that four of the numbers have 7 as
the last digit. Figure 5.13 shows a randomization dis-
tribution of proportions for 5000 simulated samples
under the null hypothesis H0∶p = 0.10.
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Figure 5.13 Randomization distribution for proportions in Exercise 5.33 when p = 0.10 and n = 20

(a) Use the sample proportion p̂ = 0.20 and a stan-
dard error estimated from the randomization
distribution to compute a standardized test
statistic.

(b) Use the normal distribution to find a p-value for
an upper tail alternative based on the test statis-
tic found in part (a).

(c) Compare the p-value obtained from the normal
distribution in part (b) to the p-value shown
for the randomization distribution. Explain why
there might be a discrepancy between these two
values.

5.2CONFIDENCE INTERVALS USING
NORMAL DISTRIBUTIONS

In Section 5.1, we see that many bootstrap and randomization distributions are nor-
mally distributed, and we see how to use the normal distribution to find p-values in
a hypothesis test. In this section, we see how to use the normal distribution to find
a confidence interval by approximating a bell-shaped bootstrap distribution with a
normal distribution. To find a 95% bootstrap confidence interval in Chapter 3, we
find an interval that contains the middle 95% of bootstrap statistics. The equivalent
idea on a normal curve is to find the interval that captures the middle 95% of area
in the normal distribution.

As in Section 5.1, there are many different methods that can be used to find
the endpoints of this interval. Again, we generally rely on technology to handle the
computational details. Some technology options, like StatKey, allow us to directly
specify 95% for the middle range, while others have us find the interval endpoints
based on the tail proportions (a 95% interval would leave 2.5% in each tail). This is
a good time to get comfortable with the method that you will use.
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Example 5.10
Find an interval that contains the middle 95% of area in a normal distribution with
mean 40 and standard deviation 5.

Solution We see in Figure 5.14 that the interval containing the middle 95% of area in this
distribution is 30.2 to 49.8. Notice that this interval is approximately two standard
deviations away from the mean on each side, as we expect with the 95% Rule from
Chapter 2.

Figure 5.14 Finding the
middle 95% in the
normal distribution
N(40, 5) 30 50

49.80030.200

25 35 40 45 55

Left Tail Two-Tail Right Tail

0.0250.9500.025

Example 5.11
Find an interval in the standard normal distribution that contains the middle 99%
of area.

Solution Recall that the standard normal distribution has mean 0 and standard deviation 1.
We see in Figure 5.15 that the interval that contains the middle 99% of area in this
distribution is −2.576 to 2.576.

Figure 5.15 Finding the
middle 99% in the
standard normal
distribution
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What percentage of American adults have used online dating?

D A T A 5 . 2 Online Dating
A survey conducted in July 2015 asked a random sample of n = 2001 American
adults whether they had ever used online dating (either an online dating site or
a dating app on their cell phone).16 Overall, 15% said that they had used online
dating, showing an increase over the percentage in a similar survey conducted
two years earlier. (Two groups in particular showed a change over this two-year
period: Usage by 18- to 24-year-olds nearly tripled while usage by 55- to 64-year-
olds more than doubled.) ◼

We are interested in using the 15% found in the survey to estimate the propor-
tion of all American adults to use online dating. First, we return to the bootstrap
confidence intervals from Chapter 3, to connect the methods of Chapter 3 to the use
of the normal distribution.

Review: Confidence Intervals Using a Bootstrap Distribution

Example 5.12
Use a bootstrap distribution to find a 90% confidence interval for the true propor-
tion of all American adults who have used online dating.

Solution We repeatedly resample, with replacement, from the observed sample values to get
bootstrap samples of size n = 2001. For each bootstrap sample, we calculate the
bootstrap statistic proportion of adults who have used either an online dating site or
a mobile dating app. We repeat this process many times to form a bootstrap distribu-
tion, as shown in Figure 5.16. We then find a 90% confidence interval as the interval
containing the middle 90% of bootstrap statistics, shown in Figure 5.16, yielding a
confidence interval of (0.137, 0.163). We are 90% confident that between 13.7% and
16.3% of American adults have used online dating.

16Smith, A., (2016). “15% of American Adults Have Used Online Dating Sites or Mobile Dating Apps,”
Pew Research Center, 2/11/16, http://www.pewinternet.org/2016/02/11/15-percent-of-american-adults-have-
used-online-dating-sites-or-mobile-dating-apps/.
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Figure 5.16 Bootstrap
distribution and 90%
confidence interval
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Confidence Intervals Based on a Normal Distribution
Note that the bootstrap distribution in Figure 5.16 is bell-shaped, so we can use a
normal distribution to approximate it.

Example 5.13
Which normal distribution best approximates the bootstrap distribution shown in
Figure 5.16? Give the mean and standard deviation.

Solution Bootstrap distributions are centered at the original sample statistic, in this case
p̂ = 0.15.17 The standard deviation of the bootstrap distribution is equal to the stan-
dard error, 0.008. With a mean of 0.15 and a standard deviation of 0.008,
the N(0.15, 0.008) distribution best approximates this bootstrap distribution.
This normal curve is shown as the blue curve over the bootstrap distribution
in Figure 5.17.

Figure 5.17 Normal
approximation to a
bootstrap distribution

0.15

ProportionBootstrap Dotplot of

0.125
0

10

20

30

40

50

60

0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180

Left Tail Two-Tail Right Tail Samples = 2000
mean = 0.150
st.dev. = 0.0080

0.1630.137

0.0500.050 0.900

N(0.15, 0.008)

As with randomization distributions, once we have the normal distribution, we
can work with that directly to find the confidence interval. We find the confidence
interval in exactly the same way we did when using percentiles from the bootstrap

17The mean for a particular set of statistics in a bootstrap distribution might vary a little from the original
sample statistic, but we still use the original statistic as the mean for the normal approximation to the
bootstrap distribution.
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distribution: we find the interval that contains the middle percentage of the distri-
bution that matches the desired confidence level.

Confidence Intervals Using Normal Distributions

If a bootstrap distribution is bell-shaped, a P% confidence interval
can be found as the interval containing the middle P% of the nor-
mal distribution with mean equal to the observed sample statistic and
standard deviation equal to the standard error of the statistic:

N(sample statistic,SE)

Example 5.14
Online Dating with a Normal Distribution

Use the normal distribution that approximates the bootstrap distribution in
Example 5.13 to find a 90% confidence interval for the proportion of American
adults who have used online dating.

Solution We find the interval that contains the middle 90% of the N(0.15, 0.008) distribution,
as shown in Figure 5.18. This yields the confidence interval (0.137, 0.163), exactly
the same as that found from the bootstrap distribution. The interpretation of this
confidence interval remains the same: We are 90% confident that between 13.7%
and 16.3% of American adults have used an online dating site or mobile dating app.

Figure 5.18 Confidence
interval from a N(0.15,
0.008) distribution 0.120
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Confidence Intervals Using a Standard Normal Distribution
As with hypothesis testing, it is often convenient to work with only one normal
distribution: the standard normal distribution with mean 0 and standard deviation 1,
N(0, 1). Thus far we have connected back to the percentile method of Chapter 3, but
what about the standard error method? Recall from Section 3.2 on page 254 that we
first found a rough 95% confidence interval using

Sample Statistic ± 2 ⋅ SE

where SE is the standard error in a bootstrap distribution. Where does this 2 come
from? You guessed it: The standard normal!
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The “2” in the formula statistic ± 2 ⋅ SE comes from the fact that (approxi-
mately) 95% of the standard normal distribution falls between −2 and 2. To be
more precise, if we ask for the middle 95% of a standard normal distribution,
we find the endpoints are ±1.96 (as we see in Figure 5.22). Thus, we should
actually go 1.96 standard errors in either direction to get the interval (but 2 SE
is a reasonable quick approximation). We can use the same idea for other levels
of confidence. For example, Figure 5.15 shows that the middle 99% of a standard
normal distribution lies between −2.576 and 2.576. Thus we can get 99% confidence
by going 2.576 standard errors on either side of the original sample statistic,
sample statistic ± 2.576 ⋅ SE. This idea generalizes to any level of confidence.

Confidence Intervals Using a Standard Normal Distribution

If the distribution for a statistic follows the shape of a normal distri-
bution with standard error SE, we find a confidence interval for the
parameter using

Sample Statistic ± z∗ ⋅ SE

where z∗ is chosen so that the proportion between −z∗ and +z∗ in the
standard normal distribution is the desired level of confidence.

Example 5.15
Online Dating with the Standard Normal

Use the standard normal distribution to find a 90% confidence interval for the pro-
portion of American adults who have used online dating.

Solution The observed sample statistic is p̂ = 0.15, and the standard error is 0.008 (as found
from the bootstrap distribution shown in Figure 5.16). In Figure 5.19 we see that z∗

for a 90% confidence interval is 1.645. Thus we can find a 90% confidence interval
for the proportion of adults using online dating with

Sample Statistic ± z∗ ⋅ SE

0.15 ± 1.645 ⋅ 0.008

0.137 to 0.163

Figure 5.19 Finding z∗

for a 90% confidence
interval
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(a) Bootstrap Distribution
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(b) Un-standardized Normal
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Figure 5.20 Three ways of generating a confidence interval

This is exactly the same confidence interval found using a bootstrap distribution
in Example 5.12 and using the un-standardized normal distribution in Example 5.14.
These three ways of finding a confidence interval are shown in Figure 5.20. In all
three figures, we are finding the interval corresponding to the middle 90% of the
distribution, and only the distribution differs. The un-standardized normal replaces
the bootstrap distribution with a smooth curve, and the standard normal just adjusts
the scale to have mean 0 and standard deviation 1.

You can also think of the formula

Sample Statistic ± z∗ ⋅ SE

as the reverse of the standardization process achieved through z-scores. Recall that
a value X from a N(𝜇, 𝜎) can be converted to a value Z on the standard normal
scale by

Z = X − 𝜇

𝜎

.

Doing a little algebra to rewrite this equation to findX in terms of Z, we can reverse
the standardization with

X = 𝜇 + Z ⋅ 𝜎.
When finding confidence intervals directly on the original data scale, we use
N(Sample Statistic,SE) with 𝜇 equal to the sample statistic (mean of the bootstrap
distribution) and 𝜎 equal to the standard error. Therefore, we can find the con-
fidence interval (−z∗, z∗) on the standard normal scale, and convert back to the
original data scale with (Sample Statistic − z∗ ⋅ SE,Sample Statistic + z∗ ⋅ SE).

Example 5.16
Confidence Intervals for Atlanta Commute Time

Figure 5.21 reproduces the bootstrap distribution of mean commute times in Atlanta
that appears in Figure 3.16 on page 251. In that example, the original sample of
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Figure 5.21 Means for
1000 bootstrap samples
from CommuteAtlanta

26 27 28 29
xbar

30 31 32

n = 500 Atlanta commute times has a mean of x = 29.11 minutes. The standard error
from the bootstrap distribution is 0.915 minutes. Use this information to find 95%,
99%, and 90% confidence intervals for the mean Atlanta commute time.

Solution To find a 95% confidence interval, we find the endpoints on a standard normal
distribution18 that give 95% area in the middle. See Figure 5.22 which shows that
z∗ = 1.96.

The resulting 95% confidence interval for the mean is

Sample Statistic ± z∗ ⋅ SE

x ± z∗ ⋅ SE

29.11 ± 1.96(0.915)
29.11 ± 1.79

27.32 to 30.90

As usual we interpret this interval to say that we are 95% sure that the mean
commute time for all commuters in Atlanta is between 27.32 and 30.90 minutes.

For a 99% confidence interval, Figure 5.15 gives z∗ = 2.576 and the interval is

29.11 ± 2.576(0.915) = 29.11 ± 2.36 = (26.75, 31.47)

For a 90% confidence interval, Figure 5.19 gives z∗ = 1.645 and the interval is

29.11 ± 1.645(0.915) = 29.11 ± 1.51 = (27.60, 30.62)

Figure 5.22 Standard
normal percentiles for a
95% confidence interval
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18In the next chapter, we use the t-distribution for means and the standard normal for proportions.
However, for sample sizes this large the t-distribution and the standard normal are practically indis-
tinguishable, and yield the same z∗ values.
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We see in Example 5.16 that for a larger level of confidence, the normal z∗ gets
larger and the interval widens to have a better chance of capturing the true mean
commute time.

We can compare the confidence intervals computed in Example 5.16 to the ones
based on the percentiles computed directly from the 1000 bootstrap samples shown
in Figure 3.25 on page 264. These were (26.98, 31.63) and (27.70, 30.71) for 99% and
90%, respectively. While not exactly the same, the intervals are consistent with each
other. Remember that even the percentile method would yield different intervals for
a different 1000 bootstrap samples and a new sample of another 500 Atlanta drivers
would also produce a slightly different interval.

One of the advantages of using the standard normal percentile for finding a
confidence interval is that the z∗ values become familiar for common confidence
levels. Table 5.1 gives some of these common values.

Table 5.1 Normal percentiles for common confidence levels

Confidence level 80% 90% 95% 98% 99%

z∗ 1.282 1.645 1.960 2.326 2.576

Example 5.17
Change in Online Dating Use from 2013 to 2015

In our 2015 study, 15% of 2001 randomly sampled American adults had used
online dating. From a 2013 random sample of 2,252 American adults, 11% had
used online dating (again, meaning either an online dating site or a dating app
on their cell phone).19 A bootstrap distribution finds the standard error for the
difference in proportions to be SE = 0.01. Find and interpret a 99% confidence
interval for the difference in proportions of American adults using online dating
between these two years.

Solution To construct the confidence interval, we use

Sample Statistic ± z∗ ⋅ SE.

The sample statistic is p̂2015 − p̂2013 = 0.15 − 0.11 = 0.04 and the standard error is
SE = 0.01. For a 99% confidence interval, we find the value of z∗ using technology
(or by looking at Table 5.1.) We see that z∗ = 2.576. The 99% confidence interval is

(p̂2015 − p̂2013) ± z∗ ⋅ SE

0.04 ± 2.576(0.01)
0.04 ± 0.02576

0.014 to 0.066.

We are 99% confident that the proportion of American adults using online dating
was between 0.014 and 0.066 higher in 2015 than in 2013. Because this interval does
not contain 0, we have significant evidence of an increase over time.

19Smith, A., and Duggan, M. (2013). “Online Dating & Relationships,” Pew Research Center, 10/21/13,
http://www.pewinternet.org/2013/10/21/online-dating-relationships/.
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Looking Ahead
We now have two very easy formulas that apply when a randomization or boot-

strap distribution for a sample statistic is approximately normally distributed:

General Formulas when using a Standard Normal Distribution

• Confidence Intervals:

Sample Statistic ± z∗ ⋅ SE

where z∗ is a standard normal endpoint based on the desired confi-
dence level.

• Hypothesis Tests:We compute a standardized test statistic using

z =
Sample Statistic −Null Parameter

SE

and find a p-value using this test statistic on a standard normal
distribution.

In both cases, we need to know the standard error, SE. While computers have
made it relatively easy to generate thousands of simulations to find SE from a ran-
domization or bootstrap distribution, wouldn’t it be nice if we had simple formulas
we could use to compute SE directly? If this sounds nice to you, keep reading! The
next chapter gives “shortcut” formulas to estimate the standard error for common
parameters. As we work through the many shortcut formulas for the standard error,
keep the big picture in mind. In every case, we return to the two general formulas
displayed above.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Find endpoints in a normal distribution

• Recognize how the normal distribution can be used to approximate a
bootstrap distribution

• Compute a confidence interval using a normal distribution

Exercises for Section 5.2

SKILL BUILDER 1
In Exercises 5.34 and 5.35, find the z∗ values based
on a standard normal distribution for each of the
following.

5.34 (a) An 80% confidence interval for a pro-
portion.

(b) An 84% confidence interval for a slope.

(c) A 92% confidence interval for a standard de-
viation.

5.35 (a) An 86% confidence interval for a cor-
relation.
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(b) A 94% confidence interval for a difference in
proportions.

(c) A 96% confidence interval for a proportion.

SKILL BUILDER 2
In Exercises 5.36 to 5.41, find the indicated confi-
dence interval. Assume the standard error comes
from a bootstrap distribution that is approximately
normally distributed.

5.36 A 95% confidence interval for a proportion
p if the sample has n = 100 with p̂ = 0.43, and the
standard error is SE = 0.05.

5.37 A 95% confidence interval for a mean 𝜇 if the
sample has n = 50 with x = 72 and s = 12, and the
standard error is SE = 1.70.

5.38 A 90% confidence interval for a mean 𝜇 if the
sample has n = 30 with x = 23.1 and s = 5.7, and the
standard error is SE = 1.04.

5.39 A 99% confidence interval for a proportion
p if the sample has n = 200 with p̂ = 0.78, and the
standard error is SE = 0.03.

5.40 A 95% confidence interval for a difference in
proportions p1 − p2 if the samples have n1 = 50 with
p̂1 = 0.68 and n2 = 80 with p̂2 = 0.61, and the stan-
dard error is SE = 0.085.

5.41 A 95% confidence interval for a difference in
means 𝜇1 − 𝜇2 if the samples have n1 = 100 with
x1 = 256 and s1 = 51 and n2 = 120 with x2 = 242 and
s2 = 47, and the standard error is SE = 6.70.

5.42 What Is Your Sleep Position? In a study
conducted in the United Kingdom about sleeping
positions, 1000 adults in the UK were asked their
starting position when they fall asleep at night. The
most common answer was the fetal position (on the
side, with legs pulled up), with 41% of the partici-
pants saying they start in this position. Use a normal
distribution to find and interpret a 95% confidence
interval for the proportion of all UK adults who
start sleep in this position. Use the fact that the stan-
dard error of the estimate is 0.016.

5.43 Hearing Loss in Teenagers A recent study20

found that, of the 1771 participants aged 12 to 19
in the National Health and Nutrition Examination
Survey, 19.5% had some hearing loss (defined as a
loss of 15 decibels in at least one ear). This is a dra-
matic increase from a decade ago. The sample size
is large enough to use the normal distribution, and a
bootstrap distribution shows that the standard error

20Rabin, R., “Childhood: Hearing Loss Grows Among Teen-
agers,” www.nytimes.com, August 23, 2010.

for the proportion is SE = 0.009. Find and
interpret a 90% confidence interval for the pro-
portion of teenagers with some hearing loss.

5.44 Where Is the Best Seat on the Plane? A sur-
vey of 1000 air travelers21 found that 60% prefer
a window seat. The sample size is large enough to
use the normal distribution, and a bootstrap distri-
bution shows that the standard error is SE = 0.015.
Use a normal distribution to find and interpret a
99% confidence interval for the proportion of air
travelers who prefer a window seat.

5.45 Average Age for ICU Patients The ICU-
Admissions dataset includes a variable indicating
the age of the patient. Find and interpret a 95% con-
fidence interval for mean age of ICU patients using
the facts that, in the sample, the mean is 57.55 years
and the standard error for such means is SE = 1.42.
The sample size of 200 is large enough to use a nor-
mal distribution.

5.46 Smoke-Free Legislation and Asthma Hospi-
tal admissions for asthma in children younger than
15 years was studied22 in Scotland both before
and after comprehensive smoke-free legislation was
passed in March 2006. Monthly records were kept
of the annualized percent change in asthma admis-
sions. For the sample studied, before the legisla-
tion, admissions for asthma were increasing at a
mean rate of 5.2% per year. The standard error for
this estimate is 0.7% per year. After the legislation,
admissions were decreasing at a mean rate of 18.2%
per year, with a standard error for this mean of
1.79%. In both cases, the sample size is large enough
to use a normal distribution.

(a) Find and interpret a 95% confidence interval
for the mean annual percent rate of change in
childhood asthma hospital admissions in Scot-
land before the smoke-free legislation.

(b) Find a 95% confidence interval for the same
quantity after the legislation.

(c) Is this an experiment or an observational study?

(d) The evidence is quite compelling. Can we con-
clude cause and effect?

5.47 How Much More Effective Is It to Test Your-
self in Studying? In Exercise 5.23, we see that stu-
dents who study by giving themselves quizzes recall
a greater proportion of words than students who

21Willingham, A., “And the best seat on a plane is... 6A!,”
HLNtv.com, April 25, 2012.
22Mackay, D., et al., “Smoke-free Legislation and Hospitaliza-
tions for Childhood Asthma,” The New England Journal of
Medicine, September 16, 2010; 363(12):1139–45.
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study by reading. In Exercise 5.23 we see that there
is an effect, but often the question of interest is not
“Is there an effect?” but instead “How big is the
effect?” To address this second question, use the fact
that p̂Q = 0.42 and p̂R = 0.15 to find and interpret a
99% confidence interval for the difference in pro-
portions pQ − pR, where pQ represents the propor-
tion of items correctly recalled by all students who
study using a self-quiz method and pR represents the
proportion of items correctly recalled by all students
who study using a reading-only approach. Assume
that the standard error for a bootstrap distribution
of such differences is about 0.07.

5.48 Incentives to Exercise: How Much More
Effective Is It to Lose Money? In Exercise 5.30, we
see that overweight participants who lose money
when they don’t meet a specific exercise goal meet
the goal more often, on average, than those whowin
money when they meet the goal, even if the final
result is the same financially. In particular, partici-
pants who lost money met the goal for an average of
45.0 days (out of 100) while those winning money or
receiving other incentives met the goal for an aver-
age of 33.7 days. In Exercise 5.30 we see that the
incentive does make a difference. In this exercise,
we ask how big the effect is between the two types
of incentives. Find and interpret a 95% confidence
interval for the difference in mean number of days
meeting the goal, between people who lose money
when they don’t meet the goal and those who win
money or receive other similar incentives when they
do meet the goal. The standard error for the differ-
ence in means from a bootstrap distribution is 4.14.

MORE ON THE ONLINE DATING SURVEY
Exercises 5.49 to 5.52 refer to Data 5.2 on page 419,
which describes a survey conducted in July 2015 ask-
ing a random sample of American adults whether
they had ever used online dating (either an online
dating site or a dating app on their cell phone).

5.49 18- to 24-year-olds The survey included 194
young adults (ages 18 to 24) and 53 of them said
that they had used online dating. If we use this sam-
ple to estimate the proportion of all young adults to
use online dating, the standard error is 0.032. Find
a 95% confidence interval for the proportion of all
US adults ages 18 to 24 to use online dating.

5.50 55- to 64-year-olds The survey included 411
adults between the ages of 55 and 64, and 50 of them
said that they had used online dating. If we use this
sample to estimate the proportion of all American
adults ages 55 to 64 to use online dating, the stan-
dard error is 0.016. Find a 95% confidence interval

for the proportion of all US adults ages 55 to 64 to
use online dating.

5.51 College-Educated or Not? The survey also
asked participants for their level of education, and
we wish to estimate the difference in the propor-
tion to use online dating between those with a col-
lege degree and those with a high school degree or
less. The results are shown in the two-way table in
Table 5.2.

(a) What proportion of college graduates answered
yes when asked if they had ever used online
dating? What proportion of those with a high
school degree or less said yes? What is the sam-
ple difference in proportions?

(b) Use the fact that the standard error for the esti-
mate is 0.019 to find a 99% confidence interval
for the population difference in proportions.

(c) Is it plausible that there is no difference
between college graduates and high school
graduates or less in how likely they are to use
online dating? Use the confidence interval from
part (b) to answer, and explain your reasoning.

Table 5.2 Have you ever used an online dating
site or a dating app?

College High School Total

Yes 157 70 227
No 666 565 1231

Total 823 635 1458

5.52 Comparing Males to Females In the survey,
17% of the men said they had used online dating,
while 14% of the women said they had.

(a) Find a 99% confidence interval for the differ-
ence in the proportion saying they used online
dating, between men and women. The standard
error of the estimate is 0.016.

(b) Is it plausible that there is no difference between
men and women in how likely they are to use
online dating? Use the confidence interval from
part (a) to answer and explain your reasoning.

5.53 Prices of Used MustangsData 3.4 on page 267
describes a sample of n = 25 Mustang cars being
offered for sale on the Internet. Use the data in
MustangPrice to construct a 95% confidence inter-
val to estimate the mean Price (in $1000s) for the
population of all such Mustangs. Find the 95% con-
fidence interval two ways:

(a) Using percentiles of a bootstrap distribution

(b) Using a normal distribution with SE estimated
from a bootstrap distribution

Compare your answers.
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5.54 Predicting Price of Used Mustangs fromMiles
Driven Data 3.4 on page 267 describes a sample
of n = 25 Mustang cars being offered for sale on
the Internet. The data are stored in MustangPrice,
and we want to predict the Price of each car (in
$1000s) based on theMiles it has been driven (also
in 1000s).

(a) Find the slope of the regression line for predict-
ing Price based onMiles for these data.

(b) Estimate the standard error of the slope using
a bootstrap distribution and use it and the
normal distribution to find a 98% confidence
interval for the slope of this relationship in
the population of all Mustangs for sale on the
Internet.

5.55 Correlation between Time and Distance in
Commuting In Exercise B.64 on page 395, we find
an interval estimate for the correlation between
Distance (in miles) and Time (in minutes) for
Atlanta commuters, based on the sample of size
n = 500 in CommuteAtlanta. The correlation in the
original sample is r = 0.807.

(a) Use technology and a bootstrap distribution to
estimate the standard error of sample correla-
tions betweenDistance and Time for samples of
500 Atlanta commutes.

(b) Assuming that the bootstrap correlations can
be modeled with a normal distribution, use the
results of (a) to find and interpret a 90% confi-
dence interval for the correlation between dis-
tance and time of Atlanta commutes.

5.56 Facebook In 2019, some researchers with the
Pew Research Center interviewed a random sample
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Figure 5.23 Bootstrap correlations for uniform malevolence vs penalty yards

of US adults about their social media usage.23 One
of the questions was whether the person used the
Facebook social media site. The sample proportion
who use Facebook, based on 1502 respondents, was
p̂ = 0.69.

(a) Describe how you could construct a bootstrap
distribution to estimate the standard error of
the proportion in this situation.

(b) One such distribution, based on proportions
from 5000 bootstrap samples, is normally dis-
tributed with a standard error of 0.012. Use this
information to find a 99% confidence interval
for the proportion of US adults (in 2019) who
use the Facebook social media site.

5.57 Malevolent Uniforms in Football Figure 5.23
shows a bootstrap distribution of correlations
between penalty yards and uniform malevolence
using the data on 28 NFL teams in Malevolent
UniformsNFL. We see from the percentiles of the
bootstrap distribution that a 99% confidence inter-
val for the correlation is −0.224 to 0.788. The cor-
relation between the two variables for the original
sample is r = 0.43.

(a) Use the original sample correlation and the
standard error from the bootstrap distribution
shown in Figure 5.23 to compute a 99% confi-
dence interval for the correlation using z∗ from
a normal distribution.

(b) Why is the normal-based interval somewhat dif-
ferent from the percentile interval? (Hint: Look
at the shape of the bootstrap distribution.)

23https://www.pewresearch.org/wp-content/uploads/2019/04/FT_
19.04.10_SocialMedia2019_topline_methodology.pdf.
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C H A P T E R 6

Inference for
Means and
Proportions

“To exploit the data flood, America will need many more [data analysts]... The story is

similar in fields as varied as science and sports, advertising and public health—a drift

toward data-driven discovery and decision-making.”

Steve Lohr∗

This chapter has many short sections that can be combined and
covered in almost any order.

“The Age of Big Data,” By Steve Lohr, The New York Times, February 12, 2012, p. SR1.
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Here are some of the questions and issues we will discuss in this chapter:

• What percent of people would prefer a self-driving car?

• Can fast food disrupt hormones?

• Is taking notes longhand more effective than taking notes on a laptop?

• Which is more effective: active learning or passive learning?

• Do babies prefer speaking or humming? Speaking or singing?

• Why do fingers wrinkle in water?

• Could maternal use of antidepressants lead to autism?

• What percent of US adults believe in ghosts?

• Are polyester clothes polluting our shorelines?

• If you are mean to a bird, will it remember you?

• Can babies tell if you can be trusted?

• How compassionate is your dog?

• If your college roommate brings a videogame to campus, are your grades negatively affected?

• Does diet cola leach calcium out of your system?

• If you just think you should be losing weight, are you more likely to lose weight?

• How strong are the benefits of exercise in helping us be more resilient to stress?

• If we give away the ending of a story, will readers like the story more or less?
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6.1-DDISTRIBUTION OF A PROPORTION

For categorical data, the parameter of interest is often a population proportion p.
The Central Limit Theorem (CLT) in Section 5.1 says that sample statistics often
follow a normal distribution if the sample size is large. This is true for the distribu-
tion of sample proportions, p̂, which will be centered at the population proportion p.
Besides the center, the other important quantity we need to describe a normal distri-
bution is the standard deviation, the standard error (SE) of the sample proportions.
As we have seen, one way to estimate this SE is to use a bootstrap or randomization
distribution. Statistical theory gives us an alternate method for finding the standard
error. We use this in the box below to obtain a version of the Central Limit Theorem
that describes the distribution of sample proportions.

Distribution of a Sample Proportion

When selecting random samples of size n from a population with pro-
portion p, the distribution of the sample proportions is centered at the
population proportion p, has standard error given by

SE =
√

p(1 − p)
n

and is reasonably normally distributed if np ≥ 10 and n(1 − p) ≥ 10.

Using the Formula for Standard Error
In Section 3.1, we see that the proportion of US adults who are college graduates
is p = 0.275, and we create a sampling distribution to examine sample proportions
using sample size n = 200. From the simulated sampling distribution, we see that the
standard error is SE = 0.032. We can use the formula, with p = 0.275 and n = 200, to
verify that the formula gives the same value as the 0.032 arrived at using simulations:

SE =
√

p(1 − p)
n

=
√

0.275(1 − 0.275)
200

= 0.032

Example 6.1
Use the formula to calculate the standard error in each case:

(a) p = 0.25 and n = 50

(b) p = 0.25 and n = 200

Solution (a) The standard error for a sample of size 50 is SE =
√

0.25(1−0.25)
50

= 0.0612.

(b) When the sample size is increased to n = 200, the standard error drops to SE =√
0.25(1−0.25)

200
= 0.0306.

In Example 6.1, we see that multiplying the sample size by 4 (n = 50 to n = 200)
cuts the standard error of the sample proportions in half. This is due to the square
root of n in the denominator of the formula for SE. In Example 3.9 on page 222 we
see that the variability of the sampling distribution for a proportion decreases with
increasing sample size—the formula for SE quantifies this relationship.
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Justifying the Sample Size Conditions
The distributions of sample proportions are usually well-modeled with a normal
distribution, but there are situations where a normal distribution is not appropriate.
Looking at the dotplots in Figure 6.1 we see that the normal shape starts to break
down when the population proportion p starts to get close to 0 or 1. In Figure 6.2 we
see that the sample size also plays a role. For a small proportion, such as p = 0.10,
normality is a problem for n = 10 or n = 25 but looks fine for n = 200.

As a general rule, the sample size is large enough for the distribution to stay
away from 0 if np ≥ 10. At the other end, we can avoid problems at 1 if n(1 − p) ≥ 10.
This says that the sample size is large enough that we can expect to see at least ten
“yes” values and at least ten “no” values in the sample. The distribution of the sam-
ple proportions will be reasonably normally distributed if np ≥ 10 and n(1 − p) ≥ 10.

(a) p = 0.05

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

(b) p = 0.10

0.00 0.05 0.10 0.15 0.20 0.25

(c) p = 0.25

0.0 0.1 0.2 0.3 0.4 0.5

(d) p = 0.50
0.3 0.4 0.5 0.6 0.7

(e) p = 0.90

0.75 0.80 0.85 0.90 0.95 1.00

(f) p = 0.99

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

Figure 6.1 Distributions of sample proportions when n = 50

0.00 0.04 0.08 0.12 0.16 0.20

(c) n = 200

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(a) n = 10   

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

(b) n = 25

Figure 6.2 Distributions of sample proportions when p = 0.10

Example 6.2
Ontime Arrivals

The Bureau of Transportation Statistics1 tells us that 80% of flights for a particular
airline arrive on time (defined as within 15 minutes of the scheduled arrival time).
We examine a random sample of 400 flights for this airline and compute the propor-
tion of the sample flights that arrive on time. Compute the standard error for this
statistic and verify that the conditions to use a normal distribution apply.

1For example, see http://www.transtats.bts.gov/HomeDrillChart.asp for data collected by the Bureau of
Transportation Statistics.
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Solution The mean of the distribution of sample ontime proportions is 0.80, the proportion
for the entire population. The standard error for samples of size 400 is

SE =
√

0.8(1 − 0.8)
400

= 0.02

For n = 400 and p = 0.8 we have

np = 400 ⋅ 0.8 = 320 and n(1 − p) = 400 ⋅ (1 − 0.8) = 80

Both of these values are well above 10, so we can safely use a normal distribution to
model the sample ontime proportions.

We now know how to compute the SE for a distribution of sample proportions
and how to determine whether this distribution will be approximately normally dis-
tributed. In the next two sections we use these tools as an alternate way to create
confidence intervals and conduct hypothesis tests for a proportion.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a formula to find the standard error for a distribution of sample
proportions

• Identify when a normal distribution is an appropriate model for a dis-
tribution of sample proportions

Exercises for Section 6.1-D

SKILL BUILDER 1
In Exercises 6.1 to 6.6, if random samples of the
given size are drawn from a population with the
given proportion, find the standard error of the dis-
tribution of sample proportions.

6.1 Samples of size 50 from a population with pro-
portion 0.25

6.2 Samples of size 1000 from a population with
proportion 0.70

6.3 Samples of size 60 from a population with pro-
portion 0.90

6.4 Samples of size 30 from a population with pro-
portion 0.27

6.5 Samples of size 300 from a population with
proportion 0.08

6.6 Samples of size 100 from a population with
proportion 0.41

IMPACT OF SAMPLE SIZE ON ACCURACY
In Exercises 6.7 and 6.8, compute the standard error
for sample proportions from a population with the
given proportion using three different sample sizes.
What effect does increasing the sample size have on
the standard error? Using this information about
the effect on the standard error, discuss the effect
of increasing the sample size on the accuracy of
using a sample proportion to estimate a population
proportion.

6.7 A population with proportion p = 0.4 for sam-
ple sizes of n = 30, n = 200, and n = 1000.

6.8 A population with proportion p = 0.75 for
sample sizes of n = 40, n = 300, and n = 1000.

IS A NORMAL DISTRIBUTION
APPROPRIATE?
In Exercises 6.9 and 6.10, indicate whether the Cen-
tral Limit Theorem applies so that the sample pro-
portions follow a normal distribution.
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6.9 In each case below, is the sample size large
enough so that the sample proportions follow a nor-
mal distribution?

(a) n = 500 and p = 0.1

(b) n = 25 and p = 0.5

(c) n = 30 and p = 0.2

(d) n = 100 and p = 0.92

6.10 In each case below, is the sample size large
enough so that the sample proportions follow a nor-
mal distribution?

(a) n = 80 and p = 0.1

(b) n = 25 and p = 0.8

(c) n = 50 and p = 0.4

(d) n = 200 and p = 0.7

6.11 Public Two-year Colleges From the data in
CollegeScores2yr we know that about 66% of two-
year colleges in the US are public institutions. Sup-
pose that we select samples of n = 90 schools at a

time from the population of all two-year colleges
and find the proportion of public schools in each
sample.

(a) Produce a sketch of the distribution of these
sample proportions when n = 90 and p = 0.66.

(b) What proportion of these samples will have
more than 75% public schools?

6.12 Private Four-year Colleges From the data in
CollegeScores4yr we know that about 62% of four-
year colleges in the US are private institutions. Sup-
pose that we select samples of n = 75 schools at a
time from the population of all four-year colleges
and find the proportion of private schools in each
sample.

(a) Produce a sketch of the distribution of these
sample proportions when n = 75 and p = 0.62.

(b) What proportion of these samples will have less
than 50% public schools?

6.1-CICONFIDENCE INTERVAL FOR A PROPORTION

In Section 5.2 we see that when a distribution for a sample statistic is normally dis-
tributed, a confidence interval can be formed using

Sample Statistic ± z∗ ⋅ SE

where z∗ is an appropriate percentile from a standard normal distribution and SE is
the standard error of the sample statistic.

In Section 6.1-D we see that, for a large sample, the distribution of sample pro-
portions is reasonably normal with standard error given by

SE =
√

p(1 − p)
n

where n is the sample size and p is the proportion in the population.
We are almost in a position to combine these facts to produce a formula for

computing a confidence interval for a proportion. One small, but very important,
detail remains. In order to compute the standard error, SE, for the sample propor-
tions we need to know the proportion, p, for the population—but that’s exactly the
quantity we are trying to estimate with the confidence interval! Fortunately, there’s
an easy fix to this predicament. We use the sample proportion, p̂, in place of the
population proportion, p, when estimating the standard error for a confidence inter-
val. As long as the sample is large enough for the Central Limit Theorem to apply, a
normal distribution with this approximated SE is still a good model for the sample
proportions.
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Confidence Interval for a Proportion

The sample proportion based on a random sample of size n has

Sample statistic = p̂ and SE =
√

p̂(1 − p̂)
n

If z∗ is a standard normal endpoint to give the desired level of con-
fidence, and if the sample size is large enough so that np̂ ≥ 10 and
n(1 − p̂) ≥ 10, the confidence interval for a population proportion p is

Sample statistic ± z∗ ⋅ SE

which, in this case, corresponds to

p̂ ± z∗ ⋅

√
p̂(1 − p̂)

n

Example 6.3
In Example 3.19 on page 252 we describe a sample of 100 mixed nuts that contains
52 peanuts. Verify that the sample is large enough for the Central Limit Theorem
to apply and use the formula to find a 95% confidence interval for the proportion
of peanuts in this brand of mixed nuts. Interpret the confidence interval in con-
text. Compare the result to the interval 0.420 to 0.620 obtained using a bootstrap
distribution in Example 3.22 on page 255.

Solution The sample has 52 peanuts and 48 other nuts. Since both of these counts are big-
ger than 10, we can use the normal approximation. The sample proportion is p̂ =
52∕100 = 0.52 and, for a 95% confidence interval, the standard normal z∗ = 1.96.
Using the formula we have

Statistic ± z∗ ⋅ SE

p̂ ± z∗
√

p̂(1 − p̂)
n

0.52 ± 1.96

√
0.52(1 − 0.52)

100

0.52 ± 0.098

0.422 to 0.618

Based on this sample, we are 95% sure that between 42.2% and 61.8% of the mixed
nuts from this company are peanuts. In Example 3.22 we found a confidence interval
of (0.420, 0.620) based on the SE from a bootstrap distribution, which agrees nicely
with the result from the formula.
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Globe Turner, LLC/Getty Images

What proportion of Quebecers want to
secede from Canada?

Example 6.4
Quebec Sovereignty

Quebec is a large province in eastern Canada, and is the only Canadian province
with a predominantly French-speaking population. Historically there has been
debate over whether Quebec should secede from Canada and establish itself as an
independent, sovereign nation. In a survey of 800 Quebec residents, 28% thought
that Quebec should separate from Canada. In the same survey, 82% agreed that
Quebec society is distinct from the rest of Canada.2

(a) Find a 95% confidence interval for the proportion of Quebecers who would like
Quebec to separate from Canada.

(b) Find a 95% confidence interval for the proportion of Quebecers who think Que-
bec society is distinct from the rest of Canada.

Solution The sample size is clearly large enough to use the formula based on the normal
approximation.

(a) The proportion in the sample who think Quebec should separate is p̂ = 0.28 and
z∗ = 1.96 for 95% confidence, so we have

0.28 ± 1.96

√
0.28(1 − 0.28)

800
= 0.28 ± 0.031 = (0.249, 0.311)

We are 95% sure that between 24.9% and 31.1% of Quebecers would like Que-
bec to separate from Canada.

(b) The proportion in the sample who think Quebec society is distinct from the rest
of Canada is p̂ = 0.82 so the 95% confidence interval is

0.82 ± 1.96

√
0.82(1 − 0.82)

800
= 0.82 ± 0.027 = (0.793, 0.847)

We are 95% sure that between 79.3% and 84.7% of Quebecers think Quebec
society is distinct.

Examples 6.3 and 6.4 illustrate how the margin of error (ME) in a confidence
interval for a proportion depends on both the sample size and the sample propor-
tion.

2“Separation from Canada Unlikely for a Majority of Quebecers,” Angus Reid, June 9, 2009.
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Example 6.3 n = 100 p̂ = 0.52 ME = 0.098
Example 6.4(a) n = 800 p̂ = 0.28 ME = 0.031
Example 6.4(b) n = 800 p̂ = 0.82 ME = 0.027

We know that the margin of error decreases for larger sample sizes. We also see that,
even for the same sample size, a sample proportion closer to 0 or 1 gives a smaller
margin of error than p̂ closer to 0.5. In fact, the largest margin of error (and thus the
widest interval) occurs when p̂ is 0.5.

Determining Sample Size for Estimating a Proportion
A common question when designing a study is “How large a sample should we col-
lect?” When estimating a proportion with a confidence interval, the answer to this
question depends on three related questions:

• How accurate do we want the estimate to be? In other words, what margin of
error,ME, do we want?

• How much confidence do we want to have in the interval?

• What sort of proportion do we expect to see?

From the formula for the confidence interval we see that the margin of error is com-
puted with

ME = z∗
√

p̂(1 − p̂)
n

Suppose that, before getting a sample, we decide we want the confidence interval
for a proportion to have some predetermined margin of error. By choosing a large
enough n, we can get the margin of error as small as we’d like. To determine how
large a sample size is needed, we could solve this equation for n to find a sample size
that gives the specified margin of error with a given level of confidence. With a bit
of algebra this gives us

n =
( z∗

ME

)2
p̂(1 − p̂)

Unfortunately, we haven’t even taken a sample yet so we don’t have a value to use
for p̂. In practice, we address this problem in one of two ways:

• Make a reasonable guess for p̂. (We’ll refer to this guess as p̃).

• If we are not willing or able to make a reasonable guess, we use p̃ = 0.5.

In some cases we might have past experience with a proportion or conduct a small
pilot study to get an initial estimate for p̂ to use in estimating the required sample
size. Remember that the margin of error is largest when p̂ = 0.5, so if we use that
value to estimate a sample size, the resulting interval will have a margin of error
within the bound we set or slightly smaller if p̂ is farther away from 0.5.

Determination of Sample Size to Estimate a Proportion

If we want to estimate a population proportion to within a desired
margin of error,ME, with a given level of confidence, we should select
a sample of size

n =
( z∗

ME

)2
p̃(1 − p̃)

where we use p̃ = 0.5 or, if available, some other estimate of p.
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Example 6.5
Quebec Sovereignty (continued)

In Example 6.4 we analyzed a poll of 800 Quebecers, in which 28% thought that
Quebec should separate from Canada. About how many Quebecers should we ran-
domly sample to estimate the proportion of residents who think the province should
separate to within ±1% with 99% confidence?

Solution Based on the previous poll, our best guess at the proportion is p̃ = 0.28, so we use
this to estimate the sample size needed. The margin of error desired is ME = 0.01,
and z∗ = 2.576 for 99% confidence, which gives

n =
(
2.576
0.01

)2

0.28(1 − 0.28) = 13377.72

By convention we round up any fractional parts of the sample, so we would require
a (rather large) sample size of 13,378 Quebecers to achieve the desired accuracy.

In certain situations, there is a simpler formula for determining sample size. In the
special case where we want 95% confidence, so z∗ ≈ 2, and use the conservative
estimate of p̃ = 0.5, the formula simplifies to

n ≈ 1
(ME)2

Example 6.6
Political Approval

Polling agencies often ask voters whether they approve or disapprove of the job
a politician is doing. Suppose that pollsters want to estimate the proportion who
approve of the job done by a particular politician to within ±3% with 95% confi-
dence. How large a sample should they take?

Solution The desired margin of error is ME = 0.03. If we don’t assume anything about what
the approval rating might be, we use 0.5 for the proportion, and use the approximate
formula to find

n ≈ 1
(ME)2

= 1
(0.03)2

= 1111.11

A random sample of 1112 voters is enough to estimate the approval rating of a
politician to within 0.03 with 95% confidence.

In practice, polling organizations often include multiple questions in a survey, so
assuming the worst case proportion of p̂ = 0.5 when choosing a sample size for the
whole survey is a prudent decision. The next time you see poll results reported in a
news story, check whether the report includes a sample size (often a bit more than
1000) and a general margin of error (often 3%).

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to compute a confidence
interval for a population proportion, based on a formula for the stan-
dard error

• Determine a sample size needed to estimate a proportion within a spec-
ified margin of error at a given level of confidence
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Exercises for Section 6.1-CI

SKILL BUILDER 1
In Exercises 6.13 to 6.16, use the normal distribu-
tion to find a confidence interval for a proportion p
given the relevant sample results. Give the best esti-
mate for p, the margin of error, and the confidence
interval. Assume the results come from a random
sample.

6.13 A 95% confidence interval for p given that
p̂ = 0.38 and n = 500

6.14 A 90% confidence interval for p given that
p̂ = 0.85 and n = 120

6.15 A 99% confidence interval for the proportion
who will answer “Yes” to a question, given that
62 answered yes in a random sample of 90 people

6.16 A 95% confidence interval for the proportion
of the population in Category A given that 23% of
a sample of 400 are in Category A

SKILL BUILDER 2
In Exercises 6.17 to 6.20, what sample size is needed
to give the desired margin of error in estimating a
population proportion with the indicated level of
confidence?

6.17 Amargin of error within ±5% with 95% confi-
dence.

6.18 Amargin of error within ±1% with 99% confi-
dence.

6.19 Amargin of error within ±3% with 90% confi-
dence. We estimate that the population proportion
is about 0.3.

6.20 Amargin of error within ±2% with 95% confi-
dence. An initial small sample has p̂ = 0.78.

6.21 What Proportion of Americans Say They Are
Poor? A survey of 1000 US Adults conducted in
October 2019 found that 182 of them described
themselves as poor. In Exercise 3.128, we used a
bootstrap distribution to find a 90% confidence
interval for the proportion of all US adults who
would describe themselves as poor. Here, we find
this 90% confidence interval using the normal dis-
tribution and a formula for the standard error, as
follows:

(a) Give notation and value for the sample statistic.

(b) Find the standard error for this sample statistic.

(c) What is z∗ for a 90% confidence interval?

(d) Use the results of (a), (b), and (c) to find the
90% confidence interval.

6.22 Teen Cigarette Use Is Down The US Centers
for Disease Control conducts the National Youth
Tobacco Survey each year. The preliminary results3

of 2019 show that e-cigarette use is up among US
teens while cigarette use is down. We examined
e-cigarette use in Exercise 3.137 and here we esti-
mate cigarette use. In the sample of 1582 teens, 92
reported smoking a cigarette in the last 30 days.

(a) Give notation and define the parameter we are
estimating.

(b) Give notation and value of the sample statistic.

(c) Find the standard error for this estimate.

(d) What is z∗ for a 99% confidence interval?

(e) What is the 99% confidence interval?

(f) What is the best estimate for the parameter we
are estimating? What is the margin of error?

6.23 How Many Household Cats Hunt Birds?
“Domestic cats kill many more wild birds in the
United States than scientists thought,” states a
recent article.4 Researchers used a sample of n= 140
households in the US with cats to estimate that 35%
of household cats in the US hunt outdoors.

(a) Find and interpret a 95% confidence interval for
the proportion of household cats in the US that
hunt outdoors.

(b) Is it plausible that the proportion of household
cats in the US hunting outdoors is 0.45? Is it
plausible that it is 0.30?

6.24 Have You Made a Friend Online? A survey5

of 1060 randomly selected US teens ages 13 to 17
found that 605 of them say they have made a new
friend online.

(a) Find and interpret a 90% confidence interval
for the proportion, p, of all US teens who have
made a new friend online.

(b) Give the best estimate for p and give the margin
of error for the estimate.

(c) Use the interval to determine whether we can
be 90% confident that more than half of US
teens have made a new friend online.

3LaVito A, “CDC says teen vaping surges to more than 1 in 4
high school students,” CNBC Health and Science, September 12,
2019.
4Milius, S., “Cats kill more than one billion birds each year,”
Science News, 183(4), February 23, 2013, revised March 8, 2014.
Data approximated from information give in the article.
5Lenhart, A., “Teens, Technology, and Friendships,” Pew
Research Center, pewresearch.org, August 6, 2015.
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6.25 What Percent of US Adults Say They Never
Exercise? In a survey of 1000 US adults, twenty per-
cent say they never exercise.6 Find and interpret a
99% confidence interval for the proportion of US
adults who say they never exercise. What is the mar-
gin of error, with 99% confidence?

6.26 Fourth Down Conversions in American Foot-
ball In analyzing data from over 700 games in the
National Football League, economist David Romer
identified 1068 fourth-down situations in which,
based on his analysis, the right call would have been
to go for it and not to punt. Nonetheless, in 959 of
those situations, the teams punted. Find and inter-
pret a 95% confidence interval for the proportion
of times NFL teams punt on a fourth down when,
statistically speaking, they shouldn’t be punting.7

Assume the sample is reasonably representative of
all such fourth down situations in the NFL.

6.27 One True Love? Data 2.1 on page 54 deals
with a survey that asked whether people agree or
disagree with the statement “There is only one
true love for each person.” The survey results in
Table 2.1 show that 735 of the 2625 respondents
agreed, 1812 disagreed, and 78 answered “don’t
know.”

(a) Find a 90% confidence interval for the propor-
tion of people who disagree with the statement.

(b) Find a 90% confidence interval for the propor-
tion of people who “don’t know.”

(c) Which estimate has the larger margin of error?

STANDARD ERROR FROM A FORMULA
AND A BOOTSTRAP DISTRIBUTION
In Exercises 6.28 to 6.31, use StatKey or other tech-
nology to generate a bootstrap distribution of sam-
ple proportions and find the standard error for that
distribution. Compare the result to the standard
error given by the Central Limit Theorem, using the
sample proportion as an estimate of the population
proportion p.

6.28 Proportion of peanuts in mixed nuts, with
n = 100 and p̂ = 0.52

6.29 Proportion of home team wins in soccer, with
n = 120 and p̂ = 0.583

6.30 Proportion of lie detector trials in which the
technology misses a lie, with n = 48 and p̂ = 0.354

6.31 Proportion of survey respondents who say
exercise is important, with n = 1000 and p̂ = 0.753

6“75% say exercise is important in daily life,” Rasmussen
Reports, March 26, 2011.
7Moskowitz, T. and Wertheim, J., Scorecasting, Crown
Archetype, New York, 2011, p. 39.

COMPARING NORMAL AND BOOTSTRAP
CONFIDENCE INTERVALS
In Exercises 6.32 and 6.33, find a 95% confidence
interval for the proportion two ways: using StatKey
or other technology and percentiles from a boot-
strap distribution, and using the normal distribution
and the formula for standard error. Compare the
results.

6.32 Proportion of home team wins in soccer, using
p̂ = 0.583 with n = 120

6.33 Proportion of Reese’s Pieces that are orange,
using p̂ = 0.48 with n = 150

WHAT INFLUENCES THE SAMPLE SIZE?
In Exercises 6.34 to 6.36, we examine the effect
of different inputs on determining the sample size
needed to obtain a specific margin of error when
finding a confidence interval for a proportion.

6.34 Find the sample size needed to give, with 95%
confidence, a margin of error within ±6% when
estimating a proportion. Within ±4%. Within ±1%.
(Assume no prior knowledge about the popula-
tion proportion p.) Comment on the relationship
between the sample size and the desired margin of
error.

6.35 Find the sample size needed to give a margin
of error to estimate a proportion within ±3% with
99% confidence. With 95% confidence. With 90%
confidence. (Assume no prior knowledge about the
population proportion p.) Comment on the rela-
tionship between the sample size and the confi-
dence level desired.

6.36 Find the sample size needed to give, with 95%
confidence, a margin of error within ±3% when
estimating a proportion. First, find the sample size
needed if we have no prior knowledge about the
population proportion p. Then find the sample size
needed if we have reason to believe that p ≈ 0.7.
Finally, find the sample size needed if we assume
p ≈ 0.9. Comment on the relationship between the
sample size and estimates of p.

6.37 Does the Public Support Sin Taxes? A survey
of 1000 adults in the US asked “Do you favor or
oppose ‘sin taxes’ on soda and junk food?” The pro-
portion in favor of taxing these foods was 32%.8

(a) Find a 95% confidence interval for the propor-
tion of US adults favoring taxes on soda and
junk food.

(b) What is the margin of error?

8“32% favor ‘sin taxes’ on soda, junk food,” Rasmussen Reports,
April 1, 2011.
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(c) If we want a margin of error of only 1% (with
95% confidence), what sample size is needed?

6.38 What Proportion Favor a Gun Control Law?
A survey is planned to estimate the proportion of
voters who support a proposed gun control law. The
estimate should be within a margin of error of ±2%
with 95% confidence, and we do not have any prior
knowledge about the proportion whomight support
the law. How many people need to be included in
the sample?

6.39 Advertising a Sunscreen Pill An advertising
firm plans to have a sample of individuals view a
commercial on a “sunscreen pill” that one can swal-
low to provide mild SPF protection throughout the
day. After viewing the commercial, each individ-
ual will be asked if he/she would consider buying
the product. How many individuals should the firm
sample to estimate the proportion who would con-
sider buying the product to within a ±4% margin of
error with 98% confidence?

USING THE FORMULA n = 1/(ME)2

TO DETERMINE SAMPLE SIZE
When we want 95% confidence and use the conser-
vative estimate of p = 0.5, we can use the simple
formula n = 1∕(ME)2 to estimate the sample size

needed for a given margin of error ME. In
Exercises 6.40 to 6.43, use this formula to determine
the sample size needed for the given margin of
error.

6.40 Amargin of error of 0.01.

6.41 Amargin of error of 0.02.

6.42 Amargin of error of 0.04.

6.43 Amargin of error of 0.05.

6.44 Sex of Atlanta Commuters One of the vari-
ables in the dataset CommuteAtlanta, introduced
in Data 3.3 on page 248, gives the sex of each
commuter in the sample. Use technology and the
dataset to construct and interpret a 95% confidence
interval for the proportion of Atlanta commuters
who are male.

6.45 Survival of ICU Patients The dataset ICUAd-
missions, introduced in Data 2.3 on page 77,
includes information on 200 patients admitted to an
Intensive Care Unit. One of the variables, Status,
indicates whether each patient lived (indicated with
a 0) or died (indicated with a 1). Use technology and
the dataset to construct and interpret a 95% confi-
dence interval for the proportion of ICU patients
who live.

6.1-HTHYPOTHESIS TEST FOR A PROPORTION

In Section 5.1 we see that, when a randomization distribution is normal, we can com-
pute a p-value using a standard normal distribution and a standardized test statistic
of the form

z =
Sample Statistic −Null Parameter

SE

The sample statistic is computed from the sample data and the null parameter is
specified by the null hypothesis, H0.

When testing a hypothesis about a population proportion, the null hypothesis
is typically H0 ∶ p = p0 where p0 is some specific value of the proportion. Thus the
null parameter is p0 and the sample statistic is the proportion from a sample, p̂. We
have

z =
p̂ − p0
SE

We can calculate the standard error using the formula given in Section 6.1-D.
Remember that, in conducting a hypothesis test, we want to see if p̂ is in an unusual
place of a distribution we would expect to see when H0 is true. Since we assume
H0 is true, we use p0 in place of p for computing SE. Using the hypothesized null
proportion, p0, when computing the standard error for a test, we have

SE =
√

p0(1 − p0)
n
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Hypothesis Test for a Proportion

To test H0 ∶ p = p0 vs Ha ∶ p ≠ p0 (or a one-tail alternative), we use
the standardized test statistic

z = Statistic −Null Value
SE

=
p̂ − p0√
p0(1−p0)

n

where p̂ is the proportion in a random sample of size n. Provided
the sample size is reasonably large (so that np0 ≥ 10 and n(1 − p0) ≥
10), the p-value of the test is computed using the standard normal
distribution.

We find the p-value for the test as the area beyond z in one (or both) tail(s)
of the standard normal distribution, depending on the direction of the alternative
hypothesis.

Example 6.7
Would You Prefer a Self-Driving Car?

In a Nielsen survey9 conducted in October 2015, a random sample of n = 340 US
middle school students were asked whether they would prefer a self-driving car or
a car that they control themselves. The majority (59%) said that they would prefer
a car that they control themselves, while 41% would prefer a self-driving car. Test,
using a 5% significance level, to see if this provides evidence that more than 50% of
US middle school students prefer a car that they control themselves.

Solution The null and alternative hypotheses are

H0 ∶ p = 0.50

Ha ∶ p > 0.50

where p is the proportion of all US middle school students choosing a car they
control.

The proportion from the null hypothesis is p0 = 0.50 and the sample size is
n = 340, so the sample size is definitely large enough for the CLT to apply. We
may use the test based on a normal distribution. The proportion from the sample
is p̂ = 0.59 and the standardized test statistic is

z = Statistic −Null Value
SE

=
p̂ − p0√
p0(1−p0)

n

= 0.59 − 0.50√
0.50(1−0.50)

340

= 3.319

Since this is a right-tail test,Ha ∶ p > 0.50, the p-value is the proportion of the stan-
dard normal distribution in the tail to the right of 3.319. Using technology we find
this is 0.00045, so we have

p-value = 0.00045

The p-value is very small, so we rejectH0 and have strong evidence that the propor-
tion of US middle school students opting for a car they control themselves is greater
than 0.50.

9“To Drive, or Not to Drive: The Youth Perspective on Self-Driving Cars,” www.neilsen.com, Media and
Entertainment, March 21, 2016.
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Rock-Paper-Scissors

D A T A 6 . 1 Rock-Paper-Scissors
Rock-Paper-Scissors, also called Roshambo, is a popular two-player game often
used to quickly determine a winner and loser. In the game, each player puts out
a fist (rock), a flat hand (paper), or a hand with two fingers extended (scissors).
In the game, rock beats scissors which beats paper which beats rock. The
question is: Are the three options selected equally often? Knowing the relative
frequencies with which the options are selected would give a player a
significant advantage. A study10 observed 119 people playing
Rock-Paper-Scissors. Their choices for the first turn are shown in Table 6.1. ◼

Table 6.1 Frequencies for first turn in
Rock-Paper-Scissors

Option Selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

Example 6.8
Do the data in Table 6.1 provide evidence that the proportion of times players start
with “rock” is different from the 1∕3 we would expect if the players are choosing
randomly?

Solution We test H0 ∶ p = 1∕3 vs Ha ∶ p ≠ 1∕3, where p is the proportion of times a player
uses rock on the first turn of a Rock-Paper-Scissors game. For the sample of n = 119
players we have p̂ = 66∕119 = 0.555. We compute a standardized test statistic:

z = Statistic −Null Value
SE

=
p̂ − p0√
p0(1−p0)

n

=
0.555 − 1∕3√

1∕3(1−1∕3)
119

= 5.13

10Based on Eyler, D., Shalla, Z., Doumaux, A., and McDevitt, T., “Winning at Rock-Paper-Scissors,” The
College Mathematics Journal, March 2009; 40(2):125–128.
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Checking that 119 ⋅ 1∕3 = 39.7 and 119 ⋅ (1 − 1∕3) = 79.3 are both bigger than
10, we can use the standard normal distribution to find the p-value. However, a test
statistic of 5.13 is so far out in the tail of a standard normal distribution that we
don’t really need to use technology to recognize that the p-value is extremely small,
even after doubling to account for the two-tailed alternative. Since the p-value is
essentially zero, this gives very strong evidence that rock is used more often than
random chance would suggest on the first turn of a Rock-Paper-Scissors game.

Example 6.9
Sample Size Matters!

Suppose that a test for extrasensory perception (ESP) is designed where a person
tries to guess the suit (spades, diamonds, hearts, clubs) of a randomly selected play-
ing card. In the absence of ESP, the proportion guessed correctly should be p = 0.25,
so a natural test to consider is H0 ∶ p = 0.25 vs Ha ∶ p > 0.25. Complete the test for
each possible set of sample results below, and discuss the effect of sample size on
the results.

(a) The person guesses 29 correctly out of 100 trials.

(b) The person guesses 290 correctly out of 1000 trials.

Solution (a) The sample statistic is p̂ = 0.29. The standardized test statistic is

z = Statistic −Null Value
SE

=
p̂ − p0√
p0(1−p0)

n

= 0.29 − 0.25√
0.25(0.75)

100

= 0.924

This is a right-tail test, and the p-value from a normal distribution is 0.178. This
is not a small p-value and we do not rejectH0. We do not have evidence that the
person has any special ESP abilities.

(b) The sample statistic in this case is also p̂ = 0.29. The standardized test statistic is

z = Statistic −Null Value
SE

=
p̂ − p0√
p0(1−p0)

n

= 0.29 − 0.25√
0.25(0.75)

1000

= 2.921

This is a right-tail test, and the p-value from a normal distribution is 0.0017. This
is a small p-value and we rejectH0. We have evidence that this person has some
ESP abilities! As we saw in Chapter 4, the larger sample size greatly increases
our ability to find evidence when there really is an effect.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to test a hypothesis about
a population proportion, using a formula for the standard error
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Exercises for Section 6.1-HT

SKILL BUILDER 1
In Exercises 6.46 to 6.51, determine whether it is
appropriate to use the normal distribution to esti-
mate the p-value. If it is appropriate, use the normal
distribution and the given sample results to com-
plete the test of the given hypotheses. Assume the
results come from a random sample and use a 5%
significance level.

6.46 Test H0 ∶ p = 0.5 vs Ha ∶ p > 0.5 using the
sample results p̂ = 0.57 with n = 40

6.47 Test H0 ∶ p = 0.3 vs Ha ∶ p < 0.3 using the
sample results p̂ = 0.21 with n = 200

6.48 Test H0 ∶ p = 0.25 vs Ha ∶ p < 0.25 using the
sample results p̂ = 0.16 with n = 100

6.49 Test H0 ∶ p = 0.8 vs Ha ∶ p > 0.8 using the
sample results p̂ = 0.88 with n = 50

6.50 Test H0 ∶ p = 0.75 vs Ha ∶ p ≠ 0.75 using the
sample results p̂ = 0.69 with n = 120

6.51 Test H0 ∶ p = 0.2 vs Ha ∶ p ≠ 0.2 using the
sample results p̂ = 0.26 with n = 1000

6.52 Antibiotics in Infancy Exercise 2.25 describes
a Canadian longitudinal study that examines
whether giving antibiotics in infancy increases the
likelihood that the child will be overweight later in
life. The study included 616 children and found that
438 of the children had received antibiotics during
the first year of life. Test to see if this provides evi-
dence that more than 70% of Canadian children
receive antibiotics during the first year of life. Show
all details of the hypothesis test, including hypothe-
ses, the standardized test statistic, the p-value, the
generic conclusion using a 5% significance level,
and a conclusion in context.

6.53 Left-Handed Lawyers Approximately 10% of
Americans are left-handed (we will treat this as a
known population parameter). A study on the rela-
tionship between handedness and profession found
that in a random sample of 105 lawyers, 16 of them
were left-handed.11 Test the hypothesis that the pro-
portion of left-handed lawyers differs from the pro-
portion of left-handed Americans.

(a) Clearly state the null and alternative hypoth-
eses.

(b) Calculate the test statistic and p-value.

11Schachter, S. and Ransil, B., “Handedness Distributions in
Nine Professional Groups,” Perceptual and Motor Skills, 1996;
82: 51–63.

(c) What do we conclude at the 5% significance
level? At the 10% significance level?

6.54 Do You Believe in Ghosts? A telephone sur-
vey of 1000 randomly selected US adults found that
31% of them say they believe in ghosts.12 Does this
provide evidence that more than 1 in 4 US adults
believe in ghosts? Clearly show all details of the
test.

6.55 What Proportion of College Students Are Sat-
isfied with Their Overall Academic Experience?
Exercise 2.16 introduces a survey of 5204 first-year
full-time college students in the US. The survey was
administered at the end of the first year, and 4122 of
the students in the sample said that they were satis-
fied with their overall academic experience during
the first year. Does the data from this sample pro-
vide evidence that more than 75% of US full-time
students are satisfied with their overall academic
experience at the end of their first year? Give all
details of the hypothesis test.

6.56 Are Husbands More Likely to Be Older Than
Wives? Exercise 2.213 introduces a dataset giving
the ages of the two people getting married for a
sample of marriage licenses. (In the sample, all of
the marriages were between male-female couples.)
In the sample of 105 marriages, the husband was
older than the wife in 75 of them. Test to see if
this sample provides evidence that, in male-female
married couples, the husband is older than the wife
in more than half of them. Use p to represent the
proportion of all male-female married couples for
which the husband is older, and show all details of
the test.

6.57 Home Field Advantage in Baseball 2009
There were 2430 Major League Baseball (MLB)
games played in 2009, and the home team won the
game in 54.9% of the games.13 If we consider the
games played in 2009 as a sample of all MLB games,
test to see if there is evidence, at the 1% level,
that the home team wins more than half the games.
Show all details of the test.

6.58 Home Field Advantage in Baseball 2018
There were 2458 Major League Baseball (MLB)
games played in 2018, and the home team won

12“31% Believe in Ghosts,” Rasmussen Reports, October 30,
2011.
13http://www.baseballprospectus.com/article.php?articleid=9854,
accessed June 2011.
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1297 of those games.14 If we consider the games
played in 2018 as a sample of all MLB games, test
to see if there is evidence, at the 1% level, that the
home team wins more than half the games. Show all
details of the test.

6.59 Do You Know Your Neighbors? A survey of
2255 randomly selected US adults found that 51%
said they know all or most of their neighbors.15

Does this provide evidence that more than half of
US adults know most or all of their neighbors?

6.60 Is B a Good Choice on a Multiple-Choice
Exam? Multiple-choice questions on Advanced
Placement exams have five options: A, B, C, D,
and E. A random sample of the correct choice on
400 multiple-choice questions on a variety of AP
exams16 shows that B was the most common cor-
rect choice, with 90 of the 400 questions having B
as the answer. Does this provide evidence that B
is more likely to be the correct choice than would
be expected if all five options were equally likely?
Show all details of the test. The data are available
in APMultipleChoice.
6.61 Euchre In Exercise 4.157 on page 343, we
introduce a series of Euchre games played between
two teams: Team A and Team B. After 40 games,
Team A has won 16 times and Team B has won 24
times. Can we conclude that one team is better than
the other? Clearly state the null and alternative
hypotheses, calculate the test statistic and p-value,
and interpret the result.

6.62 Do Babies Understand Probability? Can
babies reason probabilistically? A study17 inves-
tigates this by showing ten- to twelve-month-old
infants two jars of lollipop-shaped objects colored
pink or black. Each infant first crawled or walked

14https://www.teamrankings.com/mlb/trend/win_trends/is_home?
range=yearly_mlb_2018. Accessed July 2019.
15Hampton, K., Goulet, L., Rainie, L. and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
16http://apcentral.collegeboard.com.
17Denison, S., and Xu, F. (2014). “The origins of probabilistic
inference in human infants,” Cognition, 130:335–347.

to whichever color they wanted, determining their
“preferred” color. They were then given the choice
between two jars that had the same number of pre-
ferred objects, but that differed in their probability
of getting the preferred color; each jar had 12 in the
preferred color and either 4 or 36 in the other color.
Babies choosing randomly or based on the abso-
lute number of their preferred color would choose
equally between the two jars, while babies under-
standing probability would more often choose the
jar with the higher proportion of their preferred
color. Of the 24 infants studied, 18 chose the jar with
the higher proportion of their preferred color. Are
infants more likely to choose the jar with the higher
proportion of their preferred color?

(a) State the null and alternative hypotheses.

(b) Give the relevant sample statistic, using correct
notation.

(c) Which of the following should be used to cal-
culate a p-value for this dataset? A randomiza-
tion test, a test using the normal distribution, or
either one? Why?

(d) Find a p-value using a method appropriate for
this data situation.

(e) Make a conclusion in context, using 𝛼 = 0.05.

6.63 Percent of Smokers The data in Nutrition-
Study, introduced in Exercise A.28 on page 190,
include information on nutrition and health habits
of a sample of 315 people. One of the variables is
Smoke, indicating whether a person smokes or not
(yes or no). Use technology to test whether the data
provide evidence that the proportion of smokers is
different from 20%.

6.64 Regular Vitamin Use The data in Nutrition-
Study, introduced in Exercise A.28 on page 190,
include information on nutrition and health habits
of a sample of 315 people. One of the variables
is VitaminUse, indicating whether a person takes a
multivitamin pill regularly or occasionally or not at
all. Use technology to test whether the data provide
evidence that the proportion taking a vitamin pill
regularly is different from 35%.
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6.2-DDISTRIBUTION OF A MEAN

For quantitative data, the parameter of interest is often the population mean, 𝜇. The
Central Limit Theorem (CLT) in Section 5.1 says that sample statistics often follow
a normal distribution if the sample size is large. This is true for the distribution of
sample means, x, which will be centered at the population mean, 𝜇. Besides the
center, the other important quantity we need to describe a normal distribution is
the standard deviation, the standard error (SE) of the sample means. As we have
seen, one way to estimate this SE is to use a bootstrap or randomization distribution.
Statistical theory gives us an alternate method for finding the standard error. When
choosing random samples of size n from a population with mean 𝜇 and standard
deviation 𝜎, the standard error of the sample means is

SE = 𝜎√
n

Thus we can predict the center and spread of the distribution of sample means. The
amazing feature of the Central Limit Theorem is that we can also tell something
about the shape. Even if the distribution of the population is heavily skewed or
has big outliers, the distribution of the sample means will tend to follow a normal
distribution as long as the sample size is large enough. As a general rule, the approx-
imation works well when the sample size is at least 30.

Central Limit Theorem for Sample Means

If the sample size n is large, the distribution of sample means from
a population with mean 𝜇 and standard deviation 𝜎 is approximately
normally distributed with mean 𝜇 and standard deviation 𝜎∕

√
n.

Unfortunately, we find two difficulties when trying to use this result in practice.
First, we generally don’t know the standard deviation 𝜎 for the population of inter-
est; we usually have only the information in a sample from the population. This is
relatively easy to deal with, since we can just use the standard deviation from the
sample, s, when estimating the standard error of the sample means.

SE = s√
n

The second difficulty is that when we use the SE based on s∕
√
n to standardize the

sample mean, the distribution is no longer a standard normal. We’ll introduce a new
distribution to take care of this difficulty after the next example.

Example 6.10
In each case below, use the formula to compute the standard error and compare it
to that obtained earlier using a bootstrap or randomization distribution.

(a) A sample of n = 500 Atlanta commute times shows x = 29.11 minutes with
s = 20.7. The standard error from simulation was 0.93.

(b) A sample of n = 50 body temperatures has mean x = 98.26 with s = 0.765. The
standard error from simulation was 0.11.
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Solution (a) We have

SE = s√
n
= 20.7√

500
= 0.93

(b) We have

SE = s√
n
= 0.765√

50
= 0.11

The values of SE obtained with the formula agree nicely with the standard error
estimates that we found with the simulated sample means.

The t-Distribution
So we have a formula to estimate the standard error of sample means, but if we
standardize x using s∕

√
n in the denominator we no longer get a standard normal dis-

tribution. Fortunately, a man named William Sealy Gosset18 worked out the distri-
bution for this quantity in the early 1900s—under an assumption that the underlying
population follows a normal distribution. The result is known as a t-distribution and
it turns out to work well even if the underlying population is not perfectly normal.

A key fact about the t-distribution is that it depends on the size of the sample.
We would expect a larger sample to tend to give a better estimate of the true stan-
dard deviation 𝜎 and thus the standardization based on s∕

√
n should behave more

like a standard normal. This is exactly what happens. The sample size is reflected in
a parameter called the degrees of freedom for the t-distribution. When working with
x for a sample of size n and SE = s∕

√
n, we use a t-distribution with n − 1 degrees of

freedom (df).

The Distribution of Sample Means Using the Sample Standard
Deviation

When choosing random samples of size n from a population withmean
𝜇, the distribution of the sample means is centered at the population
mean, 𝜇, and has standard error estimated by

SE = s√
n

where s is the standard deviation of a sample.

The standardized sample means approximately follow a t-distribution
with n − 1 degrees of freedom (df).

For small sample sizes (n < 30), the t-distribution is only a good
approximation if the underlying population has a distribution that is
approximately normal.

Figure 6.3 shows plots of t-distributions with 5 and 15 degrees of freedom along
with a standard normal distribution. Note that the t-distribution is very similar
to the classic bell-shaped pattern of the normal curve, only with slightly thicker
tails—especially for small degrees of freedom. Even for 15 degrees of freedom, the
t-distribution and standard normal are virtually indistinguishable. The larger the
sample size, n, the closer the t-distribution is to the normal distribution.

18Gosset used his statistical knowledge to become Head Brewmaster at Guinness Brewery.
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Figure 6.3 Comparing
t-distributions with 5 and
15 df to the standard
normal distribution

t: 5 df

t:15 df

N(0,1)

–4 –3 –2 –1 0 1 2 3 4

We see that the t-distribution and the standard normal are very similar, so
we weren’t far off when we used the standard normal values z in Chapter 5 for
inference about means. From now on, though, we will use the slightly more accurate
t-distribution with n − 1 df, rather than the standard normal, when doing inference
for a population mean based on a sample mean x and sample standard deviation,
s. Fortunately, when using technology to find endpoints or probabilities for a
t-distribution, the process is usually very similar to what we have already seen for
the normal distribution. For larger samples, the results will be very close to what we
get from a standard normal, but we will still use the t-distribution for consistency.
For smaller samples, the t-distribution gives an extra measure of safety when using
the sample standard deviation s in place of the population standard deviation 𝜎.

Conditions for the t-Distribution
For small samples, the use of the t-distribution requires that the population distri-
bution be approximately normal. If the sample size is small, we need to check that
the data are relatively symmetric and have no huge outliers that might indicate a
departure from normality in the population. We don’t insist on perfect symmetry or
an exact bell-shape in the data in order to use the t-distribution. The normality con-
dition is most critical for small sample sizes, since for larger sample sizes the CLT for
means kicks in. Unfortunately, it is more difficult to judge whether a sample looks
“normal” when the sample size is small. In practice, we avoid using the t-distribution
if the sample is small (say less than 20) and the data contain clear outliers or skew-
ness. For more moderate sized samples (20 to 50) we worry if there are very extreme
outliers or heavy skewness. When in doubt, we can always go back to the ideas of
Chapters 3 and 4 and directly simulate a bootstrap or randomization distribution.

If the sample size is small and the data are heavily skewed or contain extreme
outliers, the t-distribution should not be used.

Example 6.11
Dotplots of three different samples are shown in Figure 6.4. In each case, indicate
whether or not it is appropriate to use the t-distribution. If it is appropriate, give the
degrees of freedom for the t-distribution and give the estimated standard error.

(a) A sample with n = 50, x = 8.0, and s = 10.5, shown in Figure 6.4(a)

(b) A sample with n = 8, x = 4.9, and s = 1.25, shown in Figure 6.4(b)

(c) A sample with n = 10, x = 12.6, and s = 4.8, shown in Figure 6.4(c)
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Figure 6.4 In which
cases might we have
concerns about using the
t-distribution? (a) n = 50, x = 8.0 s = 10.5

6 12 18 24 30 36 42 48

(b) n = 8, x = 4.9, s = 1.25

3 54 6 7

(c) n = 10, x = 12.6, s = 4.8

10 12 14 16 18 20 22 24

Solution The t-distribution is appropriate if the sample size is large (n ≥ 30) or if the under-
lying distribution appears to be relatively normal. We have concerns about the
t-distribution only for small sample sizes and heavy skewness or outliers.

(a) Since the sample size is large (n = 50), the t-distribution is appropriate. For the
degrees of freedom df and estimated standard error SE, we have

df = n − 1 = 50 − 1 = 49 and SE = s√
n
= 10.5√

50
= 1.485

(b) The sample size is small in this case (n = 8) but the sample is not heavily skewed
or with outliers, so a condition of normality is reasonable. The t-distribution is
appropriate. For the degrees of freedom df and estimated standard error SE,
we have

df = n − 1 = 8 − 1 = 7 and SE = s√
n
= 1.25√

8
= 0.442

(c) In this case, the sample size is small (n = 10) and the data are heavily skewed and
have an obvious outlier. It is not appropriate to use the t-distribution with this
sample. If we want to do inference using this sample, we might try simulation
methods, such as using a bootstrap or randomization distribution.

Using the t-Distribution
As with the normal distribution, the method used to find areas and endpoints in a
t-distribution will vary depending on the type of technology being used.

Example 6.12
We select a sample of size 16 from a population that is reasonably normally dis-
tributed and use a t-statistic for inference about the sample mean.

(a) Find endpoints in a t-distribution with 0.025 beyond them in each tail.

(b) Find the proportion in a t-distribution above 1.5.

Solution For a sample size of n = 16 we need to use a t-distribution with 15 degrees of free-
dom.

(a) Figure 6.5(a) shows that the points with 2.5% of the t-distribution in each tail
are at −2.131 and +2.131.

(b) Figure 6.5(b) shows that about 0.077 of a t-distribution with 15 df will lie
above 1.5.
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(b) Area beyond 1.5 for t15

Figure 6.5 Calculations for t-distribution with 15 df

In the next two sections, we explore the use of the t-distribution in more detail,
first for computing a confidence interval for a population mean and then for com-
puting a p-value to test a hypothesis about a mean.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use the formula to find the standard error for a distribution of sample
means

• Recognize when a t-distribution is appropriate for inference about a
sample mean

• Find endpoints and proportions for a t-distribution

Exercises for Section 6.2-D

SKILL BUILDER 1
In Exercises 6.65 to 6.68, if random samples of the
given size are drawn from a population with the
given mean and standard deviation, find the stan-
dard error of the distribution of sample means.

6.65 Samples of size 1000 from a population with
mean 28 and standard deviation 5

6.66 Samples of size 10 from a population with
mean 6 and standard deviation 2

6.67 Samples of size 40 from a population with
mean 250 and standard deviation 80

6.68 Samples of size 75 from a population with
mean 60 and standard deviation 32

SKILL BUILDER 2
Use a t-distribution to answer the questions in
Exercises 6.69 to 6.76. Assume the sample is a

random sample from a distribution that is reason-
ably normally distributed and we are doing infer-
ence for a sample mean.

6.69 Find endpoints of a t-distribution with 5%
beyond them in each tail if the sample has size
n= 10.

6.70 Find endpoints of a t-distribution with 1%
beyond them in each tail if the sample has size
n= 18.

6.71 Find endpoints of a t-distribution with 0.025
beyond them in each tail if the sample has size
n= 25.

6.72 Find endpoints of a t-distribution with 0.005
beyond them in each tail if the sample has size
n= 40.

6.73 Find the area in a t-distribution above 2.3 if the
sample has size n = 6.
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6.74 Find the area in a t-distribution above 1.5 if the
sample has size n = 8.

6.75 Find the area in a t-distribution below −1.0 if
the sample has size n = 20.

6.76 Find the area in a t-distribution below −3.2 if
the sample has size n = 50.

6.77 Impact of Sample Size on Accuracy Compute
the standard error for sample means from a popula-
tion with mean 𝜇 = 100 and standard deviation 𝜎 =
25 for sample sizes of n = 30, n = 200, and n = 1000.
What effect does increasing the sample size have
on the standard error? Using this information about
the effect on the standard error, discuss the effect of
increasing the sample size on the accuracy of using
a sample mean to estimate a population mean.

6.78 Impact of the Population Standard Deviation
on SE Compute the standard error for sample
means from populations all with mean 𝜇 = 100 and
with standard deviations 𝜎 = 5, 𝜎 = 25, and 𝜎 = 75
using a sample size of n = 100. Discuss the effect of
the population standard deviation on the standard
error of the sample means.

IS A T-DISTRIBUTION APPROPRIATE?
In Exercises 6.79 to 6.83, we give summary statis-
tics and a dotplot for a sample. In each case,
indicate whether or not it is appropriate to use the
t-distribution. If it is appropriate, give the degrees
of freedom for the t-distribution and give the esti-
mated standard error.

6.79 A sample with n = 12, x = 7.6, and s = 1.6

5 6 7 8 9 10 11

6.80 A sample with n = 75, x = 18.92, and s = 10.1

10 20 30 40 50 60

6.81 A sample with n = 18, x = 87.9, and s = 10.6

60 70 80 90 100

6.82 A sample with n = 10, x = 508.5, and s = 21.5

500 510 520 530 540 550 560 570

6.83 A sample with n = 150, x = 49.5, and s = 10.6

6.84 Advise a Fellow Student How would you
respond to the statement below for a student work-
ing on a research project?
“My population is pretty right-skewed, but I’m tak-
ing a large sample of 200 cases, so it’s safe to assume
the sample is normally distributed.”

6.85 College SAT Samples The CollegeScores4yr
dataset has information on themean combined SAT
scores (AvgSAT) for all four year colleges in theUS.
Suppose that the distribution of AvgSAT is fairly
bell-shaped with a mean of 𝜇 = 1135 points and
standard deviation of 𝜎 = 130.

(a) Draw a rough sketch of the normal distribution
of the AvgSAT variable for this population.

(b) Suppose that we take lots of samples of 100 col-
leges at a time from this population and find the
mean AvgSAT for each sample. Draw a rough
sketch of the distribution we should see for
the sample means. Hint: Use the Cental Limit
Theorem to help find the center and standard
deviation of the sample means.

6.86 College ACT Samples The CollegeScores4yr
dataset has information on the median ACT scores
(MidACT) for all four year colleges in the US. Sup-
pose that the distribution of MidACT is fairly bell-
shaped with a mean of 𝜇 = 24 points and standard
deviation of 𝜎 = 4.

(a) Draw a rough sketch of the normal distribution
of theMidACT variable for this population.

(b) Suppose that we take lots of samples of 100 col-
leges at a time from this population and find the
mean MidACT for each sample. Draw a rough
sketch of the distribution we should see for
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the sample means. Hint: Use the Cental Limit
Theorem to help find the center and standard
deviation of the sample means.

6.87 AvgSAT over 1180? In Exercise 6.85 we con-
sider the average combined SAT scores (AvgSAT)
for four-year colleges to follow a normal distribu-
tion with mean 𝜇 = 1135 points and standard devi-
ation 𝜎 = 130. In that exercise we also look at the
distribution of means of the AvgSAT variable for
samples of 100 colleges at a time.

(a) Using the normal distribution for AvgSAT,
what proportion of colleges should have
AvgSAT of 1180 or higher?

(b) What proportion of samples of 100 colleges
would give a sample mean AvgSAT of 1180 or
higher?

(c) Would the results in parts (a) and (b) still be
appropriate if the distribution of AvgSAT val-
ues for the population of all four-year colleges

was actually right-skewed (but still had 𝜇 =
1135 and 𝜎 = 130)? Explain why or why not.

6.88 MidACT over 25? In Exercise 6.86 we con-
sider the median ACT scores (MidACT) for four-
year colleges to follow a normal distribution with
mean 𝜇 = 24 points and standard deviation 𝜎 = 4.
In that exercise we also look at the distribution of
means of the MidACT variable for samples of 100
colleges at a time.

(a) Using the normal distribution for MidACT,
what proportion of colleges should have
MidACT of 25 or higher?

(b) What proportion of samples of 100 colleges
would give a sample mean MidACT of 25 or
higher?

(c) Would the results in parts (a) and (b) still be
appropriate if the distribution of MidACT val-
ues for the population of all four-year colleges
was actually right-skewed (but still had 𝜇 = 24
and 𝜎 = 4)? Explain why or why not.

6.2-CICONFIDENCE INTERVAL FOR A MEAN
Confidence Interval for a Mean Using
the t-Distribution
In Section 5.2 we see that when a distribution is normally distributed, a confidence
interval can be formed using

Sample Statistic ± z∗ ⋅ SE

where z∗ is an appropriate percentile from a standard normal distribution and SE is
the standard error.

In Section 6.2-D we see that we can estimate the standard error for a sample
mean using

SE = s√
n

where n is the sample size and s is the sample standard deviation. However, when we
use s rather than the (unknown) population standard deviation 𝜎 in computing the
SE, the standardized statistic follows a t-distribution with n − 1 degrees of freedom,
rather than a standard normal (provided the underlying population is reasonably
normal).

We combine these facts to produce an easy formula for a confidence interval for
a mean.
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Confidence Interval for a Mean

A sample mean based on a random sample of size n has

Sample statistic = x and SE = s√
n

where x and s are the sample mean and standard deviation, respec-
tively. If t∗ is an endpoint chosen from a t-distribution with n − 1 df to
give the desired level of confidence, and if the distribution of the pop-
ulation is approximately normal or the sample size is large (n ≥ 30),
the confidence interval for the population mean, 𝜇, is

Sample statistic ± t∗ ⋅ SE

which, in this case, corresponds to

x ± t∗ ⋅
s√
n

iStock.com/sharply_done

How long does it take to fly from Boston to San Francisco?

D A T A 6 . 2 Boston/San Francisco Flight Times
United Airlines Flight 433 is a nonstop flight from Boston’s Logan Airport to San
Francisco International Airport. During 2019 it was scheduled to leave each day
around 6:00 am (Eastern time) and arrive around 10:00 am (Pacific time). Due to
the three hour difference between the time zones, the flight is expected to take
about 7 hours (420 minutes) including time spent taxiing on runways and
waiting to take off. An important factor in scheduling such flights is the actual
airborne flying time from takeoff to touchdown. The data19 in Flight433 contain
the airborne time (in minutes) for flights on 28 days in January 2019. ◼

19Data collected from the Bureau of Transportation Statistics website, https://transtats.bts.gov/ONTIME/
Airborne.aspx.
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Example 6.13
Use the data on airborne times (in minutes) for Flight433 to find a 95% confidence
interval for the mean flight time on this route from Boston to San Francisco.

Solution Because the sample size of n = 28 is not large enough for the CLT for means to
apply, before using the t-distribution we should check a plot of the data for signs of
extreme outliers or heavy skewness. The dotplot in Figure 6.6 shows no reasons for
serious concerns.

Figure 6.6 Airborne
flight times (in minutes)
for Flight 433 from
Boston to San Francisco

340 360 380 400

Airtime

Using technology and the data in Flight433 we find the mean airborne time for
the sample of n = 28 instances of Flight 433 to be x = 371.1 minutes and the standard
deviation of flight times to be s = 16.7 minutes. To find a confidence interval for the
population mean, we use a t-distribution with 28 − 1 = 27 degrees of freedom. For
a 95% confidence interval, as in Figure 6.7, we find the endpoints with 2.5% of the
distribution in each tail, t∗ = 2.052.

We put all the pieces together to construct the confidence interval:

Statistic ± t∗ ⋅ SE

x ± t∗
s√
n

371.1 ± 2.052

(
16.7√
28

)

371.1 ± 6.5

364.6 to 377.6

Based on these data, we are 95% sure that the mean airborne time for Flight 433
from Boston to San Francisco is between 364.6 and 377.6 minutes.

Figure 6.7 Endpoints for
a 95% CI using a
t-distribution with 27 df

t-distribution, df = 27

0–2.052

0.025 0.025

2.052

Note that the t∗ = 2.052 value in the previous example is slightly larger than the
standard normal z∗ = 1.96 for a 95% confidence interval. This helps account for the
uncertainty in estimating the population standard deviation, 𝜎, using the standard
deviation from the sample, s. As the degrees of freedom increase, the t∗ values will
get closer and closer to the corresponding z∗ values.
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Example 6.14
In Example 3.24 on page 264 we compute 99% and 90% confidence intervals using
percentiles from a bootstrap distribution for the mean commute time in Atlanta,
based on the data in CommuteAtlanta. For that sample of n = 500 commutes the
mean time is x = 29.11 minutes with s = 20.7 minutes. Use the summary statistics to
redo both confidence intervals.

Solution Although the underlying distribution of commute times is somewhat skewed (see
Figure 3.14 on page 249), the sample size of 500 is large enough for us to avoid wor-
rying much about the population distribution. For the 99% confidence interval, we
use technology to find the points that leave 0.5% in each tail of a t-distribution with
499 degrees of freedom, t∗ = 2.586. We compute the 99% confidence interval with

Statistic ± t∗ ⋅ SE = 29.11 ± 2.586

(
20.7√
500

)
= 29.11 ± 2.39 = (26.72, 31.50)

We are 99% sure that the mean commute time for all Atlanta commuters is between
26.72 and 31.50 minutes.

For the 90% interval, the endpoint for the t-distribution is t∗ = 1.648, so the
interval is

Statistic ± t∗ ⋅ SE = 29.11 ± 1.648

(
20.7√
500

)
= 29.11 ± 1.53 = (27.58, 30.64)

We are 90% sure that the mean commute time for all Atlanta commuters is between
27.58 and 30.64 minutes. As expected, the width goes down as we require less confi-
dence (from 99% to 90%).

In Chapter 3, we used the percentiles of a bootstrap distribution and obtained
results of (26.98, 31.63) and (27.70, 30.71) for the 99% and 90% confidence intervals,
respectively. These match closely those found in Example 6.14. The advantage of
the t-interval is that it is most commonly used in practice when estimating a mean.
The advantage of the bootstrap methods is that they remain valid in some cases
where conditions, such as normality for a small sample, might be questionable. Also,
the bootstrap methods are flexible enough to use for almost all parameters, while
the t-distribution only works for certain parameters such as the mean.

Example 6.15
Manhattan Apartments

What is the average rental price of a one-bedroom apartment in Manhattan? We go
on Craigslist and record the monthly rent prices for a sample of 20 listed one bed-
room apartments in Manhattan. These data20 are stored in ManhattanApartments
and are displayed in Figure 6.8. Give a 95% confidence interval for the average
monthly rent for a one-bedroom apartment in Manhattan.

Figure 6.8 Monthly rent
for 20 one-bedroom
apartments in Manhattan

2000 2500 3000 3500
Rent

4000 4500 5000 5500

20Data were obtained from newyork.craigslist.org.



458 CHA P T E R 6 Inference for Means and Proportions

Solution This is a small sample size, n = 20, so we check the sample data for normality.
Figure 6.8 shows a high outlier at $5400 and a right skew, indicating a lack of nor-
mality, so we should not use the t-distribution in this case. Instead, we return to the
methods of Chapter 3 and use technology to create a bootstrap distribution. The
standard error of the bootstrap distribution is $194, and the bootstrap distribution is
approximately normal so we create the interval by

Sample Mean ± 2 ⋅ SE = 2773 ± 2 ⋅ 194 = (2385, 3161)
We are 95% confident that the average monthly rent for a one-bedroom apartment
in Manhattan is between $2385 and $3161. If you are ever looking to rent an apart-
ment, you can collect your own data to estimate the average price in your city.

Determining Sample Size for Estimating a Mean
A common question when designing a study is “How large a sample should we
collect?” When estimating a mean with a confidence interval, the answer to this
question depends on three related questions:

• How accurate do we want the estimate to be? In other words, what margin of
error,ME, do we want?

• How much confidence do we want to have in the interval?

• How much variability is there in the population?

From the formula for the confidence interval for a mean we see that the margin
of error is computed with

ME = t∗
s√
n

Suppose that, before getting a sample, we decide we want the confidence interval for
a mean to have some pre-determined margin of error. All else being equal, as n gets
larger, the margin of error, ME, gets smaller. With a bit of algebra, we can solve
the equation for the margin of error to get a direct expression to compute n for any
desired margin of error and level of confidence:

n =
( t∗ ⋅ s
ME

)2

However, there are two problems with using this formula in practice to determine
a sample size. First, the degrees of freedom for t∗ depends on the choice of n. Sec-
ond, the standard deviation, s, is computed from the sample—but we haven’t even
collected a sample yet!

We address the first of these issues by using the standard normal value, z∗, in
place of t∗. We know that, as sample size increases, the t∗ values get closer and closer
to z∗. Our goal is to get a rough estimate for the sample size we need to get the
desired margin of error. Unless that indicated sample size is quite small, we don’t
lose much by using z∗ in place of t∗.

The more serious concern is what to do about s, since we haven’t even taken a
sample yet. The solution is to make a reasonable guess about the standard deviation,
𝜎, in the population. We’ll call that guess �̃�. To do this we might:

• Use the standard deviation from a previous study or a sample from a similar
population as �̃�.

• Take a small pre-sample and use its standard deviation for �̃�.

• Estimate the range (max −min) for the population and set �̃� ≈ Range∕4. This
assumes that most values tend to be within about two standard deviations on
either side of the mean.

• Make a reasonable guess for �̃�.
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When in doubt, use an estimate or guess on the high side for �̃�. If our estimate
of �̃� is a bit high, we might end up taking a larger sample than is needed, but the end
result would be a margin of error that is smaller (and thus better) than we expected.

Determination of Sample Size to Estimate a Mean

If we want to estimate a populationmean to within a desiredmargin of
error,ME, with a given level of confidence, we should select a sample
of size

n =
(z∗ ⋅ �̃�
ME

)2

where �̃� is an estimate for the standard deviation in the population.

Example 6.16
In Example 6.13 on page 456, we consider flying times for a sample of size n = 28
Boston to San Francisco flights. The 95% confidence interval for the mean airborne
time in that example is 371.1 ± 6.5. Suppose that the schedulers for United Airlines
want to get a more accurate estimate, to within just two minutes of the actual mean
airborne time, still with 95% confidence. How large a sample of flights would they
need to collect to accomplish this?

Solution The desired margin of error is ME = 2 minutes and for 95% confidence the stan-
dard normal value is z∗ = 1.96. We use the standard deviation in the sample from
Example 6.13 to estimate �̃� = 16.7 minutes. To compute the sample size, we use

n =
(z∗ ⋅ �̃�
ME

)2
=
(
1.96 ⋅ 16.7

2

)2

= 267.8

By convention we round up any factional parts of a sample, so to estimate the mean
airborne time of Flight 433 to within 2 minutes with 95% confidence, we should use
a random sample of about 268 flights.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to compute a confidence inter-
val for a population mean, based on a formula for the standard error

• Determine a sample size needed to estimate a mean to within a speci-
fied margin of error at a given level of confidence

Exercises for Section 6.2-CI

SKILL BUILDER 1
In Exercises 6.89 to 6.94, use the t-distribution to
find a confidence interval for a mean 𝜇 given the
relevant sample results. Give the best estimate for

𝜇, the margin of error, and the confidence interval.
Assume the results come from a random sample
from a population that is approximately normally
distributed.
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6.89 A 95% confidence interval for 𝜇 using the
sample results x = 12.7, s = 5.6, and n = 30

6.90 A 95% confidence interval for 𝜇 using the
sample results x = 84.6, s = 7.8, and n = 42

6.91 A 90% confidence interval for 𝜇 using the
sample results x = 3.1, s = 0.4, and n = 100

6.92 A 90% confidence interval for 𝜇 using the
sample results x = 137.0, s = 53.9, and n = 50

6.93 A 99% confidence interval for 𝜇 using the
sample results x = 46.1, s = 12.5, and n = 10

6.94 A 99% confidence interval for 𝜇 using the
sample results x = 88.3, s = 32.1, and n = 15

SKILL BUILDER 2
In Exercises 6.95 to 6.98, what sample size is needed
to give the desired margin of error in estimat-
ing a population mean with the indicated level of
confidence?

6.95 A margin of error within ±5 with 95% confi-
dence, assuming a previous sample had s = 18

6.96 A margin of error within ±1 with 99% confi-
dence, assuming a sample from a similar population
had s = 3.4

6.97 Amargin of error within ±0.5 with 90% con-
fidence, if we make a reasonable estimate that 𝜎 =
25

6.98 A margin of error within ±12 with 95% con-
fidence, assuming we estimate that 𝜎 ≈ 125

6.99 Forest Fires in Portugal A study of forest
fires in Portugal21 looked at the effect of many vari-
ables on the area of forest that is burned by the
fire. The study included 517 forest fires and found
a mean area burned of 12.85 hectares with a stan-
dard deviation of 63.66. (The standard deviation is
much bigger than the mean because the data is very
right-skewed.) Find and interpret a 90% confidence
interval for the mean area burned by all forest fires
in Portugal. (The data are available in ForestFires.)

6.100 How Many Hours on a Computer?
Exercise 1.24 introduces the dataset PASeniors
which includes many variables on a sample of high
school seniors in Pennsylvania. One of the vari-
ables is ComputerHours, which gives the number
of hours the student spent on a computer during
the previous week. In the sample, 447 students
answered the question, and the sample mean was
16.740 hours with a standard deviation of 17.688.

21Forest Fires Data Set, UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets/Forest+Fires, Accessed
February 2020.

Find and interpret a 99% confidence interval for the
mean number of hours per week that high school
seniors in Pennsylvania spend on the computer.

6.101 How Many Birds Do Domestic Cats Kill?
Exercise 6.23 discusses the headline “Domestic cats
kill many more wild birds in the United States
than scientists thought,” and estimates the propor-
tion of domestic cats that hunt outside. A sepa-
rate study22 used KittyCams to record all activity of
n = 55 domestic cats that hunt outdoors. The video
footage showed that the mean number of kills per
week for these cats was 2.4 with a standard devi-
ation of 1.51. Find and interpret a 99% confidence
interval for the mean number of kills per week by
US household cats that hunt outdoors.

6.102 How Much TV Do College Students Watch?
In the dataset StudentSurvey, 361 students recorded
the number of hours of television they watched
per week. The average is x = 6.504 hours with a
standard deviation of 5.584. Find a 99% confidence
interval for 𝜇 and interpret the interval in context.
In particular, be sure to indicate the population
involved.

6.103 How Many Close Confidants Do People
Have? In a study,23 2006 randomly selected US
adults (age 18 or older) were asked to give the num-
ber of people in the last six months “with whom you
discussed matters that are important to you.” The
average number of close confidants was 2.2, with a
standard deviation of 1.4.

(a) Find the margin of error for this estimate if we
want 99% confidence.

(b) Find and interpret a 99% confidence interval for
average number of close confidants.

6.104 How Big Are Gribbles? Gribbles are small,
pale white, marine worms that bore through wood.
While sometimes considered a pest since they can
wreck wooden docks and piers, they are now being
studied to determine whether the enzyme they
secrete will allow us to turn inedible wood and
plant waste into biofuel.24 A sample of 50 gribbles
finds an average length of 3.1 mm with a standard
deviation of 0.72. Give a best estimate for the mean

22Loyd KAT, et al., “Quantifying free-roaming domestic cat pre-
dation using animal-borne video cameras,” Biological Conserva-
tion, 160(2013), 183–189.
23Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
24Sanderson, K., “A Chewy Problem,” Nature, 23 June 2011,
p. S12.
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length of gribbles, a margin of error for this esti-
mate (with 95% confidence), and a 95% confidence
interval. Interpret the confidence interval in con-
text. What do we have to assume about the sample
in order to have confidence in our estimate?

6.105 Is Your Stomach Controlling Your Personal-
ity? Scientists estimate that there are 10 times more
bacterial cells in your body than your own body’s
cells, and new studies on bacteria in the gut indicate
that your gut microbes might be influencing you
more than you realize, having positive or negative
effects on health, development, and possibly even
personality and behavior. A study25 found that the
average number of unique genes in gut bacteria, for
a sample of 99 healthy European individuals, was
564 million, with a standard deviation of 122 mil-
lion. Use the t-distribution to find and interpret a
95% confidence interval for the mean number of
unique genes in gut bacteria for European individ-
uals.

6.106 Transgender AdultsA study26 of transgender
adults examines the age at which they began to tran-
sition and the age of their earliest memories of gen-
der dysphoria. (In this exercise, we examine the age
beginning transition and in Exercise 6.107 we exam-
ine the age of their earliest memories.) In the study
of 210 transgender adults, the mean age at which
they began transitioning was 32.6 with a standard
deviation of 18.2. Find a 95% confidence interval
for the mean age at which transgender adults begin
transitioning.

6.107 Transgender Children A study introduced in
Exercise 6.106 examines the age at which transgen-
der adults first experience feelings of gender dys-
phoria. In the study of 210 adults, the mean age at
which they first remember feeling gender dysphoria
was 6.6 years old with a standard deviation of 3.5
years. Find a 90% confidence interval for the mean
age at which transgender people first begin sensing
that they are transgender.

6.108 Dim Light at Night Makes Fat Mice Data 4.1
on page 280 introduces a study in which mice that
had a dim light on at night (rather than complete

25Qin, J., et al., “A human gut microbial gene catalogue estab-
lished by metagenomic sequencing,” Nature, 4 March 2010; 464:
59–65.
26Zaliznyak M, Bresee C, and Garcia MM, “Age at First Experi-
ence of Gender Dysphoria Among Transgender Adults Seeking
Gender-Affirming Surgery,” JAMA Network Open, March 16,
2020. Some of the data has been approximated from information
in the paper.

darkness) ate most of their calories when they
should have been resting. These mice gained a sig-
nificant amount of weight, despite eating the same
number of calories as mice kept in total darkness.
The time of eating seemed to have a significant
effect. We look here at the effect after 8 weeks.
There were 10 mice in the group with dim light at
night and they gained an average of 7.9 g with a
standard deviation of 3.0. We see in Figure 6.9 that
the data are not heavily skewed and do not have
extreme outliers. Use the t-distribution to find and
interpret a 90% confidence interval for weight gain.
As always, define the parameter being estimated.

2 4 6 8
BMGain

10 12 14

Figure 6.9 Body mass gain (in grams) for mice with a
night light

6.109 Bright Light at Night Makes Even Fatter
Mice Data 4.1 on page 280 introduces a study in
which mice that had a light on at night (rather than
complete darkness) ate most of their calories when
they should have been resting. These mice gained
a significant amount of weight, despite eating the
same number of calories as mice kept in total dark-
ness. The time of eating seemed to have a significant
effect. Exercise 6.108 examines the mice with dim
light at night. A second group of mice had bright
light on all the time (day and night). There were
nine mice in the group with bright light at night and,
after 8 weeks, they gained an average of 11.0 g with
a standard deviation of 2.6. The data are shown in
Figure 6.10. Is it appropriate to use a t-distribution
in this situation? Why or why not? If not, how else
might we construct a confidence interval for mean
weight gain of mice with a bright light on all the
time?

10 12
BMGain

14 16 18

Figure 6.10 Body mass gain (in grams) for mice with a
bright night light

6.110 United Flights in December In Exercise
4.142 we look at a random sample of 1000 United
flights in the month of December comparing the
actual arrival time to the scheduled arrival time.
Computer output (based on the data in Decem-
berFlights) of the descriptive statistics for the
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difference in actual and expected arrival time of
these 1000 flights is shown below.

N Mean StDev SE Mean Min Q1 Median Q3 Max
1000 4.21 45.34 1.43 −51 −15 −5 8 872

(a) What is the sample mean difference in actual
and expected arrival times? What is the stan-
dard deviation of the differences?

(b) Based on the computer output, is it safe to
assume this sample is normally distributed?
Why or why not?

(c) Can we proceed using the t distribution to build
a confidence interval for this mean?Why or why
not?

(d) Regardless of your answer to part (c), use the
summary statistics to compute a 95% confi-
dence interval for the average difference in
actual and scheduled arrival times on United
flights in December.

(e) Interpret the confidence interval you found in
part (d) in context.

STANDARD ERROR FROM A FORMULA
AND A BOOTSTRAP DISTRIBUTION
In Exercises 6.111 to 6.114, use StatKey or other
technology to generate a bootstrap distribution of
sample means and find the standard error for that
distribution. Compare the result to the standard
error given by the Central Limit Theorem, using
the sample standard deviation as an estimate of the
population standard deviation.

6.111 Mean number of penalty minutes for NHL
players using the data in OttawaSenators2019 with
n = 26, x = 24.46, and s = 24.92

6.112 Mean commute time in Atlanta, in minutes,
using the data in CommuteAtlanta with n = 500,
x = 29.11, and s = 20.72

6.113 Mean price of used Mustang cars online (in
$1000s) using the data inMustangPricewith n = 25,
x = 15.98, and s = 11.11

6.114 Mean body temperature, in ∘F, using the data
in BodyTemp50 with n = 50, x = 98.26, and s =
0.765

COMPARING NORMAL AND BOOTSTRAP
CONFIDENCE INTERVALS
In Exercises 6.115 and 6.116, find a 95% confidence
interval for the mean two ways: using StatKey or
other technology and percentiles from a bootstrap
distribution, and using the t-distribution and the for-
mula for standard error. Compare the results.

6.115 Mean distance of a commute for a worker
in Atlanta, using data in CommuteAtlanta with x =
18.156 miles, s = 13.798, and n = 500

6.116 Mean price of a used Mustang car online, in
$1000s, using data in MustangPrice with x = 15.98,
s = 11.11, and n = 25

6.117 How Much Fat Do US Adults Consume?
Using the dataset NutritionStudy, we calculate that
the average number of grams of fat consumed in a
day for the sample of n = 315 US adults in the study
is x = 77.03 grams with s = 33.83 grams.

(a) Find and interpret a 95% confidence interval for
the average number of fat grams consumed per
day by US adults.

(b) What is the margin of error?

(c) If we want a margin of error of only ±1, what
sample size is needed?

6.118 Estimating Number of Close Confidants
More Accurately In Exercise 6.103 on page 460, we
see that the average number of close confidants in
a random sample of 2006 US adults is 2.2 with a
standard deviation of 1.4. If we want to estimate the
number of close confidants with a margin of error
within ±0.05 and with 99% confidence, how large a
sample is needed?

6.119 Plastic Microfiber Pollution from Clothes
Plastic microparticles are contaminating the world’s
shorelines (see Exercise 6.120), and much of this
pollution appears to come from fibers from wash-
ing polyester clothes.27 The worst offender appears
to be fleece, and a recent study found that the mean
number of polyester fibers discharged into waste-
water from washing fleece was 290 fibers per liter of
wastewater, with a standard deviation of 87.6 and a
sample size of 120.

(a) Find and interpret a 99% confidence interval for
the mean number of polyester microfibers per
liter of wastewater when washing fleece.

(b) What is the margin of error?

(c) If we want a margin of error of only ±5 with
99% confidence, what sample size is needed?

6.120 Plastic Microfiber Pollution on Shorelines In
Exercise 6.119, we see that plastic microparticles
are contaminating the world’s shorelines and that

27Browne, M., et al., “Accumulation of Microplastic on Shore-
lines Worldwide: Sources and Sinks,” Environmental Science and
Technology, 2011;45:9175–79. Data are approximated from infor-
mation given.
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much of the pollution appears to come from fibers
from washing polyester clothes. The same study ref-
erenced in Exercise 6.119 also took samples from
ocean beaches. Five samples were taken from each
of 18 different shorelines worldwide, for a total of
90 samples of size 250 mL. The mean number of
plastic microparticles found per 250 mL of sediment
was 18.3 with a standard deviation of 8.2.

(a) Find and interpret a 99% confidence interval for
the mean number of polyester microfibers per
250 mL of beach sediment.

(b) What is the margin of error?

(c) If we want a margin of error of only ±1 with
99% confidence, what sample size is needed?

WHAT INFLUENCES THE SAMPLE SIZE
NEEDED?
In Exercises 6.121 to 6.123, we examine the effect
of different inputs on determining the sample size
needed.

6.121 Find the sample size needed to give, with
95% confidence, a margin of error within ±10.
Within±5.Within±1. Assume that we use �̃� = 30 as
our estimate of the standard deviation in each case.

Comment on the relationship between the sample
size and the margin of error.

6.122 Find the sample size needed to give a margin
of error within ±3 with 99% confidence. With 95%
confidence. With 90% confidence. Assume that we
use �̃� = 30 as our estimate of the standard deviation
in each case. Comment on the relationship between
the sample size and the confidence level desired.

6.123 Find the sample size needed to give, with
95% confidence, a margin of error within ±3, if the
estimated standard deviation is �̃� = 100. If the esti-
mated standard deviation is �̃� = 50. If the estimated
standard deviation is �̃� = 10. Comment on how the
variability in the population influences the sample
size needed to reach a desired level of accuracy.

6.124 How Big Is the Tip Percentage at a Restau-
rant? Use technology and the RestaurantTips
dataset to find a 95% confidence interval for the
mean tip percentage (PctTip) at the restaurant.
Interpret the answer in context.

6.125 How Many Grams of Fiber Do People Get
in a Day? Use technology and the NutritionStudy
dataset to find a 95% confidence interval for the
mean number of grams of fiber (Fiber) people eat
in a day. Interpret the answer in context.

6.2-HTHYPOTHESIS TEST FOR A MEAN

In Section 5.1 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z =
Sample Statistic −Null Parameter

SE

The sample statistic is computed from the sample data and the null parameter
is specified by the null hypothesis, H0.

When testing a hypothesis about a population mean, the null hypothesis is typi-
callyH0 ∶ 𝜇 = 𝜇0, where 𝜇0 is some specific value of the mean. Thus the null param-
eter is 𝜇0 and the sample statistic is the mean from a sample, x:

z =
x − 𝜇0

SE

As we see in Section 6.2-D, we can estimate the standard error of x with SE = s∕
√
n,

where s is the standard deviation of the sample. However, with this sample estimate
for SE, the distribution of the standardized test statistic follows a t-distribution with
n − 1 degrees of freedom rather than a standard normal:

t =
x − 𝜇0

s∕
√
n

This requires that the underlying population be reasonably normally distributed,
although that condition is less critical as the sample size gets larger. In cases where
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the t-distribution applies, we find a p-value for a given sample by computing this
t-statistic and using technology to find the proportion beyond it in the tail(s) of the
t-distribution. As before, the alternative hypothesis will determine which tail(s) we
use when computing the p-value. Because we are using the t-distribution, a hypoth-
esis test conducted this way is often called a t-test.

T-Test for a Mean

To test H0 ∶ 𝜇 = 𝜇0 vs Ha ∶ 𝜇 ≠ 𝜇0 (or a one-tail alternative) use the
t-statistic

t = Statistic −Null value
SE

=
x − 𝜇0

s∕
√
n

where x is the mean and s is the standard deviation in a random sample
of size n. Provided the underlying population is reasonably normal (or
the sample size is large), the p-value of the test is computed using the
appropriate tail(s) of a t-distribution with n − 1 degrees of freedom.

Example 6.17
In Data 4.8 on page 359 we consider some data collected to see if the mean body
temperature for humans differs from 98.6∘F. In that sample of 50 healthy subjects,
the mean body temperature is x = 98.26∘F with standard deviation s = 0.765. Test
whether there is evidence that the mean body temperature is different from 98.6∘F.

Solution The relevant hypotheses are H0 ∶ 𝜇 = 98.6 vs Ha ∶ 𝜇 ≠ 98.6 where 𝜇 is the mean
body temperature for all healthy humans. Figure 6.11 shows a dotplot of this sam-
ple of body temperatures. The plot raises no concerns about a lack of normality
in the population and the sample size (n = 50) is quite large, so a t-distribution is
appropriate for this test.

Figure 6.11 Sample of
body temperatures for
50 people

96 97 98
Body Temp

99 100 101

The t-statistic is computed as

t = Statistic −Null value
SE

=
x − 𝜇0

s∕
√
n

= 98.26 − 98.6

0.765∕
√
50

= −3.14

To find the p-value, we use a t-distribution with 50 − 1 = 49 degrees of freedom
and find the proportion that is below −3.14. We see in Figure 6.12 that this is about
0.0014. Since the alternative hypothesis is two-tailed, we double that to find

p-value = 2(0.0014) = 0.0028

Based on the small p-value of 0.0028 we have strong evidence to reject the null
hypothesis and conclude that the mean body temperature for healthy humans is
different from 98.6∘F.
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Figure 6.12 Using a
t-distribution with 49 df
to find a p-value for
t = −3.14
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We have already found p-values for the body temperature data in two previous
examples. From the randomization distribution in Figure 4.35 on page 360 we esti-
mate a two-tailed p-value of 0.0016. In Example 5.8 on page 410 we used a normal
distribution after estimating the standard error from the randomization distribu-
tion to get a p-value of 0.0014. While the p-value from the t-test is slightly larger
than these values, all three p-values indicate that a sample mean as small as 98.26∘F
would be very unusual to see in a sample of size 50 if the real mean body tem-
perature is 98.6∘F. Remember that p-values based on a randomization distribution
will also vary as different randomizations are used. The t-test eliminates the need to
produce thousands of randomization means. However, if the condition of normality
is in doubt, for example with a small sample that is skewed or has significant out-
liers, we can always return to the randomization procedure as a safe way to assess
the strength of evidence.

Example 6.18
The FloridaLakes dataset includes information on alkalinity values for 53 Florida
lakes. Figure 2.10 on page 80 shows a histogram of the alkalinity values. The mean
of the values is x = 37.5 mg/L with standard deviation s = 38.20. Test to see if this
sample provides evidence that the average alkalinity of all Florida lakes is greater
than 35 mg/L.

Solution We see in Figure 2.10 that the alkalinity values in this sample are very skewed and
don’t seem to follow a normal distribution at all. Nonetheless, the sample size of
n = 53 is large enough that the CLT for means is relevant so a t-test is probably
valid. The hypotheses for the test are

H0 ∶ 𝜇 = 35

Ha ∶ 𝜇 > 35

where 𝜇 represents the mean alkalinity level in all Florida lakes. The t-statistic is

t = Statistic −Null value
SE

=
x − 𝜇0

s∕
√
n

= 37.5 − 35

38.20∕
√
53

= 0.48
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The proportion beyond 0.48 of a t-distribution with df = 52 is 0.317. This is a one-
tailed test, so we have

p-value = 0.317

The p-value is quite large, so we find no convincing evidence that the average alka-
linity levels in all Florida lakes is greater than 35 mg/L.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to test a hypothesis about a pop-
ulation mean, using a formula for the standard error

Exercises for Section 6.2-HT

SKILL BUILDER 1
In Exercises 6.126 to 6.131, use the t-distribution
and the sample results to complete the test of the
hypotheses. Use a 5% significance level. Assume
the results come from a random sample, and if the
sample size is small, assume the underlying distribu-
tion is relatively normal.

6.126 Test H0 ∶ 𝜇 = 15 vs Ha ∶ 𝜇 > 15 using the
sample results x = 17.2, s = 6.4, with n = 40.

6.127 Test H0 ∶ 𝜇 = 100 vs Ha ∶ 𝜇 < 100 using the
sample results x = 91.7, s = 12.5, with n = 30.

6.128 Test H0 ∶ 𝜇 = 120 vs Ha ∶ 𝜇 < 120 using the
sample results x = 112.3, s = 18.4, with n = 100.

6.129 Test H0 ∶ 𝜇 = 10 vs Ha ∶ 𝜇 > 10 using the
sample results x = 13.2, s = 8.7, with n = 12.

6.130 Test H0 ∶ 𝜇 = 4 vs Ha ∶ 𝜇 ≠ 4 using the sam-
ple results x = 4.8, s = 2.3, with n = 15.

6.131 Test H0 ∶ 𝜇 = 500 vs Ha ∶ 𝜇 ≠ 500 using the
sample results x = 432, s = 118, with n = 75.

6.132 How Many Social Ties Do You Have? Most
US adults have social ties with a large number of
people, including friends, family, co-workers, and
other acquaintances. It is nearly impossible for
most people to reliably list all the people they
know, but using a mathematical model, social ana-
lysts estimate that, on average, a US adult has
social ties with 634 people.28 A survey of 1700

28Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.

randomly selected US adults who are cell phone
users finds that the average number of social ties for
the cell phone users in the sample was 664 with a
standard deviation of 778. Does the sample provide
evidence that the average number of social ties for
a cell phone user is significantly different from 634,
the hypothesized number for all US adults? Define
any parameters used and show all details of the test.

6.133 The Autistic Brain Autistic children often
have a small head circumference at birth, followed
by a sudden and excessive increase in head cir-
cumference during the first year of life. A recent
study29 examined the brain tissue in autopsies of
seven autistic male children between the ages of 2
and 16. The mean number of neurons in the pre-
frontal cortex in non-autistic male children of the
same age is about 1.15 billion. The prefrontal cor-
tex is the part of the brain most disrupted in autism,
as it deals with language and social communication.
In the sample of seven autistic children, the mean
number of neurons in the prefrontal cortex was 1.94
billion with a standard deviation of 0.50 billion. The
values in the sample are not heavily skewed. Use
the t-distribution to test whether this sample pro-
vides evidence that autistic male children havemore
neurons (on average) in the prefrontal cortex than
non-autistic children. (This study indicates that the
causes of autism may be present before birth.)

29Adapted from Courchesne, E., et al., “Neuron Number and
Size in Prefrontal Cortex of Children with Autism,” Journal
of the American Medical Association, November 2011;306(18):
2001–2010.
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6.134 Be Nice to Pigeons, as They Remember Your
Face In a study30 conducted in Paris, France, equal
amounts of pigeon feed were spread on the ground
in two adjacent locations. A person was present in
both sites, with one acting hostile and running at the
birds to scare themaway and the other acting neutral
and just observing. The two people were randomly
exchanged between the two sites throughout and the
birds quickly learned to avoid the hostile person’s
site and to eat at the site of the neutral person.At the
endof the training session,bothpeoplebehavedneu-
trallybut thebirds continued to rememberwhichone
washostile. In themost interestingpart of the experi-
ment, when the two people exchanged coats (orange
wornby thehostileoneandyellowby theneutral one
throughout training), the pigeons were not fooled
and continued to recognize andavoid thehostile per-
son. The quantity measured is difference in number
of pigeons at the neutral site minus the hostile site.
With n = 32 measurements, the mean difference in
number of pigeons is 3.9 with a standard deviation of
6.8.Test to see if this provides evidence that themean
difference is greater than zero, meaning the pigeons
can recognize faces (and hold a grudge!).

6.135 Getting Enough Sleep? It is generally recom-
mended that adults sleep at least 8 hours each night.
One of the authors recently asked some of her
students (undergraduate and graduate students at
Harvard) how many hours each had slept the pre-
vious night, curious as to whether her students are
getting enough sleep. The data are displayed in
Figure 6.13. The 12 students sampled averaged 6.2
hours of sleep with a standard deviation of 1.70
hours. Assuming this sample is representative of all
her students, and assuming students need at least
8 hours of sleep a night, does this provide evi-
dence that, on average, her students are not getting
enough sleep?

4 5 6 7 8 9 10
Hours of Sleep

Figure 6.13 Hours of sleep for Harvard statistics
students

30Belguermi, A., “Pigeons discriminate between human feed-
ers,” Animal Cognition, 2011;14:909–14.

6.136 Football Air Pressure During the National
Football League’s 2014 AFC championship game,
officials measured the air pressure on 11 of the game
footballs being used by the New England Patriots.
They found that the balls had an average air pres-
sure of 11.1 psi, with a standard deviation of 0.40
psi.

(a) Assuming this is a representative sample of all
footballs used by the Patriots in the 2014 sea-
son, perform the appropriate test to determine
if the average air pressure in footballs used by
the Patriots was significantly less than the allow-
able limit of 12.5 psi. There is no extreme skew-
ness or outliers in the data, so it is appropriate
to use the t-distribution.

(b) Is it fair to assume that this sample is represen-
tative of all footballs used by the Patriots during
the 2014 season?

6.137 Homes for Sale The dataset HomesForSale
has data31 on houses available for sale in three Mid-
Atlantic states (NY, NJ, and PA). Table 6.2 shows
the mean and standard deviation of prices from
the three Mid-Atlantic states, in thousands of dol-
lars. Use this table, the knowledge that within the
US the typical house price when the data were
collected was about 278 thousand dollars,32 and
a 5% significance level to answer the following
questions.

Table 6.2 Mean housing prices for New York,
New Jersey, and Pennsylvania

State n Mean Std. Dev.

New York 30 365.3 317.8
New Jersey 30 328.5 158.0
Pennsylvania 30 265.6 137.1

(a) Is the average cost of a house in New York sig-
nificantly greater than 278 thousand?

(b) Is the average cost of a house in New Jersey sig-
nificantly greater than 278 thousand?

(c) Is the average cost of a house in Pennsylvania
significantly greater than 278 thousand?

(d) Which state shows the most evidence that the
state average is greater than the typical 278
thousand dollar price for US homes?

31Sample homes selected from zillow.com in October 2019.
32According to Federal Reserve Bank of St. Louis, https://fred.
stlouisfed.org/series/HOSMEDUSM052N
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Price

Figure 6.14 Price ($1000s) of houses for sale in Canton, NY

6.138 Homes for Sale, Canton We are interested
in whether or not the average cost of a house in
Canton, NY (the hometown of the Lock family) is
significantly different from the typical national price
of 278 thousand dollars. Table 6.3 and the dotplot in
Figure 6.14 show the cost (in thousands of dollars)
of a sample of 10 houses for sale in Canton.33 These
prices are stored in HomesForSaleCanton. Do the
appropriate test to determine if the sample provides
evidence that the average price of a house in Canton
is different from the national figure of 278 thousand
dollars.

Table 6.3 Price ($1000s) of houses for sale in
Canton, NY

Canton 187 103 139 95 120 125 345 115 105 80

6.139 Team Batting Average in Baseball The
dataset BaseballHits2019 gives 2019 season statis-
tics for all Major League Baseball teams. We treat
this as a sample of all MLB teams in all years. Com-
puter output of descriptive statistics for the variable
giving the batting average is shown:

Descriptive Statistics: BattingAvg
Variable N Mean SE Mean StDev
BattingAvg 30 0.25217 0.00198 0.01084

Minimum Q1 Median Q3 Maximum
0.2360 0.2453 0.2495 0.2603 0.2740

(a) How many teams are included in the dataset?
What is the mean batting average? What is the
standard deviation?

(b) Use the descriptive statistics above to conduct
a hypothesis test to determine whether there is
evidence that average team batting average is
different from 0.260. Show all details of the test.

(c) Compare the test statistic and p-value you
found in part (b) to the computer output shown
for the same data:

33Sample Canton home prices downloaded from zillow.com in
October 2019.

One-Sample T: BattingAvg
Test of mu = 0.26 vs not = 0.26
Variable N Mean StDev
BattingAvg 30 0.25217 0.01084

SE Mean 95% CI T P
0.00198 (0.24812, 0.25622) −3.96 0.00045

6.140 Are Florida Lakes Acidic or Alkaline? The
pH of a liquid is a measure of its acidity or alkalinity.
Pure water has a pH of 7, which is neutral. Solu-
tions with a pH less than 7 are acidic while solutions
with a pH greater than 7 are basic or alkaline. The
dataset FloridaLakes gives information, including
pHvalues, for a sampleof lakes inFlorida.Computer
output of descriptive statistics for the pH variable is
shown:

Descriptive Statistics: pH
Variable N N* Mean SE Mean StDev
pH 53 0 6.591 0.177 1.288

Minimum Q1 Median Q3 Maximum
3.600 5.800 6.800 7.450 9.100

(a) How many lakes are included in the dataset?
What is themeanpHvalue?What is the standard
deviation?

(b) Use the descriptive statistics above to conduct
a hypothesis test to determine whether there
is evidence that average pH in Florida lakes is
different from the neutral value of 7. Show all
details of the test and use a 5% significance
level. If there is evidence that it is not neutral,
does the mean appear to be more acidic or more
alkaline?

(c) Compare the test statistic and p-value you found
in part (b) to the computer output below for the
same data:

One-Sample T: pH
Test of mu = 7 vs not = 7
Variable N Mean StDev SE Mean
pH 53 6.591 1.288 0.177

95% CI T P
(6.235, 6.946) −2.31 0.025
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6.141 Mercury Content in Fish The US Food and
Drug Administration has a limit for mercury con-
tent in fish of 1.0 ppm (parts per million), while in
Canada the limit is 0.5 ppm. Use the variable Avg-
Mercury in the FloridaLakes dataset to test whether
there is evidence that average mercury level of fish
(large-mouth bass) in Florida lakes is:

(a) Less than 1.0 ppm

(b) Less than 0.5 ppm

6.142 Number of Fouls in a Season by NBA Play-
ers The variable Fouls in the dataset NBAPlay-
ers2019 shows the total number of fouls during
the 2018–2019 season for all players in the NBA
(National Basketball Association) who played at
least 24 minutes per game that season. We use this
group as a sample of all NBA players in all sea-
sons who play regularly. Use this information to test
whether there is evidence that NBA players who
play regularly have a mean number of fouls in a sea-
son less than 160 (or roughly 2 fouls per game).

6.3-DDISTRIBUTION OF A DIFFERENCE IN PROPORTIONS

In this section we consider the distribution of the difference in proportions between
samples taken from two distinct groups. The parameter of interest is p1 − p2, where
p1 and p2 represent the proportions in each of the two groups. Note that we are not
dealing with two different proportions computed for the same group, such as the
difference in proportion of voters who choose Candidate A compared to those who
choose Candidate B. Even if the data all come from a single sample, we need to
identify two groups within the sample and compare the proportions for some other
variable between those two groups.

Example 6.19
One True Love Revisited

In Data 2.1 on page 54 we consider a study that asks whether or not people agree
with the statement “There is only one true love for each person.” The results for
2625 respondents are broken down by sex: 372 of 1213 males agree and 363 of 1412
females agree. Use this information to estimate the difference in proportions of
males and females who agree with the statement.

Solution We are comparing the proportion who agree with the statement about one true love
between two distinct groups in the sample: females and males. The relevant sam-
ple proportions are p̂f = 363∕1412 = 0.257 and p̂m = 372∕1213 = 0.307. To estimate
the difference in proportions, pf − pm, in the population, we use the difference in
the sample proportions:

p̂f − p̂m = 0.257 − 0.307 = −0.050

Note that we could have just as easily estimated pm − pf with p̂m − p̂f = +0.050. The
interpretation is still the same; we estimate a difference of about 0.05 with males
being somewhat more likely to agree.

As always, the key question now is how accurately does the estimate in the sam-
ple reflect the true difference in proportions for the population. One way to address
this is to use bootstrapping to simulate the difference in proportions. The bootstrap
distribution shown in Figure 6.15 is centered around the difference in the original
sample (−0.050) and follows the usual bell-shaped pattern. From the bootstrap dis-
tribution, we estimate the standard error of the difference in proportions to be about
0.0178.
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Figure 6.15 Distribution
of p̂f − p̂m for 5000
simulations
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In Section 6.1-D we see that the distribution of p̂ for a single sample is centered

at the population proportion p, has spread given by SE =
√

p(1−p)
n

, and approaches
a normal curve as the sample size gets large. We extend these ideas to get a similar
Central Limit Theorem for differences in proportions for two samples.

Distribution for a Difference in Two Sample Proportions

When choosing random samples of size n1 and n2 from populations
with proportions p1 and p2, respectively, the distribution of the differ-
ences in the sample proportions, p̂1 − p̂2, is centered at the difference
in population proportions, p1 − p2, has standard error given by

SE =

√
p1(1 − p1)

n1
+
p2(1 − p2)

n2

and is reasonably normally distributed if n1p1 ≥ 10 and n1(1 − p1) ≥ 10
and n2p2 ≥ 10 and n2(1 − p2) ≥ 10.

In finding the standard error for p̂1 − p̂2, you may be tempted to subtract p2(1−p2)
n2

from p1(1−p1)
n1

within the square root rather than add those two terms. It’s important
that the variability of the difference depends on adding the variability generated
from each of the two samples.

Example 6.20
Figure 6.15 shows the distribution of the difference in sample proportions for sam-
ples simulated from the original “one true love” data where the proportions are
0.257 (for females) and 0.307 (for males). Use these sample proportions as approx-
imations of the population proportions and use the sample sizes (1412 females and
1213 males) to compute the standard error and check the conditions for a normal
distribution.
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Solution The curve should be centered at 0.257 − 0.307 = −0.050. The standard error is
given by

SE =
√

0.257(1 − 0.257)
1412

+ 0.307(1 − 0.307)
1213

= 0.0176

Both sample sizes are quite large (well more than 10 people agreeing and disagree-
ing in each group) so the normal distribution is a reasonable model. This normal
curve is plotted in Figure 6.15 and agrees nicely with the simulated results.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Recognize when a question calls for comparing proportions for two dif-
ferent groups (as opposed to two proportions within the same group)

• Use a formula to find the standard error for a distribution of differences
in sample proportions for two groups

• Recognize when a normal distribution is an appropriate model for a
distribution of the differences in two sample proportions

Exercises for Section 6.3-D

SKILL BUILDER 1
In Exercises 6.143 to 6.148, if random samples of
the given sizes are drawn from populations with the
given proportions:

(a) Find the standard error of the distribution of
differences in sample proportions, p̂A − p̂B.

(b) Determine whether the sample sizes are large
enough for the Central Limit Theorem to apply.

6.143 Samples of size 50 from population A with
proportion 0.70 and samples of size 75 from pop-
ulation B with proportion 0.60

6.144 Samples of size 300 from population A with
proportion 0.15 and samples of size 300 from
population B with proportion 0.20

6.145 Samples of size 100 from population A with
proportion 0.20 and samples of size 50 from popu-
lation B with proportion 0.30

6.146 Samples of size 80 from population A with
proportion 0.40 and samples of size 60 from pop-
ulation B with proportion 0.10

6.147 Samples of size 40 from population A with
proportion 0.30 and samples of size 30 from pop-
ulation B with proportion 0.24

6.148 Samples of size 500 from population A with
proportion 0.58 and samples of size 200 from popu-
lation B with proportion 0.49

TWO GROUPS OR ONE?
In Exercises 6.149 and 6.150, situations comparing
two proportions are described. In each case, deter-
mine whether the situation involves comparing
proportions for two groups or comparing two pro-
portions from the same group. State whether the
methods of this section apply to the difference in
proportions.

6.149 (a) Compare the proportion of students who
use an iPhone to the proportion who use a dif-
ferent cell phone.

(b) Compare the proportion of students who study
abroad between those attending public univer-
sities and those at private universities.

(c) Compare the proportion of in-state students at
a university to the proportion from outside the
state.

(d) Compare the proportion of in-state students
who get financial aid to the proportion of out-
of-state students who get financial aid.
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6.150 (a) In a taste test, compare the proportion of
tasters who prefer one brand of cola to the pro-
portion who prefer the other brand.

(b) Compare the proportion of males who voted in
the last election to the proportion of females
who voted in the last election.

(c) Compare the graduation rate (proportion to
graduate) of students on an athletic scholarship
to the graduation rate of students who are not
on an athletic scholarship.

(d) Compare the proportion of voters who vote in
favor of a school budget to the proportion who
vote against the budget.

6.3-CICONFIDENCE INTERVAL FOR A DIFFERENCE
IN PROPORTIONS

In Section 5.2 we see that when a distribution of a sample statistic is normally dis-
tributed, a confidence interval can be formed using

Sample Statistic ± z∗ ⋅ SE

where z∗ is an appropriate percentile from a standard normal distribution.
In Section 6.3-Dwe see that we can estimate a difference in proportions, p1 − p2,

for two groups using the difference in the sample proportions from those groups,
p̂1 − p̂2. The standard error found in Section 6.3-D for a difference in proportions
uses the population proportions p1 and p2. Just as we did for the standard error of
a single proportion, we substitute the sample proportions to estimate the standard
error for the difference.

Confidence Interval for a Difference in Proportions

The difference in sample proportions based on random samples of size
n1 and n2, respectively, has

Sample statistic = p̂1 − p̂2 and SE =

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2

If z∗ is a standard normal endpoint to give the desired level of con-
fidence, and if the sample sizes are large enough so that n1p1 ≥ 10
and n1(1 − p1) ≥ 10 and n2p2 ≥ 10 and n2(1 − p2) ≥ 10, the confidence
interval for a difference in population proportions p1 − p2 is

Sample statistic ± z∗ ⋅ SE

which, in this case, corresponds to

(p̂1 − p̂2) ± z∗ ⋅

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2
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Crows hold a grudge

D A T A 6 . 3 Crows Never Forget a Face
Biologists studying crows will capture a crow, tag it, and release it. These crows
seem to remember the scientists who caught them and will scold them later. A
study34 to examine this effect had several scientists wear a caveman mask while
they trapped and tagged seven crows. A control group did not tag any crows
and wore a different mask. The two masks did not elicit different reactions from
the crows before the tagging. Volunteers then strolled around town wearing one
or the other of the two masks. Sure enough, the tagged crows scolded the
caveman mask significantly more often. What is really interesting, however, is
that even more than two years later and even at sites over a kilometer from the
original tagging, crows that did not get tagged and even crows that were not
born yet at the time of the tagging continued to scold the caveman mask more
than the other mask. The crows had apparently communicated to other crows
the fact that the caveman mask was dangerous. It appears that crows hold a
grudge for a long time! As one volunteer put it after wearing the caveman mask
on a stroll, the reaction to the mask was “quite spectacular. The birds were
really raucous, screaming persistently, and it was clear they weren’t upset about
something in general. They were upset with me.” The crows scolded a person
wearing a caveman mask in 158 out of 444 encounters with crows, whereas
crows scolded a person in a neutral mask in 109 out of 922 encounters. ◼

Example 6.21
Use the information in Data 6.3 to find and interpret a 90% confidence interval for
the difference in the proportion of crow scoldings between volunteers wearing the
caveman mask and those wearing the neutral mask.

34Cornell, H., Marzluff, J., and Pecoraro, S., “Social learning spreads knowledge about dangerous humans
amongAmerican crows,” Proceedings of the Royal Society, Biological Sciences, February 2012; 279(1728):
499–508.
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Solution First, we compute the proportion of scoldings for each of the two groups, using p̂c
for the proportion when volunteers are wearing the caveman mask and p̂n for the
proportion when volunteers are wearing the neutral mask:

p̂c =
158
444

= 0.356 and p̂n =
109
922

= 0.118

The estimated difference in proportions is p̂c − p̂n = 0.356 − 0.118 = 0.238.
The sample sizes are both quite large, well more than 10 scolding and not scold-

ing for each type of mask, so we model the difference in proportions with a normal
distribution. For 90% confidence the standard normal endpoint is z∗ = 1.645. This
gives

Statistic ± z∗ ⋅ SE

(p̂1 − p̂2) ± z∗ ⋅

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2

(0.356 − 0.118) ± 1.645 ⋅

√
0.356(1 − 0.356)

444
+ 0.118(1 − 0.118)

922

0.238 ± 0.041

0.197 to 0.279

We are 90% sure that the proportion of crows that will scold is between 0.197 and
0.279 higher if the volunteer is wearing the cavemanmask than if he or she is wearing
the neutral mask.

Note that we could easily have switched the order in the previous example
and estimated the difference in proportions with p̂n − p̂c = 0.118 − 0.356 = −0.238.
This would only change the signs in the confidence interval and lead to the same
interpretation.

Note also that the interpretation includes some direction (caveman mask tends
to be more likely to elicit scolding) rather than a less informative statement such
as “We are 90% sure that the difference in proportion of crow scoldings between
the caveman mask and the neutral mask is between 0.197 and 0.279.” In fact, since
the interval includes only positive values (and not zero), we can be relatively sure
(at least to a 10% significance level) that a hypothesis of no difference in the two
proportions would be rejected.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to compute a confidence
interval for a difference in proportions between two groups, based on
a formula for the standard error
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Exercises for Section 6.3-CI

SKILL BUILDER 1
In Exercises 6.151 to 6.154, use the normal dis-
tribution to find a confidence interval for a dif-
ference in proportions p1 − p2 given the relevant
sample results. Give the best estimate for p1 − p2,
the margin of error, and the confidence interval.
Assume the results come from random samples.

6.151 A 95% confidence interval for p1 − p2 given
that p̂1 = 0.72 with n1 = 500 and p̂2 = 0.68 with
n2 = 300.

6.152 A 90% confidence interval for p1 − p2 given
that p̂1 = 0.20 with n1 = 50 and p̂2 = 0.32 with
n2 = 100.

6.153 A 99% confidence interval for p1 − p2 given
counts of 114 yes out of 150 sampled for Group
1 and 135 yes out of 150 sampled for Group 2.

6.154 A 95% confidence interval for p1 − p2 given
counts of 240 yes out of 500 sampled for Group
1 and 450 yes out of 1000 sampled for Group 2.

6.155 Who Is More Trusting: Internet Users or
Non-users? In a randomly selected sample of 2237
US adults, 1754 identified themselves as people who
use the Internet regularly while the other 483 indi-
cated that they do not use the Internet regularly.
In addition to Internet use, participants were asked
if they agree with the statement “most people can
be trusted.” The results show that 807 of the Inter-
net users agree with this statement, while 130 of the
non-users agree.35 Find and clearly interpret a 90%
confidence interval for the difference in the two pro-
portions.

6.156 Juvenile Diabetes Treatment Exercise 2.22
introduces a study examining the effectiveness of
the drug teplizumab at delaying or preventing the
onset of juvenile diabetes (also called Type 1 dia-
betes). The results are shown in Table 6.4.

(a) Using p̂1 to represent the proportion in the
control group who developed diabetes and p̂2
to represent the proportion in the teplizumab
group who developed diabetes, find the sample
difference in proportions, p̂1 − p̂2.

(b) Find a 99% confidence interval for the differ-
ence in proportions p1 − p2.

35Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.

(c) What is the best estimate for the difference in
proportions?What is themargin of error for this
estimate?

(d) Can we be confident, at the 99% level, that the
new drug teplizumab is more effective than the
control?

Table 6.4 Juvenile diabetes treatment

Diabetes No diabetes Total
Teplizumab 16 22 38
Control 26 12 38
Total 42 34 76

6.157 Are Errors Less Likely with Electronic Pre-
scriptions? Errors in medical prescriptions occur,
and a study36 examined whether electronic pre-
scribing may help reduce errors. Two groups of
doctors used written prescriptions and had similar
error rates before the study. One group switched to
e-prescriptions while the other continued to use
written prescriptions, and error rates were mea-
sured one year later. The results are given in
Table 6.5. Find and interpret a 95% confidence
interval for the difference in proportion of errors
between the two groups. Is it plausible that there
is no difference?

Table 6.5 Are prescription error rates
different?

Error No Error Total

Electronic 254 3594 3848
Written 1478 2370 3848

6.158 Public Libraries and Sex A survey37 asked a
random sample of n = 2752 US adults whether they
had visited a public library in the last 12 months.
The results for males and females are shown in
Table 6.6.

36Kaushal, R., et al., “Electronic Prescribing Improves Medica-
tion Safety in Community-Based Office Practices,” Journal of
General Internal Medicine, June 2010; 25(6): 530–536.
37Rainie, L., “Libraries and Learning,” www.pewinternet.org/
2016/04/07/libraries-and-learning/, Pew Research Center, April 7,
2016.
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Table 6.6 Have you visited a
public library in the last year?

Yes No Total

Females 726 697 1423
Males 505 824 1329

Total 1231 1521 2752

(a) Find p̂f and p̂m, the sample proportions who
have visited a public library in the last 12
months, for females and males respectively.
What is the difference in sample proportions
p̂f − p̂m?

(b) Find a 95% confidence interval for the differ-
ence in population proportions pf − pm.

(c) Can we conclude from the confidence interval
that there is a difference in proportions? If so,
are males or females more likely to visit the
public library?

6.159 Public Libraries and Children Exercise 6.158
introduces a survey that asked a random sample
of n = 2752 US adults whether they had visited
a public library in the last 12 months. We see in
that data that more females than males visit the
library, but there is likely a confounding variable.
Table 6.7 shows the survey results broken down by
whether or not the participant is a parent of aminor.
Find and interpret a 90% confidence interval for
pC − pN , the difference in proportion visiting the
library between those with children in the house
and those without.

Table 6.7 Have you visited a public library
in the last year?

Yes No Total

Children in house 421 411 832
No children in house 810 1110 1920

Total 1231 1521 2752

6.160 Metal Tags on Penguins and Survival Data
1.3 on page 10 discusses a study designed to test
whether applying metal tags is detrimental to pen-
guins. One variable examined is the survival rate
10 years after tagging. The scientists observed
that 10 of the 50 metal tagged penguins survived,
compared to 18 of the 50 electronic tagged pen-
guins. Construct a 90% confidence interval for

the difference in proportion surviving between the
metal and electronic tagged penguins (pM − pE).
Interpret the result.

6.161 Metal Tags on Penguins and Breeding
Success Data 1.3 on page 10 discusses a study
designed to test whether applying metal tags is
detrimental to penguins. Exercise 6.160 investigates
the survival rate of the penguins. The scientists
also studied the breeding success of the metal- and
electronic-tagged penguins. Metal-tagged penguins
successfully produced offspring in 32% of the 122
total breeding seasons, while the electronic-tagged
penguins succeeded in 44% of the 160 total breed-
ing seasons. Construct a 95% confidence interval for
the difference in proportion successfully producing
offspring (pM − pE). Interpret the result.

STANDARD ERROR FROM A FORMULA
AND A BOOTSTRAP DISTRIBUTION
In Exercises 6.162 and 6.163, use StatKey or other
technology to generate a bootstrap distribution of
sample differences in proportions and find the stan-
dard error for that distribution. Compare the result
to the value obtained using the formula for the stan-
dard error of a difference in proportions from this
section.

6.162 Sample A has a count of 30 successes with
n = 100 and Sample B has a count of 50 successes
with n = 250.

6.163 Sample A has a count of 90 successes with
n = 120 and Sample B has a count of 180 successes
with n = 300.

COMPARING NORMAL AND BOOTSTRAP
CONFIDENCE INTERVALS
In Exercises 6.164 and 6.165, find a 95% confidence
interval for the difference in proportions two ways:
using StatKey or other technology and percentiles
from a bootstrap distribution, and using the nor-
mal distribution and the formula for standard error.
Compare the results.

6.164 Difference in proportion who use text mes-
saging, using p̂t = 0.87 with n = 800 for teens and
p̂a = 0.72 with n = 2252 for adults.

6.165 Difference in proportion who favor a gun
control proposal, using p̂f = 0.82 for 379 out of
460 females and p̂m = 0.61 for 318 out of 520 for
males. (We find a 90% confidence interval for this
difference in Exercise C.56.)
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6.166 Survival in the ICU and Infection In the
dataset ICUAdmissions, the variable Status indi-
cates whether the ICU (Intensive Care Unit)
patient lived (0) or died (1), while the variable
Infection indicates whether the patient had an infec-
tion (1 for yes, 0 for no) at the time of admission to
the ICU. Use technology to find a 95% confidence
interval for the difference in the proportion who die
between those with an infection and those without.

6.167 Survival in the ICU and Sex The dataset
ICUAdmissions contains information on patients
admitted to an Intensive Care Unit. The variable
Status indicates whether the patient lived (0) or died
(1), while the variable Sex indicates whether the
patient is male (0) or female (1). Use technology
to find a 95% confidence interval for the differ-
ence in the proportion who die between males and
females.

6.3-HTHYPOTHESIS TEST FOR A DIFFERENCE
IN PROPORTIONS

In Section 5.1 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z =
Sample Statistic −Null Parameter

SE

The sample statistic is computed from the sample data and the null parameter is
specified by the null hypothesis, H0.

When comparing proportions between two groups, the null hypothesis is typ-
ically H0 ∶ p1 = p2 or, equivalently, H0 ∶ p1 − p2 = 0. Thus the “null parameter” is
often equal to zero and we use the difference in proportions for two samples, p̂1 − p̂2,
as the “sample statistic”:

z =
(p̂1 − p̂2) − 0

SE

Once again, we are left with the problem of how to estimate the standard error, SE.
From the CLT for a difference in proportions in Section 6.3-D we know that it has
the form

SE =

√
p1(1 − p1)

n1
+
p2(1 − p2)

n2

But what do we use for p1 and p2? Recall in Section 6.1-HT that we solved this
problem for a single proportion by substituting the proportion specified by the null
hypothesis, p0. In this case, however, the null hypothesis only specifies that the two
proportions are equal, but not the value to which they are equal. We can’t just sub-
stitute p̂1 and p̂2 from the sample, because the null hypothesis says the proportions
must be equal.

If the null hypothesis is really true, then the best way to estimate the common
proportion is to combine the two samples into one big sample and find its propor-
tion. That is precisely what we do to compute what is known as a pooled proportion,
denoted p̂. We combine the two groups into one big combined group with sample
size n1 + n2 and find the sample proportion p̂ for that large group.
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Golden Balls: split or steal?

D A T A 6 . 4 Split or Steal?
A popular British TV show called Golden Balls features a final round where two
contestants each make a decision to either split or steal the final jackpot. If both
choose “split,” they share the prize, but if one chooses “split” and the other
picks “steal,” the whole prize goes to the player who steals. If both choose
“steal,” they both win nothing.

Some researchers38 collected data from 287 episodes, each with two
participants, to give 574 “split” or “steal” decisions. Some results are displayed
in Table 6.8 broken down by the age of the participant. ◼

Table 6.8 Split/Steal choice by age group

Age Group Split Steal Total
Under 40 187 195 382
Over 40 116 76 192
Total 303 271 574

Example 6.22
We use the data in Table 6.8 to test if there is a significant difference in the propor-
tions who choose “split” between younger and older players. Specify the hypothe-
ses and compute the sample proportion within each group as well as the pooled
proportion.

Solution If we let p1 and p2 represent the proportions who choose “split” among under and
over 40-year-old players, respectively, the relevant hypotheses are H0 ∶ p1 = p2 vs
Ha ∶ p1 ≠ p2. The sample proportions within each group are

Under 40: p̂1 =
187
382

= 0.490 Over 40: p̂2 =
116
192

= 0.604

Under the null hypothesis that the two proportions are the same, we estimate the
pooled proportion by combining the two groups into one combined group, in which

38Based on Van den Assem, M., Van Dolder, D., and Thaler, R., “Split or Steal? Cooperative Behavior
When the Stakes Are Large,” available at SSRN, http://ssrn.com/abstract=1592456, February 19, 2011.
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303 opted to split out of a total of 574 players. The pooled proportion is

p̂ = 187 + 116
382 + 192

= 303
574

= 0.528

Note that the value of the pooled proportion is between the two sample propor-
tions in each group—this is always the case. To be consistent with the null hypothesis
of equal proportions, we use the pooled proportion for both samples when comput-
ing the standard error for p̂1 − p̂2.

SE =

√
p̂(1 − p̂)

n1
+
p̂(1 − p̂)

n2

Pay attention to this difference in the standard error for a difference in proportions!
For a confidence interval, we use the two sample proportions. For a hypothesis test,
in which we use the assumption that the null hypothesis of equal proportions is
true, we use a pooled sample proportion in place of both the individual sample
proportions.

Test for Difference in Proportions

To test H0 ∶ p1 = p2 vs Ha ∶ p1 ≠ p2 (or a one-tail alternative) based
on samples of size n1 and n2 from the two groups, the standardized
test statistic is

z = Statistic −Null value
SE

=
(p̂1 − p̂2) − 0√

p̂(1 − p̂)
n1

+
p̂(1 − p̂)

n2

where p̂1 and p̂2 are the proportions in the two samples and p̂ is the
pooled proportion obtained by combining the two samples.

If both samples are sufficiently large (at least 10 successes and fail-
ures in each group), the p-value of the test statistic is computed using
the standard normal distribution.

Example 6.23
Split or Steal?

Complete the details for testing whether the information in Data 6.4 provide suffi-
cient evidence to suggest that the proportion of participants who choose “split” is
different between younger and older players.

Solution Using the hypotheses and sample proportions from Example 6.22 we compute the
standardized test statistic

z = Statistic −Null value
SE

= (0.490 − 0.604) − 0√
0.528(1−0.528)

382
+ 0.528(1−0.528)

192

= −0.114
0.04416

= −2.58

For the two-tailed alternative, the p-value is twice the proportion in the standard
normal tail beyond z = −2.58, so we have

p-value = 2(0.0049) = 0.0098
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This is a small p-value, indicating that there is little chance that we would see this
big a difference in the sample proportions if age really didn’t matter. This gives
strong evidence that the proportion of younger contestants who choose to cooper-
ate and split the jackpot is lower than the proportion of older contestants willing to
cooperate.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a normal distribution, when appropriate, to test a hypothesis about
a difference in proportions between two groups, using a formula for the
standard error

Exercises for Section 6.3-HT

SKILL BUILDER 1
In Exercises 6.168 to 6.173:

(a) Find the relevant sample proportions in each
group and the pooled proportion.

(b) Complete the hypothesis test using the normal
distribution and show all details.

6.168 Test whether there is a difference between
two groups in the proportion who voted, if 45 out
of a random sample of 70 in Group 1 voted and 56
out of a random sample of 100 in Group 2 voted.

6.169 Test whether patients getting Treatment A
are more likely to survive, if 63 out of 82 getting
Treatment A survive and 31 out of 67 getting Treat-
ment B survive.

6.170 Test whether people with a specific genetic
marker are more likely to have suffered from clin-
ical depression than people without the genetic
marker, using the information that 38% of the 42
people in a sample with the genetic marker have
had clinical depression while 12% of the 758 peo-
ple in the sample without the genetic marker have
had clinical depression.

6.171 Test whether males are less likely than
females to support a ballot initiative, if 24% of a
random sample of 50 males plan to vote yes on the
initiative and 32%of a random sample of 50 females
plan to vote yes.

6.172 Table 6.9 gives flight arrival numbers from
a random sample of flights for two airlines. Test
whether there is a difference between the two air-
lines in the percent of flights that arrive late.

Table 6.9 Arrival times for two airlines

Early On-time Late Total
Airline A 133 416 151 700
Airline B 58 355 87 500
Total 191 771 238 1200

6.173 Table 6.10 shows data on whether or not a
treatment relieved pain for patients. Test whether
the treatment is significantly better than a placebo
at relieving pain. The patients were randomly allo-
cated to the two groups and the experiment was
double-blind.

Table 6.10 Is the treatment significantly better
than the placebo?

Treatment Placebo Total
Relieved pain 36 21 57
Did not relieve pain 39 54 93
Total 75 75 150

6.174 Babies Learn Early Who They Can Trust
A study39 indicates that babies may choose not to
learn from someone they don’t trust. A group of
60 babies, aged 13 to 16 months, were randomly
divided into two groups. Each baby watched an
adult express great excitement while looking into
a box. The babies were then shown the box and
it either had a toy in it (the adult could be trusted)

39Based onWood, J., “Babies Learn EarlyWho They Can Trust,”
PsychCentral, http://psychcentral.com/news/2011/12/07/babies-
learn-early-who-they-can-trust/32278.html.
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or it was empty (the adult was not reliable). The
same adult then turned on a push-on light with her
forehead, and the number of babies who imitated
the adult’s behavior by doing the same thing was
counted. The results are in Table 6.11. Test at a 5%
level to see if there is evidence that babies are more
likely to imitate those they consider reliable.

Table 6.11 Babies imitate those they
trust

Imitated Did not imitate

Reliable 18 12
Unreliable 10 20

6.175 Do Rats Understand Hide-and-Seek?
Exercise 2.24 introduces a study about teaching rats
to play hide-and-seek with humans, and the authors
of that study used many measures (including vocal-
izations, mobility, and open versus closed boxes) to
examine how well rats understand the rules of the
game. In particular, they measured the number of
times rats chose transparent (see-through) boxes or
opaque (not see-through) boxes in the two differ-
ent conditions of hiding and seeking. The data are
shown in Table 6.12. Test whether the proportion
of times rats choose the opaque box is higher when
they are hiding than when they are seeking. Show
all details of the test.

Table 6.12 Do rats know how to hide in
hide-and-seek?

Transparent Opaque Total
Hiding 15 38 53
Seeking 17 14 31
Total 32 52 84

6.176 Pennsylvania Seniors Favorite Subject
Exercise 1.24 describes a dataset, stored in PASe-
niors, for a sample of 457 Pennsylvania high school
seniors who did the Census at School project. The
data contain responses from the decade 2010–2019.
One of the questions asks about favorite school sub-
ject. We see that 39 out of 186 students from the first
half of the decade (2010–2014) chose “mathematics
and statistics,” while 69 out of 268 students in the
second half of the decade (2015–2019) made this
choice. (Three students did not answer this ques-
tion.) Does this provide enough evidence that the
proportion of students picking mathematics and

statistics as a favorite subject has changed between
the first and second halves of the decade?

6.177 Physician’s Health Study In the Physician’s
Health Study, introduced in Data 1.6 on page 41,
22,071 male physicians participated in a study to
determine whether taking a daily low-dose aspirin
reduced the risk of heart attacks. The men were ran-
domly assigned to two groups and the study was
double-blind. After five years, 104 of the 11,037
men taking a daily low-dose aspirin had had a heart
attack while 189 of the 11,034 men taking a placebo
had had a heart attack.40 Does taking a daily low-
dose aspirin reduce the risk of heart attacks? Con-
duct the test, and, in addition, explain why we can
infer a causal relationship from the results.

MORE BENEFITS OF EATING ORGANIC
Using Data 5.1 on page 405, we find a significant
difference in the proportion of fruit flies surviving
after 13 days between those eating organic pota-
toes and those eating conventional (not organic)
potatoes. Exercises 6.178 to 6.181 ask you to con-
duct a hypothesis test using additional data from
this study.41 In every case, we are testing

H0 ∶ po = pc
Ha ∶ po > pc

where po and pc represent the proportion of fruit
flies alive at the end of the given time frame of
those eating organic food and those eating conven-
tional food, respectively. Also, in every case, we
have n1 = n2 = 500. Show all remaining details in
the test, using a 5% significance level.

6.178 Effect of Organic Raisins after 15 DaysAfter
15 days, 320 of the 500 fruit flies eating organic
raisins are still alive, while 300 of the 500 eating con-
ventional raisins are still alive.

6.179 Effect of Organic Bananas after 15 Days
After 15 days, 345 of the 500 fruit flies eating
organic bananas are still alive, while 320 of the 500
eating conventional bananas are still alive.

6.180 Effect of Organic Raisins after 20 DaysAfter
20 days, 275 of the 500 fruit flies eating organic
raisins are still alive, while 170 of the 500 eating con-
ventional raisins are still alive.

40“Final report on the aspirin component of the ongoing
Physicians’ Health Study. Steering Committee of the Physi-
cians’ Health Study Research Group,” New England Journal of
Medicine, 1989;321(3):129–35.
41Proportions approximated from information given in the
paper.
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6.181 Effect of Organic Potatoes after 20 Days
After 20 days, 250 of the 500 fruit flies eating
organic potatoes are still alive, while 130 of the 500
eating conventional potatoes are still alive.

6.182 Autism and Maternal Antidepressant Use A
study42 compared 298 children with Autism Spec-
trum Disorder to 1507 randomly selected control
children without the disorder. Of the children with
autism, 20 of the mothers had used antidepressant
drugs during the year before pregnancy or the first
trimester of pregnancy. Of the control children, 50
of the mothers had used the drugs.

(a) Is there a significant association between pre-
natal exposure to antidepressant medicine and
the risk of autism? Test whether the results are
significant at the 5% level.

(b) Can we conclude that prenatal exposure to
antidepressant medicine increases the risk of
autism in the child? Why or why not?

(c) The article describing the study contains the
sentence “No increase in risk was found for
mothers with a history of mental health treat-
ment in the absence of prenatal exposure to
selective serotonin reuptake inhibitors [antide-
pressants].” Why did the researchers conduct
this extra analysis?

6.183 Electrical Stimulation for Fresh Insight? In
Exercise 4.138 on page 330, we used the data in
Table 6.13 to conduct a randomization test to see if
there was evidence that electrical stimulation of the
brain helped people solve a problem that requires
fresh insight. Explain why it would not be appropri-
ate to conduct this test using the normal distribution
and the formulas in this section.

Table 6.13 Does electrical brain stimulation
bring fresh insight to a problem?

Treatment Solved Not Solved

Sham 4 16
Electrical 12 8

6.184 Green Tea and Prostate Cancer A pre-
liminary study suggests a benefit from green tea
for those at risk of prostate cancer.43 The study

42Croen, L., Grether, J., Yoshida, C., Odouli, R., and Hen-
drick, V., “Antidepressant Use During Pregnancy and Childhood
Autism Spectrum Disorders,” Archives of General Psychiatry,
2011; 68(11):1104–12.
43Schardt, D., “What’s all the fuss about green tea?” Nutrition-
Action Health Letter, Center for Science in the Public Interest,
May 2011, p. 10.

involved 60 men with PIN lesions, some of which
turn into prostate cancer. Half the men, randomly
determined, were given 600 mg a day of a green tea
extract while the other half were given a placebo.
The study was double-blind, and the results after
one year are shown in Table 6.14. Does the sam-
ple provide evidence that taking green tea extract
reduces the risk of developing prostate cancer?

Table 6.14 Does green tea extract
reduce the risk of prostate cancer?

Treatment Cancer No Cancer

Green tea 1 29
Placebo 9 21

6.185 Can Malaria Parasites Control Mosquito
Behavior? Are malaria parasites able to control
mosquito behavior to their advantage? A study44

investigated this question by taking mosquitos and
giving them the opportunity to have their first
“blood meal” from a mouse. The mosquitoes were
randomized to either eat from a mouse infected
with malaria or an uninfected mouse. At several
time points after this, mosquitoes were put into a
cage with a human and it was recorded whether
or not each mosquito approached the human (pre-
sumably to bite, although mosquitoes were caught
before biting). Once infected, the malaria parasites
in the mosquitoes go through two stages: the Oocyst
stage in which the mosquito has been infected but is
not yet infectious to others and then the Sporozoite
stage in which the mosquito is infectious to oth-
ers. Malaria parasites would benefit if mosquitoes
sought risky blood meals (such as biting a human)
less often in the Oocyst stage (because mosquitos
are often killed while attempting a blood meal) and
more often in the Sporozoite stage after becoming
infectious (because this is one of the primary ways
in which malaria is transmitted). Does exposing
mosquitoes to malaria actually impact their behav-
ior in this way?

(a) In the Oocyst stage (after eating from mouse
but before becoming infectious), 20 out of
113 mosquitoes in the group exposed to

44Cator, L.J., George, J., Blanford, S., Murdock, C.C., Baker,
T.C., Read, A.F., Thomas, M.B., (2013). ‘Manipulation’ with-
out the parasite: altered feeding behaviour of mosquitoes is not
dependent on infection with malaria parasites. Proc R Soc B,
280: 20130711. Data from: ‘Manipulation’ without the para-
site: altered feeding behaviour of mosquitoes is not dependent
on infection with malaria parasites. Dryad Digital Repository.
http://dx.doi.org/10.5061/dryad.j4n89.
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malaria approached the human and 36 out of
117 mosquitoes in the group not exposed to
malaria approached the human. Calculate the
z-statistic.

(b) Calculate the p-value for testing whether
this provides evidence that the proportion of
mosquitoes in the Oocyst stage approaching the
human is lower in the group exposed to malaria.

(c) In the Sporozoite stage (after becoming infec-
tious), 37 out of 149 mosquitoes in the group
exposed to malaria approached the human and
14 out of 144 mosquitoes in the group not
exposed to malaria approached the human. Cal-
culate the z-statistic.

(d) Calculate the p-value for testing whether
this provides evidence that the proportion of
mosquitoes in the Sporozoite stage approach-
ing the human is higher in the group exposed
to malaria.

(e) Based on your p-values, make conclusions
about what you have learned about mosquito
behavior, stage of infection, and exposure to
malaria or not.

(f) Can we conclude that being exposed to malaria
(as opposed to not being exposed to malaria)
causes these behavior changes in mosquitoes?
Why or why not?

HORMONE REPLACEMENT THERAPY
Exercises 6.186 through 6.189 refer to a study on
hormone replacement therapy. Until 2002, hor-
mone replacement therapy (HRT), taking hor-
mones to replace those the body no longer makes
after menopause, was commonly prescribed to post-
menopausal women. However, in 2002 the results
of a large clinical trial45 were published, causing
most doctors to stop prescribing it and most women
to stop using it, impacting the health of millions
of women around the world. In the experiment,
8506 women were randomized to take HRT and
8102 were randomized to take a placebo. Table 6.15
shows the observed counts for several conditions
over the five years of the study. (Note: The planned
duration was 8.5 years. If Exercises 6.186 through
6.189 are done correctly, you will notice that several
of the p-values are just below 0.05. The study was

45Rossouw, J., et al., “Risks and benefits of estrogen plus pro-
gestin in healthy postmenopausal women: principal results from
the women’s health initiative randomized controlled trial,” Jour-
nal of the American Medical Association, 2002; 288(3):321–333.

Table 6.15 Counts for several conditions
within the HRT group and the placebo group

Condition HRT Group Placebo Group

Cardiovascular Disease 164 122
Invasive Breast Cancer 166 124
Cancer (all) 502 458
Fractures 650 788

terminated as soon as HRT was shown to signif-
icantly increase risk [using a significance level of
𝛼 = 0.05], because at that point it was unethical to
continue forcing women to take HRT).

6.186 Does HRT influence the chance of a woman
getting cardiovascular disease?

6.187 Does HRT influence the chance of a woman
getting invasive breast cancer?

6.188 Does HRT influence the chance of a woman
getting cancer of any kind?

6.189 Does HRT influence the chance of a woman
having a fracture?

6.190 Infections in the ICU and Sex In the dataset
ICUAdmissions, the variable Infection indicates
whether the ICU (Intensive Care Unit) patient had
an infection (1) or not (0) and the variable Sex
gives the sex of the patient (0 for males and 1 for
females.) Use technology to test at a 5% level
whether there is a difference between males and
females in the proportion of ICU patients with an
infection.

6.191 Surgery in the ICU and Sex In the dataset
ICUAdmissions, the variable Service indicates
whether the ICU (Intensive Care Unit) patient had
surgery (1) or other medical treatment (0) and the
variable Sex gives the sex of the patient (0 for males
and 1 for females.) Use technology to test at a 5%
level whether there is a difference between males
and females in the proportion of ICU patients who
have surgery.

6.192 Does Buying Organic Food Improve Your
Health? In Exercise 1.112 we see that, according to
a large national random sample,46 people who had
bought organic food weremore likely to report their
health as very good or excellent. The relevant data
are in NHANES.

(a) Create a two-way table of the data, focusing
on the relationship between HealthBinary and
Organic.

46https://www.cdc.gov/nchs/nhanes/index.htm
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(b) Calculate the difference in proportions, calcu-
lated as the proportion of people reporting their
health as very good or excellent for the peo-
ple who bought organic minus the proportion
of people reporting their health as very good
or excellent for the people who did not buy
organic.

(c) Recall from Section 1.3 that there are three pos-
sible explanations for the observed difference in
proportions:

(i) Causal association; buying (and then, pre-
sumably, eating) organic food improves
general health status

(ii) Association due to confounding: the groups
(people who buy organic and those who
don’t) differed to begin with

(iii) No actual association: just random chance

Recall that evaluating evidence for the causal
explanation, (i), requires evaluating evidence
against the alternative explanations, (ii) and
(iii). Use technology and the normal distribu-
tion to evaluate evidence against explanation
(iii).

(d) Does this study provide convincing evidence
that buying organic food improves general
health status? Why or why not? (Hint: Recall
that these data were collected as part of a sur-
vey.)

TYPE OF FACE MASK
During the 2020 COVID-19 pandemic, the United
States faced a shortage of medical face masks. To
save the medical masks for health care workers,
people were advised to wear cloth masks in public.
Here we look at the only randomized experiment47

(at the time of writing) that investigated the effec-
tiveness of cloth masks at protecting the wearer
from respiratory infection. Health care workers in
Vietnam were randomized to wear either medical
face masks or cloth face masks during their shifts
for four consecutive weeks. The study was designed
to see if there is evidence that medical masks are
more effective at preventing illness. The researchers
collected data on three different response variables:
whether the health care worker developed a clin-
ical respiratory illness (CRI), influenza-like illness
(ILI), or laboratory-confirmed virus illness (LCI).
The results are given in Table 6.16.

47MacIntyre CR, Seale H, Dung TC, et al. (2015). A cluster ran-
domised trial of cloth masks compared with medical masks in
healthcare workers. BMJ Open, 5(4).

Table 6.16 Sample sizes and number of people
in each face mask group developing each kind of
infection

Sample size CRI ILI LCI
Medical masks 580 28 1 19
Cloth masks 569 43 13 31

For all three response variables, the proportion of
infection was higher for the clothmask wearers than
the medical mask wearers. Recall from Section 1.3
that there are three possible explanations for this:

(i) Causal association: medical masks are more
effective at preventing infection than cloth
masks

(ii) Association due to confounding: the groups
(cloth mask wearers and medical mask wear-
ers) differed to begin with

(iii) No actual association: just random chance

Exercises 6.193 to 6.197 analyze the evidence
against explanations (ii) and (iii).

6.193 Cloth vs Medical Masks and Confounding
Variables Do we have evidence against alternative
explanation (ii)? Why or why not?

6.194 Cloth vs Medical Masks and Clinical Respi-
ratory Infection For the clinical respiratory infec-
tion (CRI) response variable,

(a) Calculate the observed difference in propor-
tions with illness, medical mask − cloth mask.

(b) Use technology and the normal distribution to
calculate a one-sided p-value.

(c) Based on the p-value and the standard signif-
icance level of 𝛼 = 0.05, do we have evidence
against alternative explanation (iii)?

(d) Based on your answers to Exercise 6.193 and
part (c), does this study provide convincing evi-
dence that medical masks are more effective at
protecting health care workers against devel-
oping a clinical respiratory infection than cloth
masks? Why or why not?

6.195 Cloth vs Medical Masks and Influenza-Like
Illness For the influenza-like illness (ILI) response
variable,

(a) Calculate the observed difference in propor-
tions with illness, medical mask − cloth mask.

(b) Use technology and the normal distribution to
calculate a one-sided p-value.

(c) Are the conditions for using a normal distri-
bution satisfied here? If yes, why? If no, why
not and how should we calculate the p-value
instead?
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(d) Use a randomization test to calculate a one-
sided p-value.

(e) Based on the p-value, do we have evidence
against alternative explanation (iii)?

(f) Based on your answers to Exercise 6.193 and
part (e), does this study provide convincing evi-
dence that medical masks are more effective at
protecting health care workers against develop-
ing an influenza-like illness than cloth masks?
Why or why not?

6.196 Cloth vs Medical Masks and Virus Illness
For the laboratory-confirmed virus illness (LCI)
response variable,

(a) Calculate the observed difference in propor-
tions with illness, medical mask − cloth mask.

(b) Use technology and the normal distribution to
calculate a one-sided p-value.

(c) Based on the p-value and the standard signif-
icance level of 𝛼 = 0.05, do we have evidence
against alternative explanation (iii)?

(d) Based on your answers to Exercise 6.193 and
part (c), does this study provide convincing evi-
dence that medical masks are more effective at
protecting health care workers against devel-
oping a laboratory-confirmed virus illness than
cloth masks? Why or why not?

6.197 Cloth vs Medical Masks: Comparing Results
The difference in proportions is farther from 0 for
the CRI and LCI response variables than for the ILI
response variable, yet the causal evidence is much
stronger for the ILI response variable than for CRI
or LCI. How can this be true?

6.4-DDISTRIBUTION OF A DIFFERENCE IN MEANS

In this section we consider the distribution of the differences in means between
samples taken from two distinct groups. Those groups might be two different pop-
ulations, two subsets within a single sample identified by a categorical variable, or
different treatments in an experiment. The parameter of interest is 𝜇1 − 𝜇2, where
𝜇1 and 𝜇2 represent the “true” means in each of the two groups.

In Section 6.2-D we saw that the distribution of x for a single sample is centered
at the population mean 𝜇, has spread given by SE = 𝜎∕

√
n, and approaches a normal

curve as the sample size gets large. Notice that we can also write the standard error
as SE =

√
𝜎
2∕n. This leads us to the standard error for differences in means:

SE =

√
𝜎
2
1

n1
+

𝜎
2
2

n2

The t-Distribution
Recall from the work with a single mean in Section 6.2-D that we need to make a
small adjustment when working with means, since we almost certainly do not know
the population standard deviations. Fortunately, we can apply a similar remedy in
the case of differences in two sample means, namely to substitute the sample stan-
dard deviations when computing the standard error and then use the t-distribution
instead of the normal distribution when finding endpoints for confidence intervals
or p-values for tests. Also, as with a single mean, we need to check each sample
for heavy skewness or extreme outliers that might indicate serious departures from
normality, especially when either sample size is small.

However, we have one additional difficulty in the two-sample case: What should
we use for the degrees of freedom? Recall that for a single sample we use n − 1
degrees of freedom, but now we have two (possibly different) sample sizes. One
solution is a complicated formula, called Satterwaithe’s approximation, for estimat-
ing the degrees of freedom, which is used in many statistical software packages. As
a conservative approach, in this text we will use the smaller of the two degrees of
freedom, either n1 − 1 or n2 − 1.
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The Distribution of Differences in Sample Means

When choosing random samples of size n1 and n2 from populations
with means 𝜇1 and 𝜇2, respectively, the distribution of the differences
in the two sample means, x1 − x2, is centered at the difference in pop-
ulation means, 𝜇1 − 𝜇2, and has standard error estimated by

SE =

√
s21
n1

+
s22
n2

The standardized differences in sample means follow a t-distribution
with degrees of freedom approximately equal to the smaller of n1 − 1
and n2 − 1.

For small sample sizes (n1 < 30 or n2 < 30), the t-distribution is only
a good approximation if the underlying population has a distribution
that is approximately normal.

In finding the standard error for the difference x1 − x2, you may be tempted to sub-
tract s22∕n2 from s21∕n1 within the square root rather than add those two terms. It’s
important that the variability of the difference depends on adding the variability
generated from each of the two samples.

Using the Formula for Standard Error

Example 6.24
Figure 6.16 shows two different simulation distributions for differences in means. In
each case, use the formula to compute the standard error, and compare the result to
that arrived at by simulation methods.

(a) In Example 3.25, we consider mean number of hours per week spent exercising,
between males and females, from the ExerciseHours dataset. The mean for the
20 males is xM = 12.4 hours with standard deviation sM = 8.80. The mean for
the 30 females is xF = 9.4 hours with standard deviation sF = 7.41. From the
bootstrap distribution of differences in sample means in Figure 6.16(a), we have
SE = 2.34.

(a) Bootstrap differences in exercise means for males
and females

(b) Randomization differences in leniency means
when μs = μc
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Figure 6.16 Simulation distributions for differences in two sample means
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(b) In Data 4.5, we look at an experiment to compare the leniency scores assigned
to students charged with an infraction, where the students charged had either a
smiling or a neutral expression. The data in Smiles show that the 34 scores given
to smiling faces had a mean leniency score of 4.91 with a standard deviation of
1.68, while the 34 neutral expressions had a mean score of 4.12 and standard
deviation of 1.52. From the randomization differences in Figure 6.16(b) we find
SE = 0.40.

Solution (a) For the bootstrap differences in mean exercise times the standard error
should be

SE =
√

8.802

20
+ 7.412

30
= 2.39

(b) For the randomization differences in leniency scores the standard error
should be

SE =
√

1.682

34
+ 1.522

34
= 0.39

These are very similar to the standard errors arrived at using simulation methods.

Example 6.25
Is it appropriate to use a t-distribution for conducting inference on the data on male
and female exercise hours described in Example 6.24(a)? If it is appropriate, what
degrees of freedom should we use?

Solution The sample size for males is nM = 20 and the sample size for females is nF = 30.
Since the sample size for males is less than 30, we check the distribution. A dotplot
of the number of hours spent exercising for the 20 males is shown in Figure 6.17. It
is not extremely skewed and does not have extreme outliers, so a t-distribution is
appropriate.

The degrees of freedom is the smaller of nM − 1 or nF − 1. Since nM is less than
nF , we have df = nM − 1 = 20 − 1 = 19.

Figure 6.17 Male
exercise times Exercise

Male
4 8 12 16 20 24 28

In the next two sections, we explore the use of the t-distribution in more
detail—first for computing a confidence interval for a difference in two means and
then for computing a p-value to test a hypothesis that two means are equal.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a formula to find the standard error for a distribution of differences
in sample means for two groups

• Recognize when a t-distribution is an appropriate model for a distribu-
tion of the standardized difference in two sample means
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Exercises for Section 6.4-D

SKILL BUILDER 1
In Exercises 6.198 to 6.201, random samples of the
given sizes are drawn from populations with the
given means and standard deviations. For each sce-
nario, use the formula to find the standard error
of the distribution of differences in sample means,
x1 − x2.

6.198 Samples of size 100 from Population 1 with
mean 87 and standard deviation 12 and samples of
size 80 from Population 2 with mean 81 and stan-
dard deviation 15

6.199 Samples of size 25 from Population 1 with
mean 6.2 and standard deviation 3.7 and samples of
size 40 from Population 2 with mean 8.1 and stan-
dard deviation 7.6

6.200 Samples of size 50 from Population 1 with
mean 3.2 and standard deviation 1.7 and samples of
size 50 from Population 2 with mean 2.8 and stan-
dard deviation 1.3

6.201 Samples of size 300 from Population 1 with
mean 75 and standard deviation 18 and samples of

size 500 from Population 2 with mean 83 and stan-
dard deviation 22

SKILL BUILDER 2
Use a t-distribution to answer the questions in
Exercises 6.202 to 6.205. Assume the samples are
random samples from distributions that are reason-
ably normally distributed, and that a t-statistic will
be used for inference about the difference in sample
means. State the degrees of freedom used.

6.202 Find the endpoints of the t-distribution with
2.5% beyond them in each tail if the samples have
sizes n1 = 15 and n2 = 25.

6.203 Find the endpoints of the t-distribution with
5% beyond them in each tail if the samples have
sizes n1 = 8 and n2 = 10.

6.204 Find the proportion in a t-distribution less
than −1.4 if the samples have sizes n1 = 30 and
n2 = 40.

6.205 Find the proportion in a t-distribution above
2.1 if the samples have sizes n1 = 12 and n2 = 12.

6.4-CICONFIDENCE INTERVAL FOR A DIFFERENCE
IN MEANS

In Section 5.2 we see that when a distribution of a statistic is normally distributed, a
confidence interval can be formed using

Sample Statistic ± z∗ ⋅ SE

where z∗ is an appropriate percentile from a standard normal distribution and SE is
the standard error of the statistic.

In Section 6.4-D we see that we can estimate the standard error for a difference
in sample means using

SE =

√
s21
n1

+
s22
n2

where n1 and n2 are the sample sizes and s1 and s2 are the standard deviations
from the respective samples. However, when we use the sample standard devia-
tions rather than the (unknown) population standard deviations in computing the
SE, the standardized statistic follows a t-distribution rather than a standard normal
(provided the underlying populations are reasonably normal).

We combine these facts to produce a formula for a confidence interval for a
difference in means.
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Confidence Interval for a Difference in Means

A difference in sample means based on random samples of sizes n1
and n2 has

Sample statistic = x1 − x2 and SE =

√
s21
n1

+
s22
n2

where x1 and x2 are the means and s1 and s2 are the standard devi-
ations for the respective samples. If t∗ is an endpoint chosen from a
t-distribution with df equal to the smaller of n1 − 1 or n2 − 1 to give
the desired level of confidence, and if the distribution of the popula-
tions are approximately normal or the sample sizes are large (n1 ≥ 30
and n2 ≥ 30), the confidence interval for the difference in population
means, 𝜇1 − 𝜇2, is

Sample statistic ± t∗ ⋅ SE

which, in this case, corresponds to

(x1 − x2) ± t∗ ⋅

√
s21
n1

+
s22
n2

Example 6.26
Atlanta vs St. Louis Commute Times

In Data 3.3 on page 248, we introduce a sample of 500 commuting times for people
who work in Atlanta, and in Exercise 3.144 we introduce a sample of 500 commut-
ing times for people who work in St. Louis. The data are in CommuteAtlanta and
CommuteStLouis. The summary statistics for these two samples are shown below
and Figure 6.18 displays boxplots of the commute times from each city.

Group n Mean Std. Dev.

Atlanta 500 29.11 20.72
St. Louis 500 21.97 14.23

Use these data to compute a 90% confidence interval for the difference in mean
commute time between Atlanta and St. Louis.

Solution From the boxplots we see that both samples are right skewed and have numerous
outliers. If these were smaller samples, we would be hesitant to model the difference
in means with a t-distribution. However, with these large samples (n1 = n2 = 500)
we can go ahead and use the t-distribution to find the interval.

Figure 6.18 Commute
times in Atlanta and St.
Louis
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Each sample has 500 − 1 = 499 degrees of freedom, so we find the t∗ value with
an area of 0.05 in the tail beyond it in a t-distribution with 499 degrees of free-
dom. This value is t∗ = 1.648 and is very close to the standard normal percentile of
z∗ = 1.645.

Substituting into the formula for a confidence interval for a difference in means
we get

(x1 − x2) ± t∗

√
s21
n1

+
s22
n2

(29.11 − 21.97) ± 1.648

√
20.722

500
+ 14.232

500
7.14 ± 1.85

5.29 to 8.99

Based on these results, we are 90% sure that the mean commute time in Atlanta is
between 5.29 and 8.99 minutes more than the mean commute time in St. Louis.

Note that we could easily have switched the order in the previous example and
estimated the difference inmeans with xstl − xatl = 21.97 − 29.11 = −7.14. This would
only change the signs in the confidence interval and lead to the same interpretation.

Note also that the interpretation includes some direction (commute times tend
to be longer in Atlanta than St. Louis) rather than a less informative statement such
as “We are 90% sure that the difference in mean commute time between Atlanta
and St. Louis is between 5.29 and 8.99 minutes.” In fact, since the interval includes
only positive values (and not zero), we can be relatively sure (at least to a 10%
significance level) that a hypothesis of no difference in the two means would be
rejected.

In Exercise 3.144 on page 276 we used the bootstrap distribution in Figure 3.36
to estimate this 90% confidence interval for the difference in mean commute
time between the two cities. The percentiles of that distribution give an interval
from 5.21 to 8.95 minutes, which is very similar to the result from the t-interval in
Example 6.26.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to compute a confidence inter-
val for the difference inmeans between two groups, based on a formula
for the standard error

Exercises for Section 6.4-CI

SKILL BUILDER 1
In Exercises 6.206 to 6.209, use the t-distribution to
find a confidence interval for a difference in means
𝜇1 − 𝜇2 given the relevant sample results. Give the

best estimate for 𝜇1 − 𝜇2, the margin of error, and
the confidence interval. Assume the results come
from random samples from populations that are
approximately normally distributed.
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6.206 A 95% confidence interval for 𝜇1 − 𝜇2 using
the sample results x1 = 75.2, s1 = 10.7, n1 = 30 and
x2 = 69.0, s2 = 8.3, n2 = 20.

6.207 A 90% confidence interval for 𝜇1 − 𝜇2 using
the sample results x1 = 10.1, s1 = 2.3, n1 = 50 and
x2 = 12.4, s2 = 5.7, n2 = 50.

6.208 A 99% confidence interval for 𝜇1 − 𝜇2 using
the sample results x1 = 501, s1 = 115, n1 = 400 and
x2 = 469, s2 = 96, n2 = 200.

6.209 A 95% confidence interval for 𝜇1 − 𝜇2 using
the sample results x1 = 5.2, s1 = 2.7, n1 = 10 and
x2 = 4.9, s2 = 2.8, n2 = 8.

IS FAST FOOD MESSING WITH YOUR
HORMONES?
Exercises 6.210 and 6.211 examine the results of a
study48 investigating whether fast food consump-
tion increases one’s concentration of phthalates, an
ingredient in plastics that has been linked to multi-
ple health problems including hormone disruption.
The study included 8,877 people who recorded all
the food they ate over a 24-hour period and then
provided a urine sample. Two specific phthalate
byproducts were measured (in ng/mL) in the urine:
DEHP and DiNP. Find and interpret a 95% confi-
dence interval for the difference, 𝜇F − 𝜇N , in mean
concentration between people who have eaten fast
food in the last 24 hours and those who haven’t.

6.210 The mean concentration of DEHP in the
3095 participants who had eaten fast food was xF =
83.6 with sF = 194.7 while the mean for the 5782
participants who had not eaten fast food was xN =
59.1 with sN = 152.1.

6.211 The mean concentration of DiNP in the 3095
participants who had eaten fast food was xF = 10.1
with sF = 38.9 while the mean for the 5782 partici-
pants who had not eaten fast food was xN = 7.0 with
sN = 22.8.

6.212 Fluoride Exposure in Drinking Water
Exercise 2.250 introduces a study showing that
fluoride exposure might have long-term negative
consequences for the offspring of pregnant women.
Part of the study examines the effect of adding flu-
oride to tap water on mean fluoride concentration
in women. Summary statistics for fluoride concen-
tration (measured in mg/L) for the two groups are

48Zota, A.R., Phillips, C.A., and Mitro, S.D., “Recent Fast Food
Consumption and Bisphenol A and Phthalates Exposure among
the U.S. Population in NHANES, 2003–2010,” Environmental
Health Perspectives, April 13, 2016.

given in Table 6.17. Find and interpret a 99% con-
fidence interval for the mean increase in fluoride
concentration for those with fluoridated tap water.

Table 6.17 Fluoride in tap water

Tap water Sample size Mean St.Dev.
Fluoridated 141 0.69 0.42
Non-fluoridated 228 0.40 0.27

6.213 Dark Chocolate for Good Health A study49

examines chocolate’s effects on blood vessel func-
tion in healthy people. In the randomized, double-
blind, placebo-controlled study, 11 people received
46 grams (1.6 ounces) of dark chocolate (which is
naturally flavonoid-rich) every day for two weeks,
while a control group of 10 people received a
placebo consisting of dark chocolate with low
flavonoid content. Participants had their vascular
health measured (by means of flow-mediated dila-
tion) before and after the two-week study. The
increase over the two-week period was measured,
with larger numbers indicating greater vascular
health. For the group getting the good dark choco-
late, the mean increase was 1.3 with a standard devi-
ation of 2.32, while the control group had a mean
change of −0.96 with a standard deviation of 1.58.

(a) Explain what “randomized, double-blind,
placebo-controlled study” means.

(b) Find and interpret a 95% confidence interval for
the difference in means between the two groups.
Be sure to clearly define the parameters you are
estimating. You may assume that neither sam-
ple shows significant departures from normality.

(c) Is it plausible that there is “no difference”
between the two kinds of chocolate? Justify
your answer using the confidence interval found
in part (b).

6.214 Close Confidants and Social Networking
Sites Exercise 6.103 introduces a study50 in which
2006 randomly selected US adults (age 18 or older)
were asked to give the number of people in the last
six months “with whom you discussed matters that
are important to you.” The average number of close

49Engler, M., et. al., “Flavonoid-rich dark chocolate improves
endothelial function and increases plasma epicatechin concen-
trations in healthy adults,” Journal of the American College of
Nutrition, 2004 Jun; 23(3):197–204.
50Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
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confidants for the full sample was 2.2. In addition,
the study asked participants whether or not they
had a profile on a social networking site. For the
947 participants using a social networking site, the
average number of close confidants was 2.5 with a
standard deviation of 1.4, and for the other 1059 par-
ticipants who do not use a social networking site,
the average was 1.9 with a standard deviation of 1.3.
Find and interpret a 90% confidence interval for the
difference in means between the two groups.

6.215 Effect of Splitting the Bill Exercise 2.177 on
page 116 describes a study to compare the cost of
restaurant meals when people pay individually ver-
sus splitting the bill as a group. In the experiment
half of the people were told they would each be
responsible for individual meal costs and the other
half were told the cost would be split equally among
the six people at the table. The 24 people paying
individually had a mean cost of 37.29 Israeli shekels
with a standard deviation of 12.54, while the 24
people splitting the bill had a higher mean cost of
50.92 Israeli shekels with a standard deviation of
14.33. The raw data can be found in SplitBill and
both distributions are reasonably bell-shaped. Use
this information to find and interpret a 95% confi-
dence interval for the difference in mean meal cost
between these two situations.

IMPACT OF COLLEGE ROOMMATES ON
GRADES
In Exercises 6.216 to 6.220, we investigate answers
to the questions: How much of an effect does
your roommate have on your grades? In particu-
lar, does it matter whether your roommate brings
a videogame to college? Exercise B.5 on page 380
introduces a study involving n = 210 first-year stu-
dents who were randomly assigned a roommate.
Table 6.18 gives summary statistics on grade point
average (GPA) for the first semester depending on
whether the student and/or the roommate brought
a videogame to campus.

Table 6.18 Videogames and GPA

Student brought Roommate brought
videogame videogame Sample Size Mean GPA Std. Dev.

No No 88 3.128 0.590
Yes No 44 3.039 0.689
No Yes 38 2.932 0.699
Yes Yes 40 2.754 0.639

6.216 Considering only students who do not bring
a videogame to campus, find and interpret a 95%
confidence interval for the difference in mean GPA
between students whose roommate does not bring
a videogame and those whose roommate does bring
a videogame. Comment on the effect on these stu-
dents of having a roommate bring a videogame.

6.217 Considering only students who do bring a
videogame to campus, find and interpret a 95% con-
fidence interval for the difference in mean GPA
between students whose roommate does not bring
a videogame and those whose roommate does bring
a videogame. Comment on the effect on these stu-
dents of having a roommate bring a videogame.

6.218 Considering only students whose roommate
does not bring a videogame to campus, find and
interpret a 95% confidence interval for the differ-
ence in mean GPA between students who bring
a videogame and those who do not bring a
videogame. Comment on the effect on these stu-
dents of bringing a videogame.

6.219 Considering only students whose roommate
does bring a videogame to campus, find and inter-
pret a 95% confidence interval for the differ-
ence in mean GPA between students who bring
a videogame and those who do not bring a
videogame. Comment on the effect on these stu-
dents of bringing a videogame.

6.220 We consider the effect of neither student
bringing videogames compared to both students
bringing them, still using the data in Table 6.18.

(a) Find and interpret a 95% confidence interval
for the difference in means between students
in rooms in which neither the student nor the
roommate brings a videogame and students in
rooms in which both the student and the room-
mate bring a videogame. Comment on the effect
of videogames on GPA.

(b) Can we conclude that bringing videogames to
campus reduces GPA? Why or why not?
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STANDARD ERROR FROM A FORMULA
AND A BOOTSTRAP DISTRIBUTION
In Exercises 6.221 and 6.222, use StatKey or other
technology to generate a bootstrap distribution of
sample differences in means and find the standard
error for that distribution. Compare the result to the
standard error given by the Central Limit Theorem,
using the sample standard deviations as estimates of
the population standard deviations.

6.221 Difference in mean commuting time (in min-
utes) between commuters in Atlanta and com-
muters in St. Louis, using n1 = 500, x1 = 29.11, and
s1 = 20.72 for Atlanta and n2 = 500, x2 = 21.97, and
s2 = 14.23 for St. Louis.

6.222 Difference in mean commuting distance (in
miles) between commuters in Atlanta and com-
muters in St. Louis, using n1 = 500, x1 = 18.16, and
s1 = 13.80 for Atlanta and n2 = 500, x2 = 14.16, and
s2 = 10.75 for St. Louis.

6.223 Who Exercises More: Males or Females?
The dataset StudentSurvey has information from
males and females on the number of hours spent
exercising in a typical week. Computer output of
descriptive statistics for the number of hours spent
exercising, broken down by sex, is given:

Descriptive Statistics: Exercise
Variable Sex N Mean StDev
Exercise F 168 8.110 5.199

M 193 9.876 6.069

Minimum Q1 Median Q3 Maximum
0.000 4.000 7.000 12.000 27.000
0.000 5.000 10.000 14.000 40.000

(a) How many females are in the dataset? How
many males?

(b) In the sample, which group exercises more, on
average? By how much?

(c) Use the summary statistics to compute a 95%
confidence interval for the difference in mean
number of hours spent exercising. Be sure to
define any parameters you are estimating.

(d) Compare the answer from part (c) to the confi-
dence interval given in the following computer
output for the same data:

Two-sample T for Exercise
Sex N Mean StDev SE Mean
F 168 8.11 5.20 0.40
M 193 9.88 6.07 0.44

Difference = mu (F) − mu (M)
Estimate for difference: −1.766
95% CI for difference: (−2.932, −0.599)

(e) Interpret the confidence interval in context.

6.224 Who Watches More TV: Males or Females?
The dataset StudentSurvey has information from
males and females on the number of hours spent
watching television in a typical week. Computer
output of descriptive statistics for the number of
hours spent watching TV, broken down by sex, is
given:

Descriptive Statistics: TV
Variable Sex N Mean StDev
TV F 169 5.237 4.100

M 192 7.620 6.427

Minimum Q1 Median Q3 Maximum
0.000 2.500 4.000 6.000 20.000
0.000 3.000 5.000 10.000 40.000

(a) In the sample, which group watches more TV,
on average? By how much?

(b) Use the summary statistics to compute a 99%
confidence interval for the difference in mean
number of hours spent watching TV. Be sure to
define any parameters you are estimating.

(c) Compare the answer from part (b) to the confi-
dence interval given in the following computer
output for the same data:

Two-sample T for TV
Sex N Mean StDev SE Mean
F 169 5.24 4.10 0.32
M 192 7.62 6.43 0.46

Difference = mu (F) − mu (M)
Estimate for difference: −2.383
99% CI for difference: (−3.836, −0.930)

(d) Interpret the confidence interval in context.

6.225 Who Eats More Fiber: Males or Females?
Use technology and the NutritionStudy dataset to
find a 95% confidence interval for the difference
in number of grams of fiber (Fiber) eaten in a day
between males and females. Interpret the answer
in context. Is “No difference” between males and
females a plausible option for the population differ-
ence in mean number of grams of fiber eaten?

6.226 Systolic Blood Pressure and Survival Status
Use technology and the ICUAdmissions dataset to
find a 95% confidence interval for the difference
in systolic blood pressure (Systolic) upon admission
to the Intensive Care Unit at the hospital based
on survival of the patient (Status with 0 indicating
the patient lived and 1 indicating the patient died.)
Interpret the answer in context. Is “No difference”
between those who lived and died a plausible option
for the difference in mean systolic blood pressure?
Which group had higher systolic blood pressures on
arrival?
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6.4-HTHYPOTHESIS TEST FOR A DIFFERENCE IN MEANS

In Section 5.1 we see that, when a randomization distribution is normal, we can
compute a p-value using a standard normal curve and a standardized test statistic of
the form

z =
Sample Statistic −Null Parameter

SE
When comparing means between two groups, the null hypothesis is typically
H0 ∶ 𝜇1 = 𝜇2 or, equivalently, H0 ∶ 𝜇1 − 𝜇2 = 0. Thus the “Null parameter” is
usually equal to zero and we use the difference in means for two samples, x1 − x2, as
the “Sample statistic”.

As we see in Section 6.4-D, we can estimate the standard error of x1 − x2 with

SE =

√
s21
n1

+
s22
n2

where s1 and s2 are the standard deviations in the two samples.51 However, when
we use the sample standard deviations in estimating SE, we need to switch to a
t-distribution rather than the standard normal when finding a p-value. This requires
either that the underlying populations are reasonably normal or that the sample
sizes are large.

Two-Sample t-Test for a Difference in Means

To test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2 (or a one-tail alternative) based
on samples of sizes n1 and n2 from the two groups, we use the two-
sample t-statistic

t = Statistic −Null value
SE

=
(x1 − x2) − 0√

s2
1
n1

+
s2
2
n2

where x1 and x2 are the means and s1 and s2 are the standard devia-
tions for the respective samples.

If the underlying populations are reasonably normal or the sample
sizes are large, we use a t-distribution to find the p-value for this statis-
tic. For degrees of freedom we can either use the smaller of n1 − 1 or
n2 − 1, or technology to get a more precise approximation.

Example 6.27
Smiles and Leniency

In Data 4.5 on page 320, we look at an experiment to compare the leniency scores
assigned to students charged with a disciplinary infraction in which subjects are
shown a picture of the alleged wrongdoer randomly selected to show either a smiling
or a neutral pose. Summary statistics from the data in Smiles are given in Table 6.19.

(a) Construct and interpret a graph to verify that the t-distribution is appropriate
for comparing these means.

(b) Use the t-distribution to test whether the mean leniency score for smiling stu-
dents is higher than the mean score for students with a neutral expression.

51Some textbooks use a pooled standard deviation when standard deviations are approximately equal.
This practice offers almost no advantage, however, and is not included in this text.
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Table 6.19 Summary statistics for
leniency scores

Group n Mean Std. Dev.

Smile 34 4.91 1.68
Neutral 34 4.12 1.52

Solution (a) Figure 6.19 shows boxplots of the sample leniency scores for the neutral and
smiling groups. Both plots are relatively symmetric and have no strong outliers
so we don’t see strong evidence that the distributions are not normal. Also, the
sample sizes of 34 for each group are not very small, so a t-distribution is rea-
sonable to model the standardized distribution of xs − xn.

(b) The hypotheses areH0 ∶ 𝜇s = 𝜇n vsHa ∶ 𝜇s > 𝜇n, where 𝜇s and 𝜇n are themeans,
respectively, for leniency scores assigned to smiling and neutral expressions.
Based on the summary statistics, we compute the t-statistic

t = Statistic −Null value
SE

=
(xs − xn) − 0√

s2s
ns

+ s2n
nn

= (4.91 − 4.12) − 0√
1.682

34
+ 1.522

34

= 0.79
0.389

= 2.03

To find the p-value we use the upper tail of a t-distribution with 34 − 1 = 33
degrees of freedom. Technology shows this area to give a p-value of 0.025. This
gives moderate evidence that the mean leniency score for smiling expressions is
higher than the mean leniency score for neutral expressions.

Figure 6.19 Leniency
scores for neutral and
smiling faces
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We often use technology to handle the details of a two-sample t-test such
as in Example 6.27. Here is some typical output for such a test with the data in
Smiles:

Two-sample T for Leniency
Group N Mean StDev SE Mean
neutral 34 4.12 1.52 0.26
smile 34 4.91 1.68 0.29

Difference = mu (neutral) − mu (smile)
Estimate for difference: −0.794
95% upper bound for difference: −0.145
T-Test of difference = 0 (vs <): T-Value = −2.04 P-Value = 0.023 DF = 65
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We see several differences between the computer output and the calculations
in Example 6.27. First, the stat package uses the difference in the other direction,
xn − xs, so the test becomes lower rather than upper tailed. The small difference in
the magnitude of the t-statistic (T-value = −2.04 in the bottom line of the output)
is due to rounding, but the larger degrees of freedom (65 rather than 33) is because
the technology uses a more complicated formula for approximating the degrees of
freedom. This gives a slightly smaller p-value (0.023 in the output) than our con-
servative use of 34 − 1 = 33 degrees of freedom. Nevertheless, the basic results and
interpretation of the test are the same.

Figure 4.26 on page 321 shows a randomization distribution for 1000 differ-
ences in means for the Smiles data. In that figure there are 23 values that are at or
beyond the sample difference of xs − xn = 0.79. This gives an estimated p-value of
23∕1000 = 0.023, which agrees nicely with the results of Example 6.27 and the com-
puter output. While the formulas in this section allow us to calculate a test statistic
using summary statistics, remember that the randomization procedures of Chapter 4
still apply, even in situations where the conditions for the t-distribution might be
in question.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a t-distribution, when appropriate, to test a hypothesis about a dif-
ference in means between two groups, using a formula for the standard
error

Exercises for Section 6.4-HT

SKILL BUILDER 1
In Exercises 6.227 to 6.230, use the t-distribution
and the given sample results to complete the test
of the given hypotheses. Assume the results come
from random samples, and if the sample sizes are
small, assume the underlying distributions are rela-
tively normal.

6.227 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 > 𝜇2 using the
sample results x1 = 56, s1 = 8.2 with n1 = 30 and
x2 = 51, s2 = 6.9 with n2 = 40.
6.228 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2 using the
sample results x1 = 15.3, s1 = 11.6 with n1 = 100 and
x2 = 18.4, s2 = 14.3 with n2 = 80.

6.229 Test H0 ∶ 𝜇A = 𝜇B vs Ha ∶ 𝜇A ≠ 𝜇B using the
fact that Group A has 8 cases with a mean of
125 and a standard deviation of 18 while Group B
has 15 cases with a mean of 118 and a standard devi-
ation of 14.

6.230 Test H0 ∶ 𝜇T = 𝜇C vs Ha ∶ 𝜇T < 𝜇C using the
fact that the treatment group (T) has a sample mean
of 8.6 with a standard deviation of 4.1 while the

control group (C) has a sample mean of 11.2 with
a standard deviation of 3.4. Both groups have 25
cases.

6.231 Take Your Notes Longhand! A study52 ran-
domly assigned students to take notes either long-
hand or using a laptop. The resulting scores of
the students on a test of the material are given in
Table 6.20. Does the data provide evidence that it is
more effective to take notes longhand rather than
on a laptop? Show all details of the test.

Table 6.20 Summary statistics for
test scores after taking notes
longhand or on a laptop

Note-taking n x s

Longhand 38 25.6 10.8
Laptop 40 18.3 9.0

52Mueller, P.A., and Oppenheimer, D.M., “The Pen is Mightier
Than the Keyboard: Advantages of LonghandOver Laptop Note
Taking,” Psychological Science, May 22, 2014.
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6.232 How Compassionate Is Your Dog?
Exercise 4.16 introduces a study investigating
whether dogs try to reach their owner faster if the
owner is in distress. In the study, a dog’s owner sat
behind a see-though magnetic door that the dog
could push open. The dog-owner pairs were ran-
domly assigned to either the distress condition (the
owner said help in a distressed tone and made cry-
ing sounds) or the control condition (the owner
said help in a neutral tone and made humming
sounds). The response variable is the number of
seconds until the dog opens the door, and the sum-
mary statistics are shown in Table 6.21. The sample
sizes are small but the article indicates that condi-
tions are met for using the t-distribution. Test to see
whether mean time to open the door is significantly
less for dogs with owners in distress than for dogs
with owners not in distress. Use a 5% significance
level and show all details of the test.

Table 6.21 Can a dog tell when its owner is
in distress?

Condition Sample size Mean St.Dev.
Distress 7 23.43 17.77
Control 9 95.89 89.09

6.233 Can a Brief Diet Intervention Help Depres-
sion? Example 1.28 introduces a study investigat-
ing whether a brief diet intervention might improve
depression symptoms. In the study, 75 college-age
students with elevated depression symptoms and
relatively poor diet habits were randomly assigned
to either a healthy diet group or a control group.
Depression levels were measured at the beginning
of the experiment and then again three weeks later.
The response variable is the reduction in depres-
sion level (as measured on the CESD scale) at the
end of the three weeks. Larger numbers mean more
improvement in depression symptoms, and the sum-
mary statistics are given in Table 6.22. Test at a
5% level whether these experimental results allow
us to conclude that, on average, improvement of
depression symptoms is higher for those who eat
a healthy diet for three weeks than for those who
don’t. (Depression levels were measured two dif-
ferent ways. Exercise 4.127 investigated the results
on the DASS scale and this exercise investigates the
results on the CESD scale.)

Table 6.22 Can a brief diet intervention
help depression?

Group Sample size Mean St.Dev.
Diet 37 6.03 10.53
Control 38 −0.13 12.39

ACTIVE LEARNING VS PASSIVE LEARN-
ING: EXAMINING THE EVIDENCE
Active learning in a classroom implies that students
are actively involved and working during class time,
while passive learning indicates that students are
primarily taking notes while the instructor lectures.
In a study introduced in Exercise 1.15, students in a
college physics course were randomly assigned to
a class period with either active learning or pas-
sive learning. The students then rated how effective
they thought the classes were for teaching them the
material (their feelings of learning) and also took
a test to measure how well they had learned the
material (their actual learning). Exercises 6.234 and
6.235 ask you to test for a difference in means in
these two situations. Show all details of the tests:
hypotheses, test statistic, p-value, and conclusion in
context.

6.234 Active Learning vs Passive Learning: Feel-
ings of LearningAfter the active learning or passive
learning class, students rated the extent to which
they agreed with the statement “I feel like I learned
a great deal from this class.” Ratings were on a 5-
point scale with greater numbers indicating greater
agreement. For the 142 students in the active learn-
ing environment, the mean rating was 3.338 with a
standard deviation of 0.922. For the 154 students
in the passive learning lecture, the mean rating
was 3.753 with a standard deviation of 0.873. Test
whether ratings on feelings of learning are signifi-
cantly lower, on average, with active learning.

6.235 Active Learning vs Passive Learning: Who
Learns More? After the active learning or passive
learning class, students took a 20-question multiple
choice test on the material. Grades are out of 100%
or 1.0. For the 140 students in the active learning
environment who took the test, the mean grade was
0.702 with a standard deviation of 0.178. For the 154
students in the passive learning lecture who took
the test, the mean grade was 0.600 with a standard
deviation of 0.191. Test whether grades on a test of
actual learning are higher, on average, with active
learning.
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6.236 Pennsylvania Seniors TVHours: 2010 vs 2019
Exercise 1.24 describes a dataset, stored in PASe-
niors, for a sample of 457 Pennsylvania high school
seniors who did the Census at School project. The
data contain responses from the years 2010 through
2019. Focus on the first and last of these years
to test if there is enough evidence to show a dif-
ference in mean number of hours of TV watch-
ing per week. Some summary statistics are shown
in Table 6.23.

Table 6.23 TV hours for PASeniors,
2010 vs 2019

Year Sample size Mean St. Dev.
2010 30 8.12 7.68
2019 37 5.50 6.44

6.237 Multitasking in the ClassroomHow good are
you at multitasking? Probably not as good as you
think! Exercise 4.72 introduces a study in which a
professor taught two sections of the same course
with identical material, except that students were
allowed to use electronic devices (laptops and cell
phones) as they wished for half of the classes and
were not allowed to use them for the other half
of the classes. At the end of the semester, grades
on the not allowed/allowed portions of the final
exam were compared, and the results are shown in
Table 6.24. Test to see if these experimental results
provide evidence that mean grades are higher on
material learned when electronic devices are not
allowed as distractions in class. Show all details of
the test.

Table 6.24 Can you multitask?

Sample size Mean St.Dev.
Devices not allowed 118 86.6 8.1
Devices allowed 118 80.1 10.4

6.238 Can Linguistic Form Affect Emotional Reac-
tion in Conflict Resolution? Exercise 2.82 intro-
duces a study examining whether phrasing con-
troversial statements using either nouns or verbs
affects anger levels in conflict situations. The study
was conducted in Israel, and an example of the
noun form is “the division of Jerusalem” rather
than the verb form as “dividing Jerusalem.” Par-
ticipants were randomly divided into two groups,
where Group 1 heard statements in noun form and
Group 2 heard statements in verb form. After hear-
ing each statement, participants indicated on a 1–6
scale how much anger they felt, with higher num-
bers indicating more anger. Table 6.25 gives the

summary statistics. The researchers “hypothesized
that phrasing conflict-relevant policies in noun form
(vs verb form) would reduce anger”.53 Test to see if
mean anger ratings are lower when statements are
in noun form rather than verb form. Use a 5% sig-
nificance level and show all details of the test.

Table 6.25 Linguistic form affects anger
levels

Sample size Mean St.Dev.
Group 1: Noun form 65 3.21 1.30
Group 2: Verb form 64 3.67 1.43

6.239 Transgender Surgery Exercise 6.106 intro-
duces a study investigating the age at which trans-
gender people begin to transition gender and the
age at which they have their first experience of gen-
der dysphoria. The study also recorded the age at
which they began gender-affirming surgery, and we
examine here whether there is a difference in mean
age of surgery between trans men and trans women.
In the study, the mean age for the 155 trans women
in the sample was 41.3 years with a standard devi-
ation of 16.3. The mean age for the 55 trans men
in the sample was 35.4 with a standard deviation
of 10.8. Does this sample provide evidence that
the mean age of surgery is different between trans
women and trans men?

6.240 Transgender Children: Age of First Experi-
ence Exercise 6.106 introduces a study investigating
the age at which transgender people have their first
experience of gender dysphoria. We examine here
whether there is a difference in mean age of first
experience between trans men and trans women. In
the study, the mean age for the 155 trans women in
the sample was 6.7 years old with a standard devi-
ation of 3.6. The mean age for the 55 trans men in
the sample was 6.2 with a standard deviation of 3.1.
Does this sample provide evidence that the mean
age of first perception of gender dysphoria differs
between trans women and trans men?

6.241 Statistical Inference in Babies Is statistical
inference intuitive to babies? In other words, are
babies able to generalize from sample to popula-
tion? In this study,54 8-month-old infants watched

53Idan O, et al., “A Rose by Any Other Name? A Subtle Lin-
guistic Cue Impacts Anger and Corresponding Policy Support in
Intractable Conflict,” Psychological Science”, 29(6), 2018.
54Data approximated from Xu, F., and Garcia, V. (2008).
“Intuitive statistics by 8-month-old infants,” Proceedings on
the National Academy of Sciences, 105(13):5012–15, doi:
10.1073/pnas.0704450105.



6.4-HT Hypothesis Test for a Difference in Means 499

someone draw a sample of five balls from an opaque
box. Each sample consisted of four balls of one
color (red or white) and one ball of the other color.
After observing the sample, the side of the box was
lifted so the infants could see all of the balls inside
(the population). Some boxes had an “expected”
population, with balls in the same color proportions
as the sample, while other boxes had an “unex-
pected” population, with balls in the opposite color
proportion from the sample. Babies looked at the
unexpected populations for an average of 9.9 sec-
onds (sd = 4.5 seconds) and the expected popula-
tions for an average of 7.5 seconds (sd = 4.2 sec-
onds). The sample size in each group was 20, and
you may assume the data in each group are rea-
sonably normally distributed. Is this convincing evi-
dence that babies look longer at the unexpected
population, suggesting that they make inferences
about the population from the sample?

(a) State the null and alternative hypotheses.

(b) Calculate the relevant sample statistic.

(c) Calculate the t-statistic.

(d) Find the p-value.

(e) Make a generic conclusion about the null
hypothesis, using 𝛼 = 0.10.

(f) Make a conclusion in context.

6.242 Mind-Set Matters In 2007 a Harvard psy-
chologist set out to test her theory that “Mind-Set
Matters.”55 She recruited 75 female maids56 work-
ing in different hotels to participate in her study, and
informed 41maids (randomly chosen) that the work
they do satisfies the Surgeon General’s recommen-
dations for an active lifestyle (which is true), giving
the maids examples on how their work qualifies as
good exercise. The other 34 maids were told noth-
ing. After four weeks, the exercise habits of the two
groups had not changed, but the informed group
had lost an average of 1.79 lbs (s = 2.88) and the
uninformed group had lost an average of 0.2 lbs
(s = 2.32). The data are stored in MindsetMatters.
Based on this study, does “Mind-Set Matter”? In
other words, for maids, does simply thinking they
are exercising more actually cause them to lose
more weight? Show all details of the test.

6.243 Exercise and StressMany studies have shown
that people who engage in any exercise have
improved mental health over those that never
exercise. In particular, even a small amount of

55Crum, A. and Langer, E., “Mind-Set Matters: Exercise and the
Placebo Effect,” Psychological Science, 2007; 18:165–171.
56Maids with missing values for weight change have been
removed.

exercise seems to confer some resilience to stress.
Most of these studies, by necessity, have been
observational studies. A recent experiment with
mice57 moves us one step closer to determining
a causal association. In the study, mice were ran-
domly assigned to either an enriched environment
(EE) where there was an exercise wheel available
or a standard environment (SE) with no exercise
options. After three weeks in the specified environ-
ment, for five minutes a day for two weeks, the mice
were each exposed to a “mouse bully”—a mouse
that was very strong, aggressive, and territorial. At
the end of the two weeks, the mice in the SE group
exhibited maladaptive, depressive-like, and anxiety-
like behavior across a wide spectrum of activities.
This was not true of the mice in the EE group;
they behaved similarly to mice that had never had
the stress-inducing bully experience. In particular,
one measure of mouse anxiety is amount of time
hiding in a dark compartment, with mice that are
more anxious spending more time in darkness. The
amount of time spent in darkness during one trial is
recorded for all the mice and is shown in Table 6.26
and available in StressedMice. Test to see if mice
that have spent time in an enriched environment
with options for exercise spend significantly less
time in darkness after a stress-inducing experience.

Table 6.26 Do mice from an enriched
environment spend less time in darkness?

Environment Time in Darkness (seconds)

Enriched 359 280 138 227 203 184 231

Standard 394 477 439 428 391 488 454

6.244 Diet Cola and Calcium Exercise B.3 on
page 379 introduces a study examining the effect of
diet cola consumption on calcium levels in women.
A sample of 16 healthy women aged 18 to 40 were
randomly assigned to drink 24 ounces of either
diet cola or water. Their urine was collected for
three hours after ingestion of the beverage and cal-
cium excretion (inmg) wasmeasured. The summary
statistics for diet cola are xC = 56.0 with sC = 4.93
and nC = 8 and the summary statistics for water are
xW = 49.1 with sW = 3.64 and nW = 8. Figure 6.20
shows dotplots of the data values. Test whether
there is evidence that diet cola leaches calcium out

57Data approximated from summary statistics in: Lehmann, M.
and Herkenham, M., “Environmental Enrichment Confers
Stress Resiliency to Social Defeat through an Infralimbic Cortex-
Dependent Neuroanatomical Pathway,” The Journal of Neuro-
science, April 20, 2011; 31(16):6159–73.
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of the system, which would increase the amount
of calcium in the urine for diet cola drinkers. In
Exercise B.3, we used a randomization distribu-
tion to conduct this test. Use a t-distribution here,
after first checking that the conditions are met and
explaining your reasoning. The data are stored in
ColaCalcium.

51
Calcium

54 57 604845

Diet cola
WaterD

ri
nk

Figure 6.20 Do diet cola drinkers excrete more
calcium?

6.245 Drink Tea for a Stronger Immune System
Drinking tea appears to offer a strong boost to
the immune system. In a study introduced in
Exercise 3.100 on page 260, we see that production
of interferon gamma, a molecule that fights bacte-
ria, viruses, and tumors, appears to be enhanced
in tea drinkers. In the study, eleven healthy non-
tea-drinking individuals were asked to drink five
or six cups of tea a day, while ten healthy non-
tea- and non-coffee-drinkers were asked to drink
the same amount of coffee, which has caffeine but
not the L-theanine that is in tea. The groups were
randomly assigned. After two weeks, blood samples
were exposed to an antigen and production of inter-
feron gamma was measured. The results are shown
in Table 6.27 and are available in ImmuneTea.
The question of interest is whether the data pro-
vide evidence that production is enhanced in tea
drinkers.

Table 6.27 Immune system response in tea and
coffee drinkers

Tea 5 11 13 18 20 47
48 52 55 56 58

Coffee 0 0 3 11 15 16
21 21 38 52

(a) Is this an experiment or an observational study?

(b) What are the null and alternative hypotheses?

(c) Find a standardized test statistic and use the
t-distribution to find the p-value and make a
conclusion.

(d) Always plot your data! Look at a graph of
the data. Does it appear to satisfy a normality
condition?

(e) A randomization test might be amore appropri-
ate test to use in this case. Construct a random-
ization distribution for this test and use it to find
a p-value and make a conclusion.

(f) What conclusion can we draw?

6.246 Metal Tags on Penguins and Length of For-
aging Trips Data 1.3 on page 10 discusses a study
designed to test whether applying metal tags is
detrimental to a penguin, as opposed to applying an
electronic tag. One variable examined is the length
of foraging trips. Longer foraging trips can jeopar-
dize both breeding success and survival of chicks
waiting for food. Mean length of 344 foraging trips
for penguins with a metal tag was 12.70 days with
a standard deviation of 3.71 days. For those with an
electronic tag, the mean was 11.60 days with stan-
dard deviation of 4.53 days over 512 trips. Do these
data provide evidence that mean foraging trips are
longer for penguins with a metal tag? Show all
details of the test.

6.247 Metal Tags on Penguins and Arrival Dates
Data 1.3 on page 10 discusses a study designed
to test whether applying a metal tag is detrimen-
tal to a penguin, as opposed to applying an elec-
tronic tag. One variable examined is the date pen-
guins arrive at the breeding site, with later arrivals
hurting breeding success. Arrival date is measured
as the number of days after November 1st . Mean
arrival date for the 167 times metal-tagged penguins
arrived was December 7th (37 days after Novem-
ber 1st) with a standard deviation of 38.77 days,
while mean arrival date for the 189 times electronic-
tagged penguins arrived at the breeding site was
November 21st (21 days after November 1st) with a
standard deviation of 27.50. Do these data provide
evidence that metal tagged penguins have a later
mean arrival time? Show all details of the test.

6.248 Split the Bill? Exercise 2.177 on page 116
describes a study to compare the cost of restaurant
meals when people pay individually versus splitting
the bill as a group. In the experiment half of the peo-
ple were told they would each be responsible for
individual meal costs and the other half were told
the cost would be split equally among the six people
at the table. The data in SplitBill includes the cost of
what each person ordered (in Israeli shekels) and
the payment method (Individual or Split). Some
summary statistics are provided in Table 6.28 and
both distributions are reasonably bell-shaped. Use
this information to test (at a 5% level) if there is
evidence that the mean cost is higher when people
split the bill. You may have done this test using ran-
domizations in Exercise 4.145 on page 332.
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Table 6.28 Cost of meals by payment type

Payment Sample size Mean Std. dev.

Individual 24 37.29 12.54

Split 24 50.92 14.33

6.249 Restaurant Bill by Sex In the study described
in Exercise 6.248 the diners were also chosen so
that half the people at each table were female
and half were male. Thus we can also test for
a difference in mean meal cost between females
(nf = 24, xf = 44.46, sf = 15.48) and males (nm =
24, xm = 43.75, sm = 14.81). Show all details for
doing this test.

6.250 What Gives a Small P-value? In each case
below, two sets of data are given for a two-tail
difference in means test. In each case, which version
gives a smaller p-value relative to the other?

(a) Both options have the same standard deviations
and same sample sizes but:

Option 1 has: x1 = 25 x2 = 23
Option 2 has: x1 = 25 x2 = 11

(b) Both options have the same means (x1 = 22,
x2 = 17) and same sample sizes but:

Option 1 has: s1 = 15 s2 = 14
Option 2 has: s1 = 3 s2 = 4

(c) Both options have the same means (x1 = 22,
x2 = 17) and same standard deviations but:

Option 1 has: n1 = 800 n2 = 1000

Option 2 has: n1 = 25 n2 = 30

6.251 Quiz Timing A young statistics professor
decided to give a quiz in class every week. He was
not sure if the quiz should occur at the beginning
of class when the students are fresh or at the end of
class when they’ve gotten warmed up with some sta-
tistical thinking. Since he was teaching two sections
of the same course that performed equally well on
past quizzes, he decided to do an experiment. He
randomly chose the first class to take the quiz dur-
ing the second half of the class period (Late) and
the other class took the same quiz at the beginning
of their hour (Early). He put all of the grades into
a data table and ran an analysis to give the results
shown. Use the information from the computer out-
put to give the details of a test to see whether the
mean grade depends on the timing of the quiz. (You
should not do any computations. State the hypothe-
ses based on the output, read the p-value off the
output, and state the conclusion in context.)

Two-Sample T-Test and CI
Sample N Mean StDev SE Mean
Late 32 22.56 5.13 0.91
Early 30 19.73 6.61 1.2

Difference = mu (Late) − mu (Early)
Estimate for difference: 2.83
95% CI for difference: (−0.20, 5.86)
T-Test of difference = 0 (vs not =): T-Value = 1.87
P-Value = 0.066 DF = 54

6.252 Survival Status and Heart Rate in the ICU
The dataset ICUAdmissions contains information
on a sample of 200 patients being admitted to the
Intensive Care Unit (ICU) at a hospital. One of the
variables is HeartRate and another is Status which
indicates whether the patient lived (Status = 0) or
died (Status = 1). Use the computer output to give
the details of a test to determine whether mean
heart rate is different between patients who lived
and died. (You should not do any computations.
State the hypotheses based on the output, read the
p-value off the output, and state the conclusion in
context.)

Two-sample T for HeartRate
Status N Mean StDev SE Mean
0 160 98.5 27.0 2.1
1 40 100.6 26.5 4.2

Difference = mu (0) − mu (1)
Estimate for difference: −2.13
95% CI for difference: (−11.53, 7.28)

T-Test of difference = 0 (vs not =): T-Value = −0.45
P-Value = 0.653 DF = 60

6.253 Who Exercises More: Males or Females?Use
technology and the StudentSurvey dataset to test
whether the data provide evidence that there is a
difference in the mean number of hours of exercise
per week between males and females. What are the
hypotheses? What is the p-value given by the soft-
ware? State the conclusion in context.

6.254 Who Watches More TV: Males or Females?
UsetechnologyandtheStudentSurveydataset totest
whether the data provide evidence that there is a dif-
ference in the mean number of hours spent watch-
ing television per week between males and females.
What are the hypotheses? What is the p-value given
by the software? State the conclusion in context.

6.255 Sex andAtlanta Commutes The data inCom-
muteAtlanta (see Data 3.3 on page 248 for more
description) contain a variable that identifies the
sex of each commuter in the Atlanta sample. Test
at a 5% level whether there is a difference in
mean commute time between female and male
commuters in Atlanta.
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6.5PAIRED DIFFERENCE IN MEANS

In Section 6.4 we consider inference for a difference in means when the data consist
of two separate samples. However, in situations such as the matched pairs exper-
iments described in Section 1.3, the data being compared consist of pairs of data
values. Paired data may consist of two measurements on each unit, such as the same
unit being measured under two different conditions, or measurements on a pair of
units that go together, such as twin studies. In this section we see how to handle
inferences for a difference in means when the data are paired in some way.

MikeStobe/Getty Images

Olympic swimmer Michael Phelps in a
wetsuit

D A T A 6 . 5 Wetsuits and Swimming Speed
The 2008 Olympics were full of controversy about new swimsuits possibly
providing unfair advantages to swimmers, leading to new international rules
that came into effect January 1, 2010, regarding swimsuit coverage and
material. Can a certain swimsuit really make a swimmer faster? A study58 tested
whether wearing wetsuits influences swimming velocity. Twelve competitive
swimmers and triathletes swam 1500 m at maximum speed twice each, once
wearing a wetsuit and once wearing a regular bathing suit. The order of the
trials was randomized. Each time, the maximum velocity in meters/sec of the
swimmer (among other quantities) was recorded. These data are available in
Wetsuits and shown in Table 6.29. ◼

58Based on de Lucas, R., Balildan, P., Neiva, C., Greco, C., and Denadai, B., “The effects of wetsuits on
physiological and biomechanical indices during swimming,” Journal of Science and Medicine in Sport,
2000; 3(1):1–8.
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Table 6.29 Maximum velocity swimming with and without a wetsuit

Swimmer 1 2 3 4 5 6 7 8 9 10 11 12 x s
Wetsuit 1.57 1.47 1.42 1.35 1.22 1.75 1.64 1.57 1.56 1.53 1.49 1.51 1.507 0.136
No Wetsuit 1.49 1.37 1.35 1.27 1.12 1.64 1.59 1.52 1.50 1.45 1.44 1.41 1.429 0.141

Example 6.28
Using Data 6.5 and the methods of Section 6.4-HT, test whether the average maxi-
mum velocity for competitive swimmers differs when wearing wetsuits vs not wear-
ing wetsuits.

Solution The relevant parameters are 𝜇
𝑤
and 𝜇n𝑤, the average maximum velocities for swim-

mers wearing wetsuits and swimmers not wearing wetsuits, respectively. We wish
to test H0 ∶ 𝜇

𝑤
= 𝜇n𝑤 vs Ha ∶ 𝜇

𝑤
≠ 𝜇n𝑤. The relevant sample statistics are x

𝑤
=

1.507, s
𝑤
= 0.136, n

𝑤
= 12 for the swimmers in wetsuits and xn𝑤 = 1.429, sn𝑤 = 0.141,

nn𝑤 = 12 for the swimmers without wetsuits. Figure 6.21 does not show extreme
skewness or outliers, so we can proceed with the t-distribution. We compute the
t-statistic using the formula from Section 6.4-HT:

t =
x
𝑤
− xn𝑤√

s2
𝑤

n
𝑤

+ s2n𝑤
nn𝑤

= 1.507 − 1.429√
0.1362

12
+ 0.1412

12

= 1.38

Figure 6.21 Dotplot of
maximum velocity
swimming with and
without a wetsuit
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1.5 1.6 1.7

We compare this to a t-distribution with 11 df and find the area in the upper tail to
be 0.0975. Since this is a two-tailed test, the p-value is 2(0.0975) = 0.195. This study
does not provide convincing evidence that swimming speeds are affected by wearing
a wetsuit.

Using this naive method, we do not find any association between wearing a wet-
suit and swimming speeds. However, taking a closer look at the data in Table 6.29,
we see that every single swimmer swam faster wearing the wetsuit! Surely this must
provide conclusive evidence that swimmers are faster wearing a wetsuit. What went
wrong?

We failed to take into account the paired structure of the data. The formula for
the standard error for a difference in means given in Section 6.4-D applies only to
data from two different groups, not to paired data. When used on paired data it will
often give a standard error that is much too high.

The wetsuit study was conducted on males and females, swimmers and triath-
letes. Not surprisingly, there is a great deal of variability in the maximum velocities
of the swimmers! Because of all this variability, it is difficult to tell whether the differ-
ence in mean swim speed observed in the sample (1.507 − 1.429 = 0.078) represents
a real difference or is just due to random chance. Rather than comparing females
in the wetsuit group to males in the non-wetsuit group, and triathletes in the non-
wetsuit group to swimmers in the wetsuit group, we would really like to compare
each swimmer’s wetsuit and non-wetsuit values directly! The secret is to take the
difference for each pair of data values. These differences are displayed in the bottom
row of Table 6.30.
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Table 6.30 Maximum velocity swimming with and without a wetsuit, including differences

Swimmer 1 2 3 4 5 6 7 8 9 10 11 12 x s
Wetsuit 1.57 1.47 1.42 1.35 1.22 1.75 1.64 1.57 1.56 1.53 1.49 1.51 1.507 0.136
No Wetsuit 1.49 1.37 1.35 1.27 1.12 1.64 1.59 1.52 1.50 1.45 1.44 1.41 1.429 0.141
Difference, d 0.08 0.10 0.07 0.08 0.10 0.11 0.05 0.05 0.06 0.08 0.05 0.10 0.078 0.022

The key to analyzing paired data is to work with these differences rather than
the original data. This helps us to eliminate the variability across different units (dif-
ferent swimmers) and instead focus on what we really care about—the difference
between the values with and without a wetsuit. We denote the differences with the
letter d.

Note that the mean of the sample of differences is equal to the difference of the
sample means: xd = x

𝑤
− xn𝑤. (For the swimming data, we see that 0.078 = 1.507 −

1.429.) To make inferences about the difference in means, 𝜇
𝑤
− 𝜇n𝑤, we can equiva-

lently make inferences about the mean difference, 𝜇d.
The paired differences are a single sample of values for the differences. Thus we

estimate 𝜇d with the sample mean of these differences, xd. As with any mean for a
single sample, we estimate its standard error by dividing the standard deviation of
the sample values by the square root of the sample size. Here the sample size is the
number of data pairs (which is also the number of computed differences), nd, and
the relevant standard deviation is the standard deviation of the differences, sd.

Fortunately, we have already discussed inference for a mean based on a single
sample in Section 6.2. The procedures are the same for paired data, once we convert
the data to a single sample of differences.

Inference for a Difference in Means with Paired Data

To estimate the difference in means based on paired data, we first sub-
tract to compute the difference for each data pair and compute the
mean xd, the standard deviation sd, and the sample size nd for the
sample differences.

Provided the differences are reasonably normally distributed (or
the sample size is large), a confidence interval for the difference in
means is given by

Statistic ± t∗ ⋅ SE = xd ± t∗
sd√
nd

where t∗ is a percentile from a t-distribution with nd − 1 degrees of
freedom.

To testH0 ∶ 𝜇d = 0 vsHa ∶ 𝜇d ≠ 0 (or a one-tail alternative) we use
the t-test statistic

t = Statistic −Null value
SE

=
xd − 0

sd∕
√
nd

If the differences are reasonably normally distributed (or the sample
size is large), we use a t-distribution with nd − 1 degrees of freedom to
compute a p-value for this test statistic.
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Example 6.29
Wetsuits and Swimming Speed

Using Data 6.5, test whether the average maximum velocity for competitive
swimmers differs when wearing wetsuits vs not wearing wetsuits. (Note that this is
exactly the same as Example 6.28, except that we now know how to utilize the paired
structure.)

Solution Because the sample size is fairly small, we should check to see whether there are
problems with normality in the sample of differences. Figure 6.22 shows a dotplot of
the differences.

Figure 6.22 Dotplot of
differences in maximum
velocity with and without
a wetsuit

0.08
Difference

0.070.060.05 0.09 0.10 0.11

Although it is difficult to see a bell-shape for samples this small, the differences
look relatively symmetric and have no clear outliers, so we don’t detect any serious
problems with normality and can proceed with the t-distribution. Using the differ-
ences in Table 6.30, we see that xd = 0.078 with sd = 0.022 and nd = 12. We compute
the t-statistic as follows:

t = Statistic −Null value
SE

=
xd − 0

sd∕
√
nd

= 0.078

0.022∕
√
12

= 12.3

This is a huge t-statistic, and corresponds to a p-value of essentially zero. (Anytime
the t-statistic is bigger than 5, there is really no point in looking up the p-value—it
will be very small!) These data provide very convincing evidence that swimmers are
faster on average when wearing wetsuits. Because this was a randomized experi-
ment, we can conclude that wetsuits cause swimmers to swim faster.

Notice the difference in conclusions between Examples 6.28 and 6.29. The same data
were analyzed in each case, but the conclusions reached were drastically different.
It is very important to think about how the data were collected before proceeding
with the analysis! Although we can find the mean of the differences, xd, from the
difference in the individual sample means, x

𝑤
− xn𝑤, there is no way to compute the

standard deviation of the differences, sd, from the standard deviations of the individ-
ual samples. To compute the standard deviation properly when the data are paired,
we must find the individual differences for all pairs.

Example 6.30
Example 6.29 verifies that wetsuits make swimmers faster, but how much faster?
Compute a 95% confidence interval for the difference in average maximum velocity
for swimmers wearing wetsuits minus swimmers not wearing wetsuits.

Solution We have already verified from Figure 6.22 that it is appropriate to use the
t-distribution. With 11 degrees of freedom for 95% confidence, we have t∗ = 2.20.
We compute a confidence interval as follows:

xd ± t∗
sd√
nd

= 0.078 ± 2.20

(
0.022√

12

)
= 0.078 ± 0.014 = (0.064, 0.092)



506 CHA P T E R 6 Inference for Means and Proportions

We are 95% confident that for competitive swimmers and triathletes, wetsuits
increase maximum swimming velocity by an average of between 0.064 and 0.092
meters per second.

If this had not been paired data but simply two groups of 12 swimmers each, the
95% confidence interval would be

0.078 ± 2.20(0.057) = 0.078 ± 0.125 = (−0.047, 0.203)
The margin of error is larger, and the interval is wider than in Example 6.30. By
using paired data and analyzing it appropriately, we can get a much more accurate
and reliable estimate of the difference in means.

Remember that paired data does not always mean that all the cases do both
treatments. Data is paired if there is a valid reason for matching each case in one
group to a case in the other group. For example, in investigating a new method to
teach reading in first grade, we might match each student in the experimental class
with another student outside that class who is similar in terms of IQ, family income,
parent education level, and so on. Some famous examples of paired data involve
identical twins, in which one twin receives the treatment and the other serves as a
control.

Identical Twins!! Cal and Axel Lock Morgan

Example 6.31
Genes or Choices: Body Fat and Brain Volume

A study59 examined 10 male identical twins in their mid-30s, in which one twin
engaged in regular physical activity and the other was more sedentary. The journal
article reports: “According to pairwise analysis, the active twins had lower body
fat percentage (P = 0.029)” and also “brain grey matter volumes were larger . . . in
active twins compared to those in inactive co-twins, with a statistical threshold of
P < 0.001.” Since identical twins share the same genetic make-up, what does this
study tell us about the effect of individual choices on body fat percentage and brain
volume?

59Rottensteiner M, et al., “Physical activity, fitness, glucose homeostatis, and brain morphology in twins,”
Medicine & Science in Sports & Exercise, 47(3), March 2015, 509–518.
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Solution Both p-values show significance at the 5% level, so we have evidence that, regard-
less of genetics, choosing to engage in regular physical activity influences body fat
percentage (which is not too surprising) and also influences, even more strongly,
brain volume (which might be more surprising). Be careful, though, not to assume
causation, since this is an observational study and not an experiment.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Distinguish between separate samples and paired data when compar-
ing two means

• Identify the advantages of using paired data when estimating a differ-
ence in means

• Use a t-distribution, when appropriate, to compute a confidence inter-
val for a difference in means based on paired data

• Use a t-distribution, when appropriate, to test a hypothesis about a dif-
ference in means based on paired data

Exercises for Section 6.5

SKILL BUILDER 1
In Exercises 6.256 to 6.259, use a t-distribution to
find a confidence interval for the difference in
means 𝜇1 − 𝜇2 using the relevant sample results
from paired data. Give the best estimate for 𝜇1 −
𝜇2, the margin of error, and the confidence inter-
val. Assume the results come from random samples
from populations that are approximately normally
distributed, and that differences are computed using
d = x1 − x2.

6.256 A 95% confidence interval for 𝜇1 − 𝜇2 using
the paired difference sample results xd = 3.7, sd =
2.1, nd = 30

6.257 A 90% confidence interval for 𝜇1 − 𝜇2 using
the paired difference sample results xd = 556.9, sd =
143.6, nd = 100

6.258 A 99% confidence interval for 𝜇1 − 𝜇2 using
the paired data in the following table:

Case 1 2 3 4 5

Treatment 1 22 28 31 25 28
Treatment 2 18 30 25 21 21

6.259 A 95% confidence interval for 𝜇1 − 𝜇2 using
the paired data in the following table:

Case Situation 1 Situation 2

1 77 85
2 81 84
3 94 91
4 62 78
5 70 77
6 71 61
7 85 88
8 90 91

SKILL BUILDER 2
In Exercises 6.260 to 6.263, use a t-distribution and
the given matched pair sample results to complete
the test of the given hypotheses. Assume the results
come from random samples, and if the sample sizes
are small, assume the underlying distribution of the
differences is relatively normal. Assume that differ-
ences are computed using d = x1 − x2.

6.260 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2 using the
paired difference sample results xd = 15.7, sd = 12.2,
nd = 25.
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6.261 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2 using the
paired difference sample results xd = −2.6, sd = 4.1,
nd = 18.

6.262 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 < 𝜇2 using the
paired data in the following table:

Treatment 1 16 12 18 21 15 11 14 22
Treatment 2 18 20 25 21 19 8 15 20

6.263 Test H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 > 𝜇2 using the
paired data in the following table:

Situation 1 125 156 132 175 153 148 180 135 168 157
Situation 2 120 145 142 150 160 148 160 142 162 150

SKILL BUILDER 3
In Exercises 6.264 to 6.269, a data collection
method is described to investigate a difference in
means. In each case, determine which data analysis
method is more appropriate: paired data difference
in means or difference in means with two separate
groups.

6.264 To study the effect of sitting with a lap-
top computer on one’s lap on scrotal temperature,
29 men have their scrotal temperature tested before
and then after sitting with a laptop for one hour.

6.265 To study the effect of women’s tears on men,
levels of testosterone are measured in 50 men after
they sniff women’s tears and after they sniff a salt
solution. The order of the two treatments was ran-
domized and the study was double-blind.

6.266 In another study to investigate the effect of
women’s tears on men, 16 men watch an erotic
movie and then half sniff women’s tears and half
sniff a salt solution while brain activity is monitored.

6.267 To measure the effectiveness of a new teach-
ing method for math in elementary school, each stu-
dent in a class getting the new instructional method
is matched with a student in a separate class on IQ,
family income, math ability level the previous year,
reading level, and all demographic characteristics.
At the end of the year, math ability levels are mea-
sured again.

6.268 In a study to determine whether the color
red increases how attractive men find women, one
group of men rate the attractiveness of a woman
after seeing her picture on a red background and
another group of men rate the same woman after
seeing her picture on a white background.

6.269 A study investigating the effect of exercise
on brain activity recruits sets of identical twins in
middle age, in which one twin is randomly assigned
to engage in regular exercise and the other doesn’t
exercise.

6.270 Drink Tea for a Stronger Immune SystemWe
saw in Exercise 6.245 on page 500 that drinking tea
appears to offer a strong boost to the immune sys-
tem. In a study extending the results of the study
described in that exercise,60 blood samples were
taken on five participants before and after one week
of drinking about five cups of tea a day (the partic-
ipants did not drink tea before the study started).
The before and after blood samples were exposed
to E. coli bacteria, and production of interferon
gamma, a molecule that fights bacteria, viruses, and
tumors, was measured. Mean production went from
155 pg/mL before tea drinking to 448 pg/mL after
tea drinking. The mean difference for the five sub-
jects is 293 pg/mL with a standard deviation in the
differences of 242. The paper implies that the use of
the t-distribution is appropriate.

(a) Why is it appropriate to use paired data in this
analysis?

(b) Find and interpret a 90% confidence interval for
the mean increase in production of interferon
gamma after drinking tea for one week.

6.271 Testing the Effects of Tea on the Immune
System Exercise 6.270 describes a study to exam-
ine the effects of tea on the immune system. Use
the information there to test whether mean produc-
tion of interferon gamma as a response to bacteria
is significantly higher after drinking tea than before
drinking tea. Use a 5% significance level.

6.272 Husband and Wife Ages as Paired Data
Exercise 2.213 introduces a dataset giving the ages
of the two people getting married for a sample of
105 marriage licenses. All of the couples in the
sample were male-female couples. We are inter-
ested in whether the sample provides evidence that
husbands are, on average, older than their wives.
Because this is paired data (with each husband
paired with his wife), we answer this question by
first finding the difference in ages (Husband’s age
minus Wife’s age) for each couple. For the 105 dif-
ferences, the mean difference is 2.829 years with a
standard deviation of 4.995. Test to see if, when get-
ting married, the average age of husbands is greater
than the average age of wives. Show all details of
the test.

6.273 How Much Older Are Husbands?
Exercise 2.213 introduces a dataset giving the ages
of the two people getting married for a sample

60Adapted from Kamath, A., et al., “Antigens in tea-beverage
prime human V𝛾2V𝛿2 T cells in vitro and in vivo for memory
and non-memory antibacterial cytokine responses,” Proceedings
of the National Academy of Sciences, 2003; 100(10):6009–6014.
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of 105 marriage licenses. All of the couples in
the sample were male-female couples. We see in
Exercise 6.272 that the average age of husbands is
greater than the average age of wives. Here, we
wish to estimate how much older husbands are than
their wives. Because this is paired data, we answer
this question by first finding the difference in ages
(Husband’s age minus Wife’s age) for each couple.
For the 105 differences, the mean difference is 2.829
years with a standard deviation of 4.995. Find and
interpret a 95% confidence interval for the mean
difference in ages between a husband and a wife.

6.274 Pheromones in Female Tears? On page 11
in Section 1.1, we describe studies to investigate
whether there is evidence of pheromones (subcon-
scious chemical signals) in female tears that affect
sexual arousal in men. In one of the studies,61

50 men had a pad attached to the upper lip that
contained either female tears or a salt solution
dripped down the same female’s face. Each subject
participated twice, on consecutive days, once with
tears and once with saline, randomized for order,
and double-blind. Testosterone levels were mea-
sured before sniffing and after sniffing on both days.
While normal testosterone levels vary significantly
between different men, average levels for the group
were the same before sniffing on both days and
after sniffing the salt solution (about 155 pg∕mL)
but were reduced after sniffing the tears (about 133
pg∕mL). The mean difference in testosterone levels
after sniffing the tears was 21.7 with standard devia-
tion 46.5.

(a) Why did the investigators choose a matched-
pairs design for this experiment?

(b) Test to see if testosterone levels are significantly
reduced after sniffing tears?

(c) Can we conclude that sniffing female tears
reduces testosterone levels (which is a signifi-
cant indicator of sexual arousal in men)?

61Data approximated from Gelstein, S., et al., “Human Tears
Contain a Chemosignal,” Science, January 14, 2011; 331(6014):
226–230.

Table 6.31 Quiz and lecture pulse rates for 10 students

Student 1 2 3 4 5 6 7 8 9 10 Mean Std. Dev.
Quiz 75 52 52 80 56 90 76 71 70 66 68.8 12.5
Lecture 73 53 47 88 55 70 61 75 61 78 66.1 12.8

6.275 Measuring the Effect of Female Tears Exer-
cise 6.274 describes a study to measure, in a double-
blind randomized experiment, the effect of female
tears on male testosterone. Use the information
there to find a 99% confidence interval for the effect
size (the amount of reduction in testosterone levels
after sniffing female tears).

6.276 Quiz vs Lecture Pulse Rates Do you think
your pulse rate is higher when you are taking a
quiz than when you are sitting in a lecture? The
data in Table 6.31 show pulse rates collected from
10 students in a class lecture and then from the
same students during a quiz. The data are stored in
QuizPulse10. Construct a 95% confidence interval
for the difference in mean pulse rate between stu-
dents in a class lecture and taking a quiz.

6.277 Testing for a Difference in Pulse Rates Exer-
cise 6.276 describes pulse rates collected from
10 students, once during a quiz and once during a
lecture. The data are given in Table 6.31 and stored
in QuizPulse10. We might expect mean pulse rates
to increase under the stress of a quiz. Use the infor-
mation in Exercise 6.276 and the data in Table 6.31
to test whether the data provide sufficient evidence
to support this claim.

6.278 Testing Whether Story Spoilers Spoil Stories
A story spoiler gives away the ending early. Does
having a story spoiled in this way diminish suspense
and hurt enjoyment? A study62 investigated this
question. For 12 different short stories, the study’s
authors created a second version in which a spoiler
paragraph at the beginning discussed the story and
revealed the outcome. Each version of the 12 sto-
ries was read by at least 30 people and rated on a
1 to 10 scale to create an overall rating for the story,
with higher ratings indicating greater enjoyment of
the story. The ratings are given in Table 6.32 and
stored in StorySpoilers. Stories 1 to 4 were ironic
twist stories, stories 5 to 8 were mysteries, and sto-
ries 9 to 12 were literary stories. Test to see if there is
a difference in mean overall enjoyment rating based
on whether or not there is a spoiler.

62Leavitt, J., and Christenfeld, N., “Story Spoilers Don’t Spoil
Stories,” Psychological Science, published OnlineFirst, August
12, 2011.
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Table 6.32 Enjoyment ratings for stories with and without spoilers

Story 1 2 3 4 5 6 7 8 9 10 11 12

With spoiler 4.7 5.1 7.9 7.0 7.1 7.2 7.1 7.2 4.8 5.2 4.6 6.7
Original 3.8 4.9 7.4 7.1 6.2 6.1 6.7 7.0 4.3 5.0 4.1 6.1

6.279 Measuring the Effect of Story Spoilers
Exercise 6.278 describes a study investigating
whether giving away the ending of the story makes
the story more or less enjoyable to read. The data
are given in Table 6.32 and stored in StorySpoilers.

(a) Explain why it is appropriate and helpful to use
the matched pairs nature of these data in the
analysis.

(b) Find and interpret a 95% confidence inter-
val for the difference in mean enjoyment rat-
ing between stories with a spoiler and stories
without.

6.280 Do Babies Prefer Speech? Psychologists in
Montreal and Toronto conducted a study to deter-
mine if babies show any preference for speech over
general noise.63 Fifty infants between the ages of
4-13 months were exposed to both happy-sounding
infant speech and a hummed lullaby by the same
woman. Interest in each sound was measured by
the amount of time the baby looked at the woman
while she made noise. The mean difference in look-
ing time was 27.79 more seconds when she was
speaking, with a standard deviation of 63.18 sec-
onds. Perform the appropriate test to determine if
this is sufficient evidence to conclude that babies
prefer actual speaking to humming.

6.281 Do Babies Prefer Speaking or Singing? As
part of the same study described in Exercise 6.280,
the researchers also were interested in whether
babies preferred singing or speech. Forty-eight
of the original fifty infants were exposed to both
singing and speech by the same woman. Interest
was again measured by the amount of time the baby
looked at the woman while she made noise. In this
case the mean time while speaking was 66.97 with

63Corbeil, M., Trehub, S. E., and Peretz, I., “Speech vs. singing;
infants choose happier sounds,” Frontiers in Psychology, June 25,
2013.

Table 6.33 Are grades higher on the second quiz?

First Quiz 72 95 56 87 80 98 74 85 77 62
Second Quiz 78 96 72 89 80 95 86 87 82 75

a standard deviation of 43.42, and the mean for
singing was 56.58 with a standard deviation of 31.57
seconds. The mean of the differences was 10.39
more seconds for the speaking treatment with a
standard deviation of 55.37 seconds. Perform the
appropriate test to determine if this is sufficient evi-
dence to conclude that babies have a preference
(either way) between speaking and singing.

6.282 Do Hands Adapt to Water? Researchers in
the UK designed a study to determine if skin wrin-
kled from submersion in water performed better
at handling wet objects.64 They gathered 20 par-
ticipants and had each move a set of wet objects
and a set of dry objects before and after submerg-
ing their hands in water for 30 minutes (order of
trials was randomized). The response is the time
(seconds) it took to move the specific set of objects
with wrinkled hands minus the time with unwrin-
kled hands. The mean difference for moving dry
objects was 0.85 seconds with a standard deviation
of 11.5 seconds. Themean difference for moving wet
objects was −15.1 seconds with a standard deviation
of 13.4 seconds.

(a) Perform the appropriate test to determine if the
wrinkled hands were significantly faster than
unwrinkled hands at moving dry objects.

(b) Perform the appropriate test to determine if the
wrinkled hands were significantly faster than
unwrinkled hands at moving wet objects.

6.283 Are Grades Significantly Higher on the
Second Quiz? Table 6.33 gives a sample of grades
on the first two quizzes in an introductory statis-
tics course. We are interested in testing whether
the mean grade on the second quiz is significantly
higher than the mean grade on the first quiz.

64Kareklas, K., Nettle, D., and Smulders, T.V., “2013 Water-
induced finger wrinkles improve handling of wet objects.” Biol.
Lett vol 9 (2013).
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(a) Complete the test if we assume that the grades
from the first quiz come from a random sam-
ple of 10 students in the course and the grades
on the second quiz come from a different sepa-
rate random sample of 10 students in the course.
Clearly state the conclusion.

(b) Now conduct the test if we assume that the
grades recorded for the first quiz and the sec-
ond quiz are from the same 10 students in the
same order. (So the first student got a 72 on the
first quiz and a 78 on the second quiz.)

(c) Whyare theresults sodifferent?Which isabetter
way to collect the data to answer the question of
whether grades are higher on the second quiz?

6.284 Sleep on School Nights Exercise 1.24
describes a dataset, stored in PASeniors, for a

sample of 457 Pennsylvania high school seniors who
did the Census at School project. One of the vari-
ables (Sleep1) records the typical hours of sleep for
each student on a school night and another (Sleep2)
records hours of sleep on non-school nights. Use
this information to find a 95% confidence interval
for the difference in mean hours of sleep between
non-school nights and school nights (𝜇2 − 𝜇1). Be
sure your interpretation of this interval indicates
which mean is higher.

6.285 CI for City vs Highway MPG Data 2.5 on
page 90 introduces the Cars2020 dataset with infor-
mation on 110 new car models in 2020. Use these
data to find a 95% confidence interval for the mean
difference in gas mileage (H𝑤yMPG − CityMPG)
for highway vs city driving.
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Summary of Inference for Means and Proportions
using Distributions
In Unit C, we discuss the process of using the normal and t-distributions, together
with formulas for standard errors, to make inferences about means and proportions.
The Central Limit Theorem tells us that, when the sample size is large enough,
sample means and sample proportions are approximately normally distributed and
centered at the value of the corresponding population parameter.

The general formulas we obtain are:

Confidence Interval: Sample Statistic ± (t∗ or z∗) ⋅ SE

Hypothesis Test: Test Statistic =
Sample Statistic −Null Parameter

SE

When deciding which procedure to apply to answer a given question, we need
to consider at least three aspects of the question:

• Is the question about a quantitative variable (mean) or categorical data
(proportion)?

• Are we considering a single sample, comparing two samples, or using paired data?

• Are we interested in estimating the size of a parameter or effect (confidence inter-
val) or checking if a difference or effect exists (hypothesis test)?

When doing inferences for proportions, we approximate the distribution of sam-
ple proportions with a normal distribution, provided the sample size is large enough.
“Large” usually means some version of np ≥ 10 and n(1 − p) ≥ 10.

When doing inference for means and using the standard deviation from a sam-
ple, we use a t-distribution, provided the condition of normality is reasonably met.
This condition is more critical for smaller sample sizes (less than 30) and can be
relaxed for larger samples.

Once we have decided on the method to use, the tables on the next page give
a summary of the key formulas, distributions, and conditions for applying each
technique.
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Summary of Key Formulas and Facts

Distribution Conditions Standard Error

Proportion Normal np ≥ 10 and n(1 − p) ≥ 10

√
p(1 − p)

n

Mean t, df = n − 1 n ≥ 30 or reasonably normal s√
n

Diff. in Proportions Normal n1p1 ≥ 10, n1(1 − p1) ≥ 10, and
√
p1(1 − p1)

n1
+
p2(1 − p2)

n2
n2p2 ≥ 10, n2(1 − p2) ≥ 10

Diff. in Means t, df = the smaller of n1 ≥ 30 or reasonably normal, and
√

s21
n1

+
s22
n2n1 − 1 and n2 − 1 n2 ≥ 30 or reasonably normal

Paired Diff. in Means t, df = nd − 1 nd ≥ 30 or reasonably normal
sd√
nd

Confidence Interval Test Statistic

General Sample Statistic ± z∗ ⋅ SE
Sample Statistic −Null Parameter

SE

Proportion p̂ ± z∗ ⋅

√
p̂(1 − p̂)

n
p̂ − p0√
p0(1−p0)

n

Mean x ± t∗ ⋅
s√
n

x − 𝜇0

s∕
√
n

Difference in Proportions
(p̂1 − p̂2) ± z∗ ⋅

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2

(p̂1 − p̂2) − 0√
p̂(1−p̂)
n1

+ p̂(1−p̂)
n2

Difference in Means
(x1 − x2) ± t∗ ⋅

√
s21
n1

+
s22
n2

(x1 − x2) − 0√
s21
n1

+ s22
n2

Paired Diff. in Means xd ± t∗ ⋅
sd√
nd

xd − 0

sd∕
√
nd



C Essential Synthesis 515

Case Study: Golden State Warriors Free Throws
The Golden State Warriors played for the National Basketball Association (NBA)
Championship for the fifth straight year in 2019 (but lost to the Toronto Raptors).
The data described below come from the Warriors’ games during the 2018–2019
regular season.
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Golden State Warriors’ Stephen Curry attempts a
free throw

D A T A C . 1 Golden State Warriors 2018–2019 Regular Season
The data in GSWarriors2019 include game results for all 82 games of the
2018–2019 regular season.64 Variables include information such as the number
of points scored, shots attempted, steals, rebounds, turnovers, and fouls for
both the Warriors and their opponent in each game. There is also a Location
variable that codes whether each game was played on the Golden State
Warriors’ home court in Oakland or on the road in their opponent’s city. ◼

This case study focuses on the topic of free throws. These are shots awarded
to a team for certain infractions (fouls) made by its opponent (hence they are also
called foul shots). Free throws are taken at a set distance (15 feet) from the basket
with no opponent allowed to defend the shot. This produces a consistent environ-
ment for comparing shooting effectiveness. The variables of interest in the GSWar-
riors2019 data are free throws attempted by the Warriors each game (FTA), free
throws successfully made (FT), and similar quantities for its opponents (OppFTA
and OppFT).

64Data for the 2018–2019 Golden State Warriors’ games http://www.basketball-reference.com/teams/
GSW/2019/gamelog/.
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Here are some of the questions that fans might have about Golden State War-
riors free throws:

• What’s an average number of free throws for the Warriors to attempt during a
game?

• Do the Warriors make more free throws (on average) during games at home than
on the road?

• What proportion of free throw attempts do the Warrior players make?

• Players in the NBA as a whole make about 75.6% of their free throws. Is the
proportion made by the Warriors different from this?

• Is the mean number of free throw attempts awarded to the Warriors during their
games different from the mean number attempted by their opponents?

• Is the proportion of free throws made by the Warriors different between games
they play at home and those they play on the road?

• Over the past 10 years, NBA teams have averaged close to 25 free throw attempts
per game. Treating this as the population mean, is the mean number of free throw
attempts by the Warriors much different?

• Howmanymore (or fewer) free throw attempts do theWarriors take (on average)
for home games compared to road games?

• Howmuch better (or worse) are theWarriors at making free throw attempts com-
pared to their opponents?

• How many more (or fewer) free throws do the Warriors make (on average per
game) than their opponents?

We address some of these questions in the next few examples and leave the rest
for you to try in the exercises. For purposes of this case study, we will regard the
82 games played by the Golden State Warriors in the 2018–2019 regular season as
a sample of games they might have played against other NBA opponents in that
or future seasons. For some questions the sampling unit is games (for example in
determining the mean number of free throws that are attempted in a game). For
other questions the sampling unit is each free throw attempt, in which case we have
a total sample of 1672 attempts by Warrior players over the season. Before we start
any analysis we’ll first consider whether conditions are likely to be met.

Example C.1
Are normality conditions reasonable for the distributions of numbers of free throws
attempted or made per game? Check both the Warriors and their opponents.

Solution Figure C.1 shows dotplots for the numbers of free throws made and attempted by
both the Warriors and their opponents during the 82 games of the regular season.
They each are relatively symmetric and bell-shaped with no strong outliers. Also a
sample size of 82 (for the full season) or 41 (for home or away games) should be
ample for the Central Limit Theorem to apply when doing inference for means.
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Figure C.1 Free throws
attempted and made by
the Golden State
Warriors and opponents
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Example C.2
What’s an average number of free throws for the Warriors to attempt during a game?

Solution This is a question about estimating a single mean, 𝜇 = mean number of free throw
attempts per game. We can use the sample data in the FTA variable of GSWar-
riors2019 to estimate the mean and then find a 90% confidence interval for the
population mean.

The mean of the FTA variable over all 82 games is x = 20.39 attempts with a
standard deviation of s = 6.93 attempts. We find a confidence interval for the mean
based on a t-distribution with 82 − 1 = 81 degrees of freedom. For 90% confidence
this gives a value of t∗ = 1.664. The 90% confidence interval is

x ± t∗ ⋅
s√
n
= 20.39 ± 1.664 ⋅ 6.93√

82
= 20.39 ± 1.27 = (19.12, 21.66)

Based on this sample of games, we are 90% sure that the Golden State Warriors
average somewhere between 19.12 and 21.66 free throw attempts per game.

Example C.3
How accurately do the Warrior players make the free throws they attempt?

Solution This is a question about estimating a single proportion, p = the proportion of free
throw attempts that the Warrior players successfully make. In addition to estimating
this proportion, we’ll construct a 99% confidence interval for the proportion.

By summing the values in FT and summing the values in FTA for all 82 games
we see that the Warriors made 1339 out of 1672 free throw attempts over the entire
season. This gives a sample proportion of p̂ = 1339∕1672 = 0.801 or 80.1%. The sam-
ple size is very large so we use the normal distribution to find the 99% confidence
interval, using z∗ = 2.576. The confidence interval is

p̂ ± z∗ ⋅

√
p̂(1 − p̂)

n
= 0.801 ± 2.576 ⋅

√
0.801(1 − 0.801)

1672
= 0.801 ± 0.025 = (0.776, 0.826)
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Based on this sample of free throws, we are 99% sure that the Golden StateWarriors
make between 77.6% and 82.6% of their free throws.

Some basketball fans suspect that referees are more likely to call fouls on play-
ers for the visiting team, possibly in response to reactions from the home crowd.
It might also be true that visiting players actually commit more fouls, or that visit-
ing players are less effective at shooting when on the road. In either case, we might
expect to see a team average more free throws made at home games than on the
road. Let’s see if there really is much difference.

Example C.4
Do the Warriors make more free throws (on average) during games at home than on
the road?

Solution This is a question about comparing two means, 𝜇H and 𝜇A, the respective mean
number of free throws made at home and away. It suggests an upper tail test of
H0 ∶ 𝜇H = 𝜇A vs Ha ∶ 𝜇H > 𝜇A to see if we have evidence that the average number
of free throws made by the Warriors when playing games at home is more than the
mean number of free throws they make for road games.

Using technology we find the mean and standard deviation for number of free
throws made (FT) at home and away:

Location Sample Size Mean Std. Dev.

Home 41 16.46 5.56
Away 41 16.20 5.83

Both sample sizes are more than 30 and we see no big outliers in the FTA values,
so we use a two-sample t-test:

t =
xH − xA√
s2
H
nH

+
s2
A
nA

= 16.46 − 16.20√
5.562

41
+ 5.832

41

= 0.21

We compare this to the upper tail of a t-distribution with 41 − 1 = 40 degrees of
freedom to get a p-value of 0.417. This is not a small p-value, so we do not have
enough evidence to conclude that the Warriors average more free throws made at
home games than at road games.

Example C.5
Is the mean number of free throw attempts awarded to theWarriors during their games
different from the mean number attempted by their opponents?

Solution The GSWarriors2019 dataset also has the number of free throws attempted by the
Warriors’ opponent in each game (OppFTA). This question asks for a test of a
difference in mean free throw attempts per game between the Warriors and their
opponents. Now we have paired data, values for each variable (FTA and OppFTA)
in each of the 82 games. Pairing the data by gamemakes sense, since wemight expect
that referees call some games more tightly and others have fewer fouls (for both
teams). The hypotheses areH0 ∶ 𝜇d = 0 vsHa ∶ 𝜇d ≠ 0, where 𝜇d is the mean differ-
ence in number of free throw attempts (per game) between the Warriors and their
opponents.



C Essential Synthesis 519

Figure C.2 Difference in
Warriors and opponent
free throw attempts
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Since this is paired data, we first find the difference (FTA −OppFTA) for each
game. Figure C.2 shows a dotplot of these differences which appears relatively sym-
metric with no big outliers.

The mean for the differences is xd = −3.84 and the standard deviation of the
differences is sd = 8.77. Treating the differences as a single sample, the t-statistic is

t =
xd − 0

sd
/√

nd
= −3.84

8.77
/√

82
= −3.96

We compare this to a t-distribution with 82 − 1 = 81 degrees of freedom, doubling
the proportion in the tail to get a p-value= 2(0.00008) = 0.00016. This is a very small
p-value, so we have strong evidence that (on average) the Warriors attempt fewer
free throws in games than their opponents.

Example C.6
How much better (or worse) are the Warriors at making their free throw attempts
compared to their opponents?

Solution This question is asking about estimating a difference in proportions, pW − pO, where
pW and pO are the proportions of free throw attempts that the Warriors and their
opponents make. In Example C.3 we see that the Warriors made 1339 of their 1672
attempts, so p̂W = 0.801. Summing the OppFT and OppFTA columns in GSWar-
riors2019, we find that their opponents made 1535 out of 1987 free throw attempts,
so p̂O = 1535∕1987 = 0.773. The estimated difference in proportions is

p̂W − p̂O = 0.801 − 0.773 = 0.028

We should also construct a confidence interval for this difference in proportions;
we’ll choose 95% confidence. The sample sizes are large so we use a normal distri-
bution with z∗ = 1.96. The confidence interval is

( p̂W − p̂O) ± z∗ ⋅

√
p̂W(1 − p̂W)

nW
+
p̂O(1 − p̂O)

nO

(0.801 − 0.773) ± 1.96 ⋅

√
0.801(1 − 0.801)

1672
+ 0.773(1 − 0773)

1987
0.028 ± 0.027

0.001 to 0.055

Based on these results, we are 95% sure that the Warriors successfully make some-
where between 0.1% to 5.5% more of their free throw attempts than their oppo-
nents.

While theWarriors tend to get fewer free throw attempts (on average) than their
opponents, a key question is how much does that hurt them on the scoreboard?
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Example C.7
How does the average number of free throws made (per game) by the Warriors com-
pare to their opponents?

Solution This question is similar to Example C.5, only now we are interested in estimating
the magnitude of the difference in mean number of free throws made (rather than
testing the difference in mean number of free throws attempted). Again, we have
paired data, this time finding the difference in free throws made for each game, FT −
OppFT. The mean of these differences is xd = −2.39 and the standard deviation
is sd = 7.32. As with the differences in free throws attempted, the distribution is
relatively symmetric with no big outliers. We find a 95% confidence interval for
the difference using a t-distribution with 81 degrees of freedom, so t∗ = 1.990. The
confidence interval is

xd ± t∗ ⋅
sd√
nd

= −2.39 ± 1.990 ⋅ 7.32√
82

= −2.39 ± 1.61 = (−4.00,−0.78)

Based on these results, we are 95% sure that the Warriors average somewhere
between 4.00 and 0.78 fewer points from free throws made per game than their
opponents—yet they still managed to win 57 games and only lose 25 in the regular
season.

From the data in GSWarriors2019 we can also see that the Warriors outscored
their opponents in those games by an average score of 117.7 to 111.2 points, a victory
margin of 6.5 points on average. The rest of their game was strong enough to make
up for the small deficit in points earned with free throws.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Demonstrate an understanding of the complete process of using the
normal or t-distribution in inference for means and proportions

• Identify which type of inference for means or proportions is appropriate
in a given situation

• Put all the pieces together to answer more involved questions using
real data

Exercises for UNIT C: Essential Synthesis

IDENTIFYING THEMETHOD OF ANALYSIS
In Exercises C.1 to C.8, identify the method of
analysis needed to answer the question. Indicate
whether we should conduct a hypothesis test or find
a confidence interval and also indicate whether the
analysis will be done on a proportion, a mean, a dif-
ference in proportions, a difference in means, or a
matched pairs difference in means.

C.1 Use data collected at a retail store to estimate
the average amount of money people spend in the
store.

C.2 Use results collected at a supermarket to see
whether there is a difference in the average amount
of time customers have to wait in line between two
different check-out cashiers.
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C.3 Use data from an experiment on mice to see if
there is evidence that mice fed a high-sugar diet are
more likely to be classified as insulin-resistant than
mice fed a normal diet.

C.4 Use data collected at an online shopping site
to estimate the proportion of people visiting the site
who make a purchase.

C.5 Use data collected from a sample of applicants
at a college admissions office to measure how large
the difference is in the average size of the financial
aid package between early decision applicants and
regular decision applicants.

C.6 Use data from a study done at a college fit-
ness center in which muscle mass of participants
was measured before and after a 6-week program
working with resistance bands to estimate the mean
increase in muscle mass.

C.7 Use a sample of students at a large university
to determine whether the proportion of students at
the university who are left-handed is different from
the national US proportion of 10%.

C.8 Use results from a survey to estimate the dif-
ference in the proportion of males and females who
say they are trying to lose weight.

USING INTUITIONABOUTTEST STATISTICS
In Exercises C.9 to C.14, a standardized test statistic
is given for a hypothesis test involving proportions
(using the standard normal distribution) or means
(using the t-distribution and assuming a relatively
large sample size.)Without using any technology or
tables, in each case:

(a) Is the p-value likely to be relatively large or rel-
atively small?

(b) Is the conclusion of the test likely to be Reject
H0 or Do not reject H0?

C.9 z = 5.6

C.10 z = 8.3

C.11 z = 0.54

C.12 t = 12.2

C.13 t = 7.1

C.14 t = 0.83

RESTAURANT TIPS
Exercises C.15 to C.19 refer to the dataset Restau-
rantTips. The data were introduced in Data 2.12 on
page 137, and include information from a sample
of 157 restaurant bills collected at the First Crush
bistro.

C.15 Table C.1 shows a two-way table for Servers
A, B, and C and for whether a credit/debit card or
cash was used for payment (yes for a credit or debit
card, no for cash). Do the data in the table provide
evidence that Server B is responsible for more than
1/3 of the bills at this restaurant?

Table C.1 Two-way table of
server and method of payment

A B C

Yes 21 15 15

No 39 50 17

C.16 Use the information in Table C.1 to compute
and interpret a 95% confidence interval for the pro-
portion of bills paid with a credit card.

C.17 Use the information in Table C.1 to deter-
mine whether the sample provides evidence of a
difference between Servers B and C in the propor-
tion of bills paid with cash.

C.18 Table C.2 gives summary statistics for the tip
percentage based on whether or not a credit card
was used. In the sample, which method of payment
has a larger average tip percent? Which method has
more variability? Is there evidence of a difference
in mean tip percentage depending on the method of
payment?

Table C.2 Summary statistics for tip percent
by method of payment

Credit? Sample Size Mean Std. Dev.

Yes 51 17.10 2.47
No 106 16.39 5.05

C.19 Table C.3 gives summary statistics for the size
of the bill based on whether or not a credit card
was used. In the sample, which method of payment
was used for larger bills? Which method has more
variability in the size of the bill? Is there evidence of
a difference in the mean size of the bill depending
on the method of payment?

Table C.3 Summary statistics for size of bill
by method of payment

Credit? Sample Size Mean Std. Dev.

Yes 51 29.4 14.5
No 106 19.5 9.4



522 UN I T C

C.20 Posture and Pain Research shows that peo-
ple adopting a dominant pose have reduced levels
of stress and feel more powerful than those adopt-
ing a submissive pose. Furthermore, it is known that
if people feel more control over a situation, they
have a higher tolerance for pain. Putting these ideas
together, a recent study65 describes three experi-
ments investigating how posturemight influence the
perception of pain.

(a) In the first experiment, 89 participants were
told that they were in a study to examine the
health benefits of doing yoga poses at work. All
participants had their pain threshold measured
both before and after holding a yoga pose for
20 seconds. The pain threshold was measured
by inflating a blood pressure cuff until partici-
pants said stop: The threshold was measured in
mmHg and the difference in before and after
thresholds was recorded. Participants were ran-
domly divided into two groups: One group (n =
45) was randomly assigned to strike a dominant
pose (moving limbs away from the body) while
the other group (n = 44) was assigned to strike a
submissive pose (curling the torso inward). The
mean change in pain threshold for the group
striking a dominant pose was 14.3 with a stan-
dard deviation of 39.8, while the mean change
in pain threshold for the group striking a sub-
missive pose was −6.1 with a standard deviation
of 40.4. Does the experiment provide evidence
that a dominant pose increases one’s mean tol-
erance of pain more than a submissive pose?

(b) Prior research has shown that a person will
assume a pose complementary to the pose of a
peer or colleague: assuming a more submissive
pose if the peer has a dominant pose and vice
versa. In the second experiment, 30 participants
were told they were participating in a study
on relaxation methods and randomly divided
into two groups of size 15. Each participant
took turns describing nature photographs with a
peer who was part of the study and was secretly
told to strike either a dominant or submissive
posture during the interactions. Pain thresholds
were measured in the same way as in the first
experiment. Mean difference in pain threshold
was −13.8 with a standard deviation of 27.1 for

65Data approximated from Bohns, V., and Wiltermuth, S., “It
hurts when I do this (or you do that): Posture and pain toler-
ance,” Journal of Experimental Social Psychology, 2012; 48(1):
341–345.

the group with a dominant peer and 4.2 with a
standard deviation of 22.9 for the group with
a submissive peer. Does the experiment pro-
vide evidence that mean pain tolerance is higher
if one’s interaction partner is submissive? The
data do not have any significant outliers.

(c) As part of the experiment described in part (b),
participants were also given a handgrip strength
test both before and after the interaction
with the peer, and the difference in hand-
grip strength was measured in newtons. Mean
change in handgrip strength for those with a
dominant interaction partner is −45.3 newtons
with a standard deviation of 46.5 while for those
with a submissive partner mean change was
−6.8 with a standard deviation of 31.0. The data
do not have any very large outliers. Find a 90%
confidence interval for the difference in means
and interpret the result. Based on the confi-
dence interval, do you believe that there is a
significant difference in mean change in hand-
grip strength between those with a submissive
partner and those with a dominant partner?

(d) Since reducing the perception of pain is a goal
in health care, what are the implications of these
studies for health care professionals?

C.21 Mental Imaging and Muscle Fatigue Studies
suggest that when people mentally rehearse a phys-
ical action, they engage similar neural and cogni-
tive operations as when they actually perform the
action. Because of this, mental imaging can be a
valuable training tool. A new study66 explores how
actual muscle fatigue affects mental imaging. In the
study, participants were asked to either perform
actual arm pointing motions or to mentally imagine
equivalent arm pointing motions. Participants then
developed muscle fatigue by holding a heavy weight
out horizontally as long as they could. After becom-
ing fatigued, they were asked to repeat the previous
mental or actual motions. Eight participants were
assigned to each group, and the time in seconds
to complete the motions is given in Table C.4 and
stored inMentalMuscle. Use a 5% significance level
for all tests.

(a) Test to see whether there is a significant differ-
ence in mean times between mentally imaging
doing the actions and actually doing the actions
before any muscle fatigue (pre-fatigue).

66Data approximated from summary statistics in Demougeot,
L., and Papaxanthis, C., “Muscle Fatigue Affects Mental Sim-
ulation of Action,” The Journal of Neuroscience, 2011;31(29):
10712–20.
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Table C.4 Mental and actual times for physical activity after muscle fatigue

Mental pre-fatigue 5.9 9.9 8.1 7.2 6.6 7.4 6.9 6.7
Mental post-fatigue 7.4 6.0 6.6 6.1 5.5 7.2 5.4 4.6
Actual pre-fatigue 7.3 7.8 6.8 7.1 6.2 7.2 8.4 6.5
Actual post-fatigue 9.8 7.8 7.5 7.6 6.4 7.8 8.1 9.3

(b) Test to see whether people who actually
perform the motions are slower, on average,
post-fatigue than pre-fatigue.

(c) Test to see whether people who mentally
perform the motions are faster, on average, at
mentally imaging the actions post-fatigue than
pre-fatigue.

(d) Test to see whether there is a significant
difference in mean times between mentally
imaging doing the actions and actually doing the
actions, after experiencing muscle fatigue (post-
fatigue).

(e) Write a short paragraph summarizing the results
of the experiment.

C.22 Results from the Student Survey Data 1.1 on
page 4 describes a dataset giving results of a student
survey. We use the students who filled out the sur-
vey as a sample from the population of all students
at that university. Answer the following questions
using the computer output on the next page. Justify
your answers to the questions using specific values
from the computer output. In particular, for all tests,
give the null and alternative hypotheses, the p-value
from the computer output, and the conclusion in
context.

(a) Nationally, about 20% of people smoke. What
percent of students in the sample smoke? Is the
percent of all students at this university who
smoke different from the national percentage?

(b) Is the average math SAT score of students at
this university greater than 600?

(c) One of the variables in the dataset is High-
erSAT, which indicates whether the math or
the verbal SAT score was higher for each stu-
dent. What is the proportion of females in the
sample with a higher verbal SAT score? What
is the proportion of males for whom the ver-
bal score is higher? Is the proportion for whom
verbal is higher different between males and
females for all students at this university? In
addition to the test, state and interpret a 95%
confidence interval for the sex effect: the differ-
ence between the proportion of females with

a higher verbal score minus the proportion of
males with a higher verbal score.

(d) Who has a higher average pulse rate in the sam-
ple: smokers or non-smokers? Is there evidence
of a difference in mean pulse rate between
smokers and non-smokers for all students at this
university?

(e) Who has a higher mean GPA (grade point aver-
age) in the sample: smokers or non-smokers?
Is there evidence of a difference in mean GPA
between smokers and non-smokers for all stu-
dents at this university? Are the results signif-
icant at a 10% level? At a 5% level? At a 1%
level?

MORE GOLDEN STATE WARRIORS FREE
THROWS
The data in GSWarriors2019 contain information
from 82 regular season games played by the Golden
State Warriors basketball team. Exercises C.23
to C.26 involve some of the other questions raised
in the Case Study introduced in this section. For
each question, decide what inference technique is
appropriate for addressing it and use the data in
GSWarriors2019 to carry out the procedure and
reach a conclusion. Use 95% confidence for any
intervals and 𝛼 = 0.05 for any hypothesis tests.

C.23 Is there evidence that the mean number of
free throw attempts per game by theWarriors is dif-
ferent from the mean for all NBA teams? Assume
that the mean number of free throws attempted by
teams in all NBA games is 25.0 (based on a very
large number of games over the past ten years).

C.24 Is the proportion of free throws successfully
made by the Warrior players different from the
overall proportion for all NBA players? Assume
that the population proportion of free throws made
by all NBA players is about 0.756 (based on many
free throw attempts over a ten year period).

C.25 Is the proportion of free throws made by the
Warriors better at games they play at home versus
those they play on the road? In Example C.4 on
page 518 we did not find enough evidence to con-
clude that the mean number of free throws made
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Computer Output for Exercise C.22

Test and CI for One Proportion: Smoke
Test of p = 0.2 vs p not = 0.2
Event = Yes
Variable X N Sample p 95% CI P-Value
Smoke 43 362 0.118785 (0.085456, 0.152113) 0.000
One-Sample T: MathSAT
Test of mu = 600 vs > 600
Variable N Mean StDev SE Mean 95% Lower Bound T P
MathSAT 362 609.44 68.49 3.60 603.50 2.62 0.005

Test and CI for Two Proportions: HigherSAT, Sex
Event = Verbal
Sex X N Sample p
F 84 165 0.509091
M 66 190 0.347368
Difference = p (F) − p (M)
Estimate for difference: 0.161722
95% CI for difference: (0.0597323, 0.263713)
Test for difference = 0 (vs not = 0): Z = 3.11 P-Value = 0.002

Two-Sample T-Test and CI: Pulse, Smoke
Two-sample T for Pulse
Smoke N Mean StDev SE Mean
No 319 69.3 12.3 0.69
Yes 43 71.8 11.7 1.8
Difference = mu (No) −mu (Yes)
Estimate for difference: −2.54
95% CI for difference: (−6.37, 1.28)
T-Test of difference = 0 (vs not =): T-Value = −1.33 P-Value = 0.188 DF = 55

Two-Sample T-Test and CI: GPA, Smoke
Two-sample T for GPA
Smoke N Mean StDev SE Mean
No 302 3.173 0.399 0.023
Yes 43 3.054 0.379 0.058
Difference = mu (No) −mu (Yes)
Estimate for difference: 0.1188
95% CI for difference: (−0.0059, 0.2435)
T-Test of difference = 0 (vs not =): T-Value = 1.91 P-Value = 0.061 DF = 56

by the Warriors in home games is larger than away
games. Can we detect a home advantage in the pro-
portion of free throws made being higher than at
away games? Here is a table showing Golden State
free throws made and attempted in both locations.

Location Made Attempts

Home 664 827
Away 675 845

Total 1339 1672

C.26 How many more (or fewer) free throw
attempts do theWarriors tend to get (on average) at
home games compared to their road games? Find a
95% confidence interval for the difference in mean
free throw attempts.

C.27 Patients Admitted to an Intensive Care Unit
Data 2.3 on page 77 describes a dataset about
patients being admitted to an Intensive Care Unit at
a large hospital. We use the patients for whom infor-
mation is available as a sample from the population
of all patients admitted to the ICU at this hospital.
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Use technology and the data stored in the file
ICUAdmissions to answer the following questions.
Justify your answers to the questions using specific
values from the statistical software package that you
use. In particular, for all tests, give the null and
alternative hypotheses, the p-value from the com-
puter output, and the conclusion in context.

(a) The average heart rate for healthy adults is 72
beats per minute. What is the average heart rate
(HeartRate) for the sample of patients admitted
to the ICU? Does it give evidence that the aver-
age heart rate of patients admitted to this ICU
is different than 72?

(b) What proportion of patients in the sample died?
Survival is coded as 0 = lived and 1 = died in the
Status variable. Find and interpret a 95% con-
fidence interval for the proportion of patients
admitted to this ICU that die.

(c) Were more males or females admitted to this
ICU in this sample? Sex is coded as 0 for
male and 1 for female in the Sex variable. Is
there evidence that patients are not equally
split between males and females among all ICU
patients at this hospital?

(d) Does the average age of patients admitted to
this ICU differ between males and females?

(e) Does the proportion of patients who die differ
between males and females?

C.28 Effect of Diet on Nutrient Levels Data 2.11
on page 125 describes a dataset that gives nutrient
levels in people’s blood as well as information about
their eating habits. We use the people for whom
information is available as a sample from the pop-
ulation of all people. Use technology and the data
stored in the file NutritionStudy to answer the fol-
lowing questions. Justify your answers to the
questions using specific values from the statistical
software package that you use. In particular, for all
tests, give the null and alternative hypotheses, the
p-value from the computer output, and the conclu-
sion in context.

(a) Find and interpret a 95% confidence interval for
the percent of people that smoke.

(b) Find and interpret a 99% confidence interval for
the average number of grams of fiber per day
that people eat. Give the best estimate, the mar-
gin of error, and the confidence interval.

(c) Find and interpret a 90% confidence interval for
the average number of grams of fat per day that
people eat.

(d) Is there evidence of a difference in the percent
of current smokers between males and females?

(e) Is there evidence of a difference in the mean
cholesterol level of males and females?

(f) Is there evidence of a difference in mean level
of beta carotene in the blood (BetaPlasma)
between smokers and non-smokers?

Review Exercises for UNIT C

FINDINGAREAS INA STANDARDNORMAL
DISTRIBUTION In Exercises C.29 and C.30, find
the specified areas for a standard normal distribu-
tion.

C.29 (a) The area below z = −2.10
(b) The area above z = 1.25

C.30 (a) The area below z = 1.68

(b) The area above z = 2.60

FINDING ENDPOINTS ON A STANDARD
NORMAL DISTRIBUTION In Exercises C.31
and C.32, find endpoint(s) on a standard normal dis-
tribution with the given property.

C.31 (a) The area to the left of the endpoint is
about 0.60.

(b) The area to the left of the endpoint is about 0.02.

C.32 (a) The area to the left of the endpoint is
about 0.25.

(b) The area to the right of the endpoint is about
0.08.

USING A t-DISTRIBUTION Use a t-distribution
to answer the questions in Exercises C.33 to C.36.
Assume the sample is a random sample from a
distribution that is reasonably normally distributed
and we are doing inference for a sample mean.

C.33 Find endpoints of a t-distribution with 5%
beyond them in each tail if the sample has size
n= 25.

C.34 Find endpoints of a t-distribution with 1%
beyond them in each tail if the sample has size
n= 12.
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C.35 Find the area in a t-distribution to the right of
2.75 if the sample has size n = 10.

C.36 Find the area in a t-distribution to the left of
−1.50 if the sample has size n = 24.

C.37 Grams of Fiber per Day The NutritionStudy
dataset includes a variable indicating the number
of grams of fiber consumed per day by the partic-
ipants. In the sample, the mean is 12.79 grams and
the standard error based on a simulation distribu-
tion is SE = 0.30. The sample size of n = 315 is large
enough to use a normal distribution.

(a) Find and interpret a 95% confidence interval for
mean number of grams of fiber per day.

(b) Use a normal distribution to test whether there
is evidence that mean number of grams of fiber
is greater than 12. Give all details of the test.

C.38 Online Browsing on a PhoneA study67 shows
that 17% of a random sample of 1954 cell phone
owners do most of their online browsing on their
phone. The standard error for the proportion is
0.0085. The sample size is large enough to use a nor-
mal distribution.

(a) Find and interpret a 90% confidence interval
for the proportion of cell phone owners who do
most of their online browsing on their phone.

(b) Use a normal distribution to test whether there
is evidence that the proportion is greater than
0.15. Give all details of the test.

C.39 DoKids Spend TooMuch Time on Electronic
Devices? In a nationwide poll of 1000 randomly
sampled adults, 83% said they think children spend
too much time on their computers and other elec-
tronic devices (but 37% say time spent on a com-
puter is better than time spent in front of a TV).68

Find and interpret a 95% confidence interval for the
proportion of adults who believe children spend too
much time on electronic devices. What is the margin
of error for this result? Is it plausible that the pro-
portion of all adults who feel this way is less than
80%? Is it plausible that the proportion is greater
than 85%?

C.40 Home Field Advantage in Baseball There
were 2430 Major League Baseball (MLB) games
played in 2009, and the home team won in 54.9%
of the games.69 If we consider the games played

67Smith, A., “Cell Internet Use 2012,” Pew Research Center,
pewresearch.org, June 26, 2012.
68“83% Say Kids Spend TooMuch TimeOnElectronic Devices,”
Rasmussen Reports, July 6, 2011.
69http://www.baseballprospectus.com/article.php?articleid=9854,
accessed June 2011.

in 2009 as a sample of all MLB games, find and
interpret a 90% confidence interval for the propor-
tion of games the home team wins in Major League
Baseball.

C.41 Size of the Tip in a Restaurant The dataset
RestaurantTips has information from First Crush
bistro in northern New York state. Computer out-
put of descriptive statistics for the variable giving
the size of the tip is shown:

Descriptive Statistics: Tip
Variable N N* Mean SE Mean StDev
Tip 157 0 3.849 0.193 2.421

Minimum Q1 Median Q3 Maximum
0.250 2.050 3.350 5.000 15.000

(a) How many tips are included in the dataset?
What is the mean? What is the standard
deviation?

(b) Compute the standard error for the mean using
the formula SE = s∕

√
n. Compare the result to

the value given under “SE Mean” in the com-
puter output.

(c) Use the summary statistics to compute a 95%
confidence interval for the average tip given at
this restaurant.

(d) Compare the answer in part (c) to the confi-
dence interval given in the following computer
output for the same data:

One-Sample T: Tip
Variable N Mean StDev SE Mean 95% CI
Tip 157 3.849 2.421 0.193 (3.468, 4.231)

(e) Interpret the confidence interval in context.

C.42 Number of Walks for a Baseball Team in a
Season The dataset BaseballHits2019 gives 2019
season statistics for all Major League Baseball
(MLB) teams. We treat this as a sample of all MLB
teams in all years. Computer output of descrip-
tive statistics for the variable giving the number of
Walks is shown:

Descriptive Statistics: Walks
Variable N Mean SE Mean StDev
Walks 30 529.83 13.08 71.66

Minimum Q1 Median Q3 Maximum
378 489.75 541 583.25 645

(a) How many teams are included in the dataset?
What is the mean number of walks? What is the
standard deviation?

(b) Compute the standard error for the mean using
the formula SE = s∕

√
n. Compare the result to
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the value given under “SE Mean” in the com-
puter output.

(c) Use the summary statistics to compute a 95%
confidence interval for the mean number of
walks per team in a season.

(d) Compare the answer from part (c) to the confi-
dence interval given in the following computer
output for the same data:

One-Sample T: Walks
Variable N Mean StDev SE Mean 95% CI
Walks 30 529.83 71.66 13.08 (503.08, 556.59)

(e) Interpret the confidence interval in context.

C.43 The Chips Ahoy! Challenge In the mid-1990s
a Nabisco marketing campaign claimed that there
were at least 1000 chips in every bag of Chips
Ahoy! cookies. A group of Air Force cadets col-
lected a sample of 42 bags of Chips Ahoy! cookies,
bought from locations all across the country, to ver-
ify this claim.70 The cookies were dissolved in water
and the number of chips (any piece of chocolate)
in each bag were hand counted by the cadets. The
average number of chips per bag was 1261.6, with
standard deviation 117.6 chips.

(a) Why were the cookies bought from locations all
over the country?

(b) Test whether the average number of chips per
bag is greater than 1000. Show all details.

(c) Does part (b) confirm Nabisco’s claim that
every bag has at least 1000 chips? Why or why
not?

C.44 Social Networking Sites In a survey of 2255
randomly selected US adults (age 18 or older), 1787
of them use the Internet regularly. Of the Internet
users, 1054 use a social networking site.71 Find and
interpret a 95% confidence interval for each of the
following proportions:

(a) Proportion of US adults who use the Internet
regularly.

(b) Proportion of US adult Internet users who use
a social networking site.

(c) Proportion of all US adults who use a social
networking site. Use the confidence interval to
estimate whether it is plausible that 50% of all
US adults use a social networking site.

70Warner, B., and Rutledge, J., “Checking the Chips Ahoy! Guar-
antee,” Chance, 1999; 12(1):10–14.
71Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, June
16, 2011.

C.45 What Do People Do on Facebook? In the
survey of 2255US adults described in Exercise C.44,
we also learn that 970 of the respondents use the
social networking site Facebook. Of the 970 Face-
book users, the survey shows that on an average day:

• 15% update their status

• 22% comment on another’s post or status

• 20% comment on another user’s photo

• 26% “like” another user’s content

• 10% send another user a private message

(a) For each of the bulleted activities, find a 95%
confidence interval for the proportion of Face-
book users engaging in that activity on an aver-
age day.

(b) Is it plausible that the proportion commenting
on another’s post or status is the same as the
proportion updating their status? Justify your
answer.

C.46 Has Support for Capital Punishment
Changed over Time? The General Social Survey
(GSS) has been collecting demographic, behavioral,
and attitudinal information since 1972 to monitor
changes within the US and to compare the US to
other nations.72 Support for capital punishment (the
death penalty) in the US is shown in 1974 and in
2006 in the two-way table in Table C.5. Find a 95%
confidence interval for the change in the proportion
supporting capital punishment between 1974 and
2006. Is it plausible that the proportion supporting
capital punishment has not changed?

Table C.5 Has public support for
capital punishment changed?

Year Favor Oppose Total
1974 937 473 1410
2006 1945 870 2815

C.47 Who Is More Trusting: Internet Users or
Non-users? In a randomly selected sample of 2237
US adults, 1754 identified themselves as people who
use the Internet regularly while the other 483 indi-
cated that they do not. In addition to Internet use,
participants were asked if they agree with the state-
ment “most people can be trusted.” The results
show that 807 of the Internet users agree with this
statement, while 130 of the non-users agree.73

72General Social Survey website, http://www3.norc.org/GSS+
Website.
73Hampton, K., Goulet, L., Rainie, L., and Purcell, K., “Social
Networking Sites and Our Lives,” Pew Research Center, pewre-
search.org, June 16, 2011.
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(a) Which group is more trusting in the sample (in
the sense of having a larger percentage who
agree): Internet users or people who don’t use
the Internet?

(b) Can we generalize the result from the sample?
In other words, does the sample provide evi-
dence that the level of trust is different between
the two groups in the broader population?

(c) Can we conclude that Internet use causes peo-
ple to be more trusting?

(d) Studies show that formal education makes
people more trusting and also more likely to use
the Internet. Might this be a confounding factor
in this case?

C.48 Democrat or Republican? 2011 A survey of
15,000 American adults in 2011 found that 35.3%
identify as Democrats and 34.0% identify as Repub-
licans, with the rest identifying as independent or
other.74 If we want 95% confidence, what is the mar-
gin of error in the estimate for the proportion of
Democrats? For the proportion of Republicans? Do
you feel comfortable concluding that in 2011 more
American adults self-identified as Democrats than
self-identified as Republicans? Explain.

C.49 Democrat or Republican? 2015 Four years
after the survey described in Exercise C.48, in 2015,
a different survey of 12,000 American adults found
that 29.0% identified as Democrats and 26.0% iden-
tified as Republicans, with the rest identifying as
independent or other.75 Answer the same questions
about these survey results as in Exercise C.48: If we
want 95% confidence, what is the margin of error
in the estimate for the proportion of Democrats?
For the proportion of Republicans? Do you feel
comfortable concluding that in 2015 more Amer-
ican adults self-identified as Democrats than self-
identified as Republicans? Explain.

HOMES FOR SALE
Exercises C.50 to C.53 refer to the dataset Homes-
ForSale, which has data on houses available for sale
in threeMid-Atlantic states (NY,NJ, andPA) aswell
as California (CA). Table C.6 has summary statis-
tics for each of the four states, with prices given in
thousands of dollars. (Since n= 30, we ask you to
use the t-distribution here despite the fact that the
data are quite skewed. In practice, we might have
enough concern about the skewness to choose to
use bootstrap methods instead.)

74“Partisan Trends,” Rasmussen Reports, April 1, 2011.
75http://www.gallup.com/poll/188096/democratic-republican-
identification-near-historical-lows.aspx.

Table C.6 Mean housing prices
for four states

State n Mean Std. Dev.

California 30 535.4 269.2
New Jersey 30 328.5 158.0
New York 30 365.3 317.8
Pennsylvania 30 265.6 137.1

C.50 Find and interpret a 95% confidence interval
for the mean price of a home in California.

C.51 Find and interpret a 90% confidence interval
for the difference in mean housing price between
California and New York.

C.52 Find and interpret a 99% confidence interval
for the difference in mean housing price between
New Jersey and Pennsylvania.

C.53 Find and interpret a 95% confidence interval
for the difference in mean housing price between
New York and New Jersey.

C.54 Handedness and Earnings Do left-handed
or right-handed people make more money? One
study76 recorded the hourly earnings for a random
sample of 2295 American men, of whom 2027 were
right-handed and 268 were left-handed. The right-
handed men earned an average of $13.10 per hour,
while the left-handed men earned an average of
$13.40 per hour. The sample standard deviation
for both left-handed and right-handed workers was
about $7.90. Test the hypothesis that the average
earnings for left-handed and right-handed men are
the same. Be sure to state the null and alternative
hypotheses, find the test statistic and p-value, and
interpret the conclusion.

C.55 Comparing Weight Loss Methods Research-
ers randomly assigned 107 young overweight
women to cut 25% of their calories in one of two
ways: The continuous group ate about 1500 calo-
ries a day every day while the intermittent group
ate about 500 calories a day for two days a week
and their typical diets the rest of the week. (Inter-
estingly, the women who cut calories on two days
a week did not overeat on the other days.)77 The
summary statistics for weight loss (in pounds) after

76Ruebeck, C., et al., “Handedness and Earnings,” Laterality,
2007;12(2):101–20.
77Harvie, M., et al., “The Effects of Intermittent or Continuous
Energy Restriction on Weight Loss and Metabolic Disease Risk
Markers: A Randomised Trial in Young Overweight Women,”
International Journal of Obesity (London), 2011; 35(5):714–27.
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6 months are shown in Table C.7. Test to see if there
is any difference inmeanweight loss results between
the two methods. Show all details of the test.

Table C.7 Number of pounds lost under two
different calorie restriction methods

Method n x s

Continuous 54 14.1 13.2
Intermittent 53 12.2 10.6

C.56 Sex and Gun Control A survey reported in
Timemagazine included the question “Do you favor
a federal law requiring a 15 day waiting period to
purchase a gun?” Results from a random sample of
US citizens showed that 318 of the 520 men who
were surveyed supported this proposed law while
379 of the 460 women sampled said “yes”. Use this
information to find and interpret a 90% confidence
interval for the difference in the proportions of men
and women who agree with this proposed law.

C.57 Do Ovulating Women Affect Men’s Speech?
Studies suggest that when young men interact with
a woman who is in the fertile period of her men-
strual cycle, they pick up subconsciously on subtle
changes in her skin tone, voice, and scent. A study
introduced in Exercise B.25 suggests that men may
even change their speech patterns around ovulat-
ing women. The men were randomly divided into
two groups with one group paired with a woman in
the fertile phase of her cycle and the other group
with a woman in a different stage of her cycle. The
same women were used in the two different stages.
For the men paired with a less fertile woman, 38
of the 61 men copied their partner’s sentence con-
struction in a task to describe an object. For the men
paired with a woman at peak fertility, 30 of the 62
men copied their partner’s sentence construction.
The experimenters hypothesized that men might be
less likely to copy their partner during peak fertility
in a (subconscious) attempt to attract more atten-
tion to themselves. Use the normal distribution to
test at a 5% level whether the proportion of men
copying sentence structure is less when the woman
is at peak fertility.

C.58 Radiation from Cell Phones and Brain Activ-
ity Exercise B.60 on page 394 introduces a matched
pairs study in which 47 participants had cell phones
put on their ears and then had their brain glucose
metabolism (a measure of brain activity) measured
under two conditions: with one cell phone turned on
for 50 minutes (the “on” condition) and with both
cell phones off (the “off” condition). Brain glucose

metabolism is measured in 𝜇mol∕100 g per minute,
and the differences of the metabolism rate in the on
condition minus the metabolism rate in the off con-
dition were computed for all participants. The mean
of the differences was 2.4 with a standard deviation
of 6.3. Find and interpret a 95% confidence interval
for the effect size of the cell phone waves on mean
brain metabolism rate.

C.59 Testing the Effects of Cell Phones on Brain
Activity Exercise C.58 describes a matched pairs
study examining the effect of cell phones on brain
glucose metabolism. Use the information there to
test to see if there is evidence that mean glucose
metabolism is higher when a cell phone is nearby.
Show all details of the test.

C.60 Worldwide, Store Brands Are Gaining on
Name Brands In a Nielsen global online survey of
about 27,000 people from 53 different countries,
61% of consumers indicated that they purchased
more store brands during the economic downturn
in 2008 and 91% indicated that they continued to
purchase the same number of store brands when
the economy improved. The results were remark-
ably consistent across all regions of the world.78 The
survey was conducted during September 2010 and
had quotas for age and sex for each country, and
the results are weighted to be representative of con-
sumers with Internet access.

(a) What is the sample? What is an appropriate
population?

(b) Find and interpret a 99% confidence inter-
val for the proportion of consumers who pur-
chased more store brands during the economic
downturn.

(c) Find and interpret a 99% confidence interval for
the proportion of consumers who continued to
purchase the same number of store brands.

C.61 CongressionalApprovalRating InApril 2012,
the Gallup Poll reported that in a random sample
of 1016 US adults, only 17% approve of the way
Congress is handling its job.79

(a) Use the poll results to estimate the proportion
of all US adults in 2012who approved of theway
Congress was doing its job. What is the margin
of error, with 99% confidence, for this estimate?

(b) If the Gallup Poll wants the estimate to be accu-
rate to within ±1%, with 99% confidence, how
large a sample must they use?

78“The Rise of the Value-Conscious Shopper,” A Nielsen Global
Private Label Report, www.nielsen.com, March 2011.
79http://www.gallup.com/poll/153968/Congressional-Approval-
Recovers-Slightly.aspx, accessed April 2012.
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C.62 Which Award? In Example 2.6 on page 59 we
consider a survey of students who were asked to
choose an award they would like to win from among
an Academy Award, Nobel Prize, and Olympic gold
medal. If the awards are equally popular we would
expect about 1∕3 to choose each type of award.
In one sample of 169 female students (see data in
StudentSurvey) we find that 73 chose the Olympic
gold medal. Does this provide sufficient evidence
to conclude that the proportion of female students
choosing the Olympic gold medal is not 1∕3?
C.63 Quebec vs Texas Secession In Example 6.4
on page 437 we analyzed a poll of 800 Quebecers,
in which 28% thought that the province of Que-
bec should separate from Canada. Another poll of
500 Texans found that 18% thought that the state of
Texas should separate from the United States.80

(a) In the sample of 800 people, about how many
Quebecers thought Quebec should separate
from Canada? In the sample of 500, how many
Texans thought Texas should separate from the
US?

(b) In these two samples, what is the pooled pro-
portion of Texans and Quebecers who want to
separate?

(c) Can we conclude that the two population pro-
portions differ? Use a two-tailed test and inter-
pret the result.

C.64 Does Red Increase Men’s Attraction to
Women? Exercise A.35 on page 192 described a
study81 which examines the impact of the color red
on how attractive men perceive women to be. In the
study, men were randomly divided into two groups
and were asked to rate the attractiveness of women
on a scale of 1 (not at all attractive) to 9 (extremely
attractive). Men in one group were shown pictures
of women on a white background while the men
in the other group were shown the same pictures
of women on a red background. The results are
shown in Table C.8 and the data for both groups
are reasonably symmetric with no outliers. To deter-
mine the possible effect size of the red background
over the white, find and interpret a 90% confidence
interval for the difference in mean attractiveness
rating.

80“In Texas, 31% Say State Has Right to Secede From U.S., But
75% Opt To Stay,” Rasmussen Reports, April 17, 2009.
81Data approximated from information given in Elliot, A. and
Niesta, D., “Romantic Red: Red Enhances Men’s Attraction to
Women,” Journal of Personality and Social Psychology, 2008;
95(5):1150–64.

Table C.8 Does red increase
men’s attraction to women?

Color n x s

Red 15 7.2 0.6
White 12 6.1 0.4

HORMONE REPLACEMENT THERAPY
Exercises C.65 through C.68 refer to a study on
hormone replacement therapy. Until 2002, hor-
mone replacement therapy (HRT), taking hor-
mones to replace those the body no longer makes
after menopause, was commonly prescribed to post-
menopausal women. However, in 2002 the results of
a large clinical trial82 were published, causing most
doctors to stop prescribing it and most women to
stop using it, impacting the health of millions of
women around the world. In the experiment, 8506
women were randomized to take HRT and 8102
were randomized to take a placebo. Table C.9 shows
the observed counts for several conditions over the
five years of the study. (Note: The planned dura-
tion was 8.5 years. If Exercises C.65 through C.68
are done correctly, you will notice that several of
the intervals just barely exclude zero. The study was
terminated as soon as some of the intervals included
only positive values, because at that point it was
unethical to continue forcing women to take HRT.)

Table C.9 Counts for several conditions within
the HRT group and the placebo group

Condition HRT Group Placebo Group

Cardiovascular Disease 164 122
Invasive Breast Cancer 166 124
Cancer (all) 502 458
Fractures 650 788

C.65 Find a 95% confidence interval for the differ-
ence in proportions of women who get cardiovascu-
lar disease taking HRT vs taking a placebo.

C.66 Find a 95% confidence interval for the dif-
ference in proportions of women who get invasive
breast cancer taking HRT vs taking a placebo.

C.67 Find a 95% confidence interval for the differ-
ence in proportions of women who get any type of
cancer taking HRT vs taking a placebo.

82Rossouw, J., et al., “Risks and benefits of estrogen plus pro-
gestin in healthy postmenopausal women: principal results from
the women’s health initiative randomized controlled trial,” Jour-
nal of the American Medical Association, 2002; 288(3):321–33.
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C.68 Find a 95% confidence interval for the differ-
ence in proportions of women who fracture a bone
taking HRT vs taking a placebo.

C.69 Number of Bedrooms in Houses in New York
and Pennsylvania The dataset HomesForSale has
data on houses available for sale in three Mid-
Atlantic states (NY, NJ, and PA). For this exercise
we are specifically interested in homes for sale in
New York and Pennsylvania. We have information
on 30 homes fromeach state andobserve the propor-
tion of homes with more than three bedrooms. We
find that 56.7% of homes in NY (p̂NY) and 26.7% of
homes in PA (p̂PA) have more then three bedrooms.

(a) Is the normal distribution appropriate to model
this difference?

(b) Test for a difference in proportion of homes
withmore than three bedrooms between the two
states and interpret the result.

C.70 THC vs Prochloroperazine An article in the
New York Times on January 17, 1980 reported on
the results of an experiment that compared an exist-
ing treatment drug (prochloroperazine) with using
THC (the active ingredient in marijuana) for com-
bating nausea in patients undergoing chemotherapy
for cancer. Patients being treated in a cancer clinic
were divided at random into two groups which were
then assigned to one of the two drugs (so they did
a randomized, double-blind, comparative experi-
ment). Table C.10 shows how many patients in each
group found the treatment to be effective or not
effective.

(a) Use these results to test whether the propor-
tion of patients helped by THC is significantly
higher (no pun intended) than the proportion
helped by prochloroperazine. Use a 1% signifi-
cance level since we would require very strong
evidence to switch to THC in this case.

(b) Why is it important that these data come from
a well-designed experiment?

Table C.10 Effectiveness of anti-nausea
treatments

Treatment Sample Size Effective Not Effective

THC 79 36 43
Prochloroperazine 78 16 62

C.71 Quality Control Susan is in charge of quality
control at a small fruit juice bottling plant. Each bot-
tle produced is supposed to contain exactly 12 fluid
ounces (fl oz) of juice. Susan decides to test this

by randomly sampling 30 filled bottles and carefully
measuring the amount of juice inside each. She will
recalibrate the machinery if the average amount of
juice per bottle differs from 12 fl oz at the 1% signifi-
cance level. The sample of 30 bottles has an average
of 11.92 fl oz per bottle and a standard deviation of
0.26 fl oz. Should Susan recalibrate the machinery?

C.72 College Football Playoffs As of 2011, Divi-
sion I college football in the US did not have a
tournament-style playoff to pick a national cham-
pion. In a random survey conducted by Quinnip-
iac University at that time,83 people who identified
themselves as college football fanswere asked if they
favor a playoff system, similar to college basketball,
to determine a national champion. Of those sam-
pled, 63% said they would favor such a system, and
the margin of error is ±3.1%. Assuming the margin
of error corresponds to a 95% confidence interval,
about howmany college football fanswere sampled?

C.73 Light at Night and Weight Gain A study
described in Data 4.1 found that mice exposed to
light at night gained substantially more weight than
micewhohad complete darkness at night.How large
is the effect of light on weight gain? In the study, 27
mice were randomly divided into two groups. In this
exercise, we includemicewith any light at night (dim
or bright) and we examine the effect after 8 weeks.
The 8 mice with darkness at night gained an average
of 5.9 grams in body mass, with a standard deviation
of 1.9 grams. The 19 mice with light at night gained
an average of 9.4 grams with a standard deviation
of 3.2 grams. We see in Figure C.3 that there is no
extreme skewness or extreme outliers, so it is appro-
priate to use a t-distribution. Find and interpret a
99% confidence interval for the difference in mean
weight gain.

C.74 Home Field Advantage in American Football
How big is the home field advantage in the National
Football League (NFL)? To investigate this ques-
tion, we select a sample of 80 games from the 2018
regular season84 and find the home team scored an
average of 25.16 points with standard deviation 9.22
points. In a separate sample of 80 different games,
the away team scored an average of 20.86 pointswith
a standard deviation of 10.38 points. Use this sum-
mary information to estimate the mean home field
advantage and find a 90% confidence interval for
the mean home field advantage, 𝜇H − 𝜇A, in points
scored.
83“Use Playoff System to Pick College Football Champ, Ameri-
can Fans Tell Quinnipiac University National Poll,” Quinnipiac
University Polling Institute, December 29, 2009.
84NFL scores found at http://www.pro-football-reference.com/
years/2018/games.htm.
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Figure C.3 Does light at night affect body mass gain?

C.75 Home Field Advantage in American Foot-
ball: Paired Data How big is the home field advan-
tage in the National Football League (NFL)? In
Exercise C.74, we examine a difference in means
between home and away teams using two sepa-
rate samples of 80 games from each group. How-
ever, many factors impact individual games, such as
weather conditions and the scoring of the opponent.
It makes more sense to investigate this question
using a matched pairs design, using scores for home
and away teams matched for the same game. The
data in NFLScores2018 include the points scored
by the home and away team in 256 regular season
games in 2018.Wewill treat these games as a sample
of all NFL games. Estimate average home field scor-
ing advantage and find a 90%confidence interval for
the mean difference.

C.76 NHL Hockey Penalties In the 2018–2019
National Hockey League (NHL) regular season, the
number of penalty minutes per game for each of the
30 teams ranged from a low of 8.7 for the Nashville
Predators to a high of 16.8 for the most penalized
Tampa Bay Lightning. All 30 data values are given
in Table C.11 and are also available in the PIM vari-
able in the dataset HockeyPenalties2019.

(a) Find the mean and the standard deviation of
penalty minutes per game.

(b) Use the data in Table C.11 from the 2018–2019
season as a sample for all NHL teams in all
years, and use the t-distribution to find a 95%
confidence interval for the average number of
penalty minutes per game by team.

Table C.11 Penalty minutes per game for 30 NHL teams

8.7 8.8 10.5 11.2 11.3 11.3 11.3 11.4 11.6 11.6
11.6 11.7 11.8 11.9 11.9 12.5 12.8 13.2 13.3 13.8
13.9 13.9 14.1 14.1 14.6 15.5 16.1 16.1 16.6 16.8

(c) Discuss why it may or may not be appropri-
ate to generalize this sample to the population
described in part (b).

C.77 Sex and Award Preference In Exam-
ple 2.6 on page 59 we consider data from a sample
of statistics students that is stored in Student-
Survey. One of the survey questions asked which
award students would most like to win from among
an Academy Award, Nobel Prize, and Olympic
gold medal. Among the 193 male students who
responded, 109 chose theOlympic goldmedal, while
73 of the 169 females also picked Olympic gold. Use
this information to find a 90% confidence interval
for the difference between the proportions of male
and female statistics students who choose Olympic
gold.

C.78 Stomach Bacteria and Irritable Bowel Syn-
drome Studies are finding that bacteria in the stom-
achareessential forhealthyfunctioningofthehuman
body. One study85 compared the number of unique
bacterial genes in stomachs of healthy patients and
those of patients with irritable bowel syndrome
(IBS). For healthy patients, we have x = 564 million
with s = 122 million and n = 99. For those with IBS,
we have x = 425millionwith s = 127million and n =
25. Both distributions appear to be approximately
normally distributed. Test to see if people with IBS
have,onaverage, significantly feweruniquebacterial
genes in their stomachs. Show all details, including
giving the degrees of freedom used.

85Qin, J., et. al., “A Human Gut Microbial Gene Catalogue
Established by Metagenomic Sequencing,” Nature, March 4,
2010; 464: 59–65.
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C.79 Spring Break Effect? A statistics professor
was handing out midterm grade slips on a Friday
which happened to be the day before the school’s
Spring break. He noticed that there were an unusu-
ally large number of students missing from class that
day. So he collected the leftover grade slips and cre-
ated the data in Table C.12 that summarized the
midterm grades (out of a possible 100) for students
that attended and missed class.

Table C.12 Summary statistics for
midterm grades

n Mean Std. Dev.

In class 15 80.9 11.07
Missed class 9 68.2 9.26

(a) Theprofessor had reason to suspect, before even
looking at the data, that, in general, students
whomissed class would tend to have lowermean
midterm grades. Write down the null and alter-
native hypotheses that he should use to test this
suspicion using this class as a sample.

(b) Carry out the test in part (a). You may assume
that the data for both groups are reasonably
symmetric and have no strong outliers.

(c) Can we conclude on the basis of this test that
skipping class on the day before break tends to
hurt students’ grades?

(d) There was one student who had stopped coming
to class after the first week and thus had mostly
zero grades and an extremely lowmidterm aver-
age. The instructor did not include that student
when computing the statistics for Table C.12.
Was that a good decision? Explain.

C.80 Mobile Phones in India India has over 600
million mobile phone subscribers. The largest com-
pany providing mobile phone service is Bharti Air-
tel, which has 30% of the market share.86 If random
samples of 500 mobile phone subscribers in India
are selected and we compute the proportion using
service from Bharti Airtel, find the mean and the
standard error of the sample proportions.

C.81 What Percent of Houses Are Owned vs
Rented? The 2010 US Census87 reports that, of
all the nation’s occupied housing units, 65.1% are
owned by the occupants and 34.9% are rented. If we

86”Happy customers, no profit,” The Economist, June 18, 2011.
87www.census.gov.

take random samples of 50 occupied housing units
and compute the sample proportion that are owned
for each sample, what will be themean and standard
deviation of the distribution of sample proportions?

C.82 Percent of Free Throws Made Usually, in
sports, we expect top athletes to get better over time.
We expect future athletes to run faster, jump higher,
throw farther. One thing has remained remarkably
constant, however. The percent of free throws made
by basketball players has stayed almost exactly the
same for 50 years.88 For college basketball players,
the percent is about 69%, while for players in the
NBA (National Basketball Association) it is about
75%. (The percent in each group is also very simi-
lar between male and female basketball players.) In
each case below, find the mean and standard devi-
ation of the distribution of sample proportions of
free throws made if we take random samples of the
given size.

(a) Samples of 100 free throw shots in college
basketball

(b) Samples of 1000 free throw shots in college
basketball

(c) Samples of 100 free throw shots in the NBA

(d) Samples of 1000 free throw shots in the NBA

C.83 How Old Is the US Population? From the US
Census,89 we learn that the average age of all US
residents is 36.78 years with a standard deviation
of 22.58 years. Find the mean and standard devia-
tion of the distribution of sample means for age if
we take random samples of US residents of size:

(a) n = 10

(b) n = 100

(c) n = 1000

C.84 Time to Finish the Boston Marathon The
Boston Marathon is the world’s oldest annual
marathon, held every year since 1897. In 2019,
26,632 runners finished the race, with a mean time
for all runners of 3:53:01 (about 233 minutes) with
standard deviation 0:44:59 (about 45 minutes).90

Find the mean and standard deviation (in min-
utes) of the distribution of sample means if we take
random samples of Boston marathon finishers of
size:

88Branch, J., “For Free Throws, 50 Years of Practice is No Help,”
New York Times, March 3, 2009.
89www.census.gov.
90Boston Marathon Race Results 2019, http://www.marathon
guide.com/results/browse.cfm?MIDD=15190415.
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(a) n = 10

(b) n = 100

(c) n = 1000

C.85 Does Austria or Switzerland Have a Greater
Percentage of Elderly? We see in the AllCountries
dataset that the percent of the population that is
elderly (over 65 years old) is 19.4 in Austria and 18.6
in Switzerland. Suppose we take random samples of
size 200 from each of these countries and compute
the difference in sample proportions p̂A − p̂S, where
p̂A represents the proportion of the sample that is
elderly in Austria and p̂S represents the proportion
of the sample that is elderly in Switzerland. Find the
mean and standard deviation of the differences in
sample proportions.

C.86 Does Australia or New Zealand Have a
Greater Percentage of Elderly? We see in the All-
Countries dataset that the percent of the population
that is over 65 is 15.7 in Australia and 15.6 in New
Zealand. Suppose we take random samples of size
500 from Australia and size 300 from New Zealand,
and compute the difference in sample proportions
p̂A − p̂NZ, where p̂A represents the sample propor-
tion of elderly in Australia and p̂NZ represents the
sample proportion of elderly in New Zealand. Find
the mean and standard deviation of the differences
in sample proportions.

C.87 Male-Female Ratios Of the 50 states in the
United States, Alaska has the largest percentage of
males and Rhode Island has the smallest percent-
age of males. (Interestingly, Alaska is the largest
state and Rhode Island is the smallest.) According
to the 2010 US Census, the population of Alaska is
52.0% male and the population of Rhode Island is
48.3%male. If we randomly sample 300 people from
Alaska and 300 people from Rhode Island, what is
the approximate distribution of p̂a − p̂ri, where p̂a is
the proportion of males in the Alaskan sample and
p̂ri is the proportion of males in the Rhode Island
sample?

C.88 How Likely Is a Female President of the US?
A 2010 headline stated that “73% sayWoman Pres-
ident Likely in Next 10 Years.” The report gives the
results of a survey of 1000 randomly selected likely
voters in the US.91 Find and interpret a 95% confi-
dence interval for the proportion of likely voters in
the US in 2010 who thought a woman president is
likely in the next 10 years.

91Rasmussen Reports, June 27, 2010.

C.89 Can Rats Feel Empathy? Can rats feel empa-
thy toward fellow rats? In a recent study,92 some
rats were first habituated to two chambers: a witness
chamber adjacent to a shock chamber. The experi-
mental rats (n = 15) were then given electric shocks
through the floor of the shock chamber, while the
control rats (n = 11) received no shocks but had all
else the same. Twenty-four hours after the shocks
were administered, each rat was put in the witness
room and observed another rat getting shocked in
the shock chamber. When rats get shocked, they
freeze. The response variable as a measure of empa-
thy on the part of the witness rats was the percent of
time the witness rats spent in “freeze” mode when
watching other rats get shocked. The experiment
was double-blind. For the experimental rats who
had previously received shocks, the mean percent
time spent in freeze mode was 36.6 with a standard
deviation of 21.3. For the control rats who had never
been shocked, the mean time in freeze mode was 1.2
with a standard deviation of 2.3. Test to see whether
the time spent in freeze mode is significantly higher
for the rats with prior shock experience. Show all
details of the test. You may assume that the data on
time spent in freeze mode have no large outliers.

C.90 Laptop Computers and Sperm Count Studies
have shown that heating the scrotum by just 1∘C
can reduce sperm count and sperm quality, so men
concerned about fertility are cautioned to avoid too
much time in the hot tub or sauna. Exercise 2.131
on page 100 introduces a study suggesting that men
also keep their laptop computers off their laps. The
study measured scrotal temperature in 29 healthy
male volunteers as they sat with legs together and a
laptop computer on their lap. Temperature increase
in the left scrotum over a 60-minute session is given
as 2.31 ± 0.96 and a note tells us that “Temperatures
are given as ∘C; values are shown as mean ± SD.”
Test to see if we can conclude that the average tem-
perature increase for a man with a laptop computer
on his lap for an hour is above the danger threshold
of 1∘C.

C.91 Gender Bias In a study93 examining gender
bias, a nationwide sample of 127 science pro-
fessors evaluated the application materials of an

92Atsak, P., et al., “Experience Modulates Vicarious Freezing in
Rats: A Model for Empathy,” PLoS ONE, 2001; 6(7): e21855.
93Moss-Racusin, C.A., et al., “Science faculty’s subtle gen-
der biases favor male students,” Proceedings of the National
Academy of Sciences, 109(41), October 9, 2012, 16764–479.
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undergraduate student who had ostensibly applied
for a laboratory manager position. All participants
received the same materials, which were randomly
assigned either the name of a male (nm = 63) or the
name of a female (nf = 64). Participants believed
that they were giving feedback to the applicant,
including what salary could be expected. The aver-
age salary recommended for the male applicant was
$30,238 with a standard deviation of $5152 while
the average salary recommended for the (identical)
female applicant was $26,508 with a standard devia-
tion of $7348.Does this provide evidence of a gender
bias, in which applicants with male names are given
higher recommended salaries than applicants with
female names? Show all details of the test.

C.92 Is Gender Bias Influenced by Faculty
Gender? Exercise C.91 describes a study in which
science faculty members are asked to recommend
a salary for a lab manager applicant. All the fac-
ulty members received the same application, with
half randomly given a male name and half randomly
given a female name. In Exercise C.91, we see that
the applicationswith female names received a signif-
icantly lower recommended salary. Does gender of
the evaluator make a difference? In particular, con-
sidering only the 64 applications with female names,
is the mean recommended salary different depend-
ing on the gender of the evaluating faculty member?
The 32 male faculty gave a mean starting salary of
$27,111 with a standard deviation of $6948 while the
32 female faculty gave a mean starting salary of
$25,000 with a standard deviation of $7966. Show
all details of the test.

C.93 NFL Overtime In Exercise B.4 on page 379
we look at some data on the results of overtime
games in the National Football League (NFL) from
1974 through the 2009 season. The question of inter-
est is how much advantage (if any) is given to the
team that wins the coin flip at the start of the sudden
death overtime period. Assume that the overtime
games played during this period can be viewed as a
sample of all possible NFL overtime games.

(a) The winner of the coin flip has gone on to win
240 of the 428 games where a winner is deter-
mined in overtime. Does this provide sufficient
evidence to conclude that the team winning the
coin flip has an advantage in overtime games?

(b) The NFL changed a rule before the 1994 sea-
son (moving the kickoff line back 5 yards) that
might affect this analysis. For 188 games (again
ignoring ties) from 1974 to 1993 the winner of
the coin flip won 94 times and lost 94 times. In
240 games played between 1994 and 2009 (after

the rule change) the winner of the coin flip won
146 games and lost 94.Discuss any statistical evi-
dence for a difference in the advantage (if any
exists at all) for the team winning the coin flip
under the new and old rules.

C.94 Is There a Genetic Marker for Dyslexia?
Exercise 2.29 on page 66 describes a study finding
that a gene disruptionmay be related to an increased
risk of developing dyslexia. Researchers studied the
gene in 109 people diagnosed with dyslexia and in
a control group of 195 others who had no learning
disorder. The disruption occurred in 10 of those with
dyslexia and in 5 of those in the control group. Are
the conditions met to use the normal distribution to
estimate the size of the difference in the proportion
of thosewith the gene disruption between thosewho
have dyslexia and those who don’t? Use an appro-
priate method to estimate the size of this difference,
with 95% confidence.

DO LIE DETECTORS WORK? Exercises C.95
to C.98 refer to the data in Table C.13. These data,
introduced in Exercise A.55 on page 197, involve
participants who read either deceptive material or
truthful material while hooked to a lie detector. The
two-way table indicates whether the participants
were lying or telling the truth and also whether the
lie detector indicated that they were lying or not.

Table C.13 How accurate are lie detectors?

Detector Detector
Says Lying Says Not Total

Person lying 31 17 48
Person not lying 27 21 48

C.95 Find and interpret a 90% confidence interval
for the proportion of times a lie detector accurately
detects a lying person.

C.96 Test to see if there is evidence that the lie
detector says a person is lying more than 50% of
the time, regardless of what the person reads.

C.97 Test to see if there is a difference in the pro-
portion the lie detector says is lying depending on
whether the person is lying or telling the truth.

C.98 Find and interpret a 95% confidence interval
for the difference in the proportion the lie detector
says is lying between those lying and those telling
the truth.

C.99 Does the US Government Provide Enough
Support for Returning Troops?A survey conducted
of 1502 randomly selected US adults found that 931
of them believed the government does not provide
enough support for soldiers returning from Iraq or
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Afghanistan.94 Use this information to construct a
99% confidence interval. Clearly define the param-
eter you are estimating.

C.100 Arsenic in Toenails Arsenic is toxic to
humans, and people can be exposed to it through
contaminated drinking water, food, dust, and soil.
Exercises 2.73 and A.65 onpages 82 and 198, respec-
tively, describe an interesting new way to measure
a person’s level of arsenic poisoning: by examining
toenail clippings. Two samples of arsenic in toenails
are given below: one from near an arsenic mine in
Great Britain and one from New Hampshire, US.
In each case, find a 95% confidence interval for
the level of arsenic in toenails in the relevant pop-
ulation. First, determine whether it appears to be
appropriate to use a t-distribution to construct the
confidence interval. If a t-distribution is appropri-
ate, use it. If not, use a bootstrap method. Note that
the units for measuring arsenic (mg/kg or ppm) are
not the same for the two studies.

(a) Levels of arsenic, measured in mg/kg, are given
below for 8 people living near a former arsenic
mine in Great Britain:

0.8 1.9 2.7 3.4 3.9 7.1 11.9 26.0

(b) Levels of arsenic, measured in ppm, are given
for 19 individuals with private wells in New
Hampshire in Table C.14 (and stored inToenail-
Arsenic).

Table C.14 Arsenic concentration in toenail
clippings in New Hampshire

0.119 0.118 0.099 0.118 0.275 0.358 0.080
0.158 0.310 0.105 0.073 0.832 0.517 0.851
0.269 0.433 0.141 0.135 0.175

C.101 Smoking and Pregnancy Rate Exercise A.53
on page 196 introduces a study investigating
whether smoking might negatively effect a person’s
ability to become pregnant. The study collected data
on 678 women who had gone off birth control with
the intention of becoming pregnant. Smokers were
defined as those who smoked at least one cigarette
a day prior to pregnancy. We are interested in the
pregnancy rate during the first cycle off birth control.
The results are summarized in Table C.15.

94“Four Years After Walter Reed, Government Still Faulted for
Troop Support,” Pew Research Center, pewresearch.org, June
29, 2011.

Table C.15 Smoking and Pregnancy Rate

Smoker Non-smoker Total
Pregnant 38 206 244
Not pregnant 97 337 434
Total 135 543 678

(a) Find a 95% confidence interval for the differ-
ence in proportion of women who get pregnant
between smokers and non-smokers. From the
confidence interval, can we conclude that one
group has a significantly higher pregnancy suc-
cess rate than the other? Explain.

(b) Conduct a hypothesis test to determine if the
pregnancy success rates of smokers and non-
smokers are significantly different. Does the
result agree with the conclusion in part (a)?

(c) Can we conclude that smoking causes women to
have less success when trying to become preg-
nant during the first cycle? Explain.

C.102 Does Red Increase Men’s Attraction to
Women? Exercise A.35 on page 192 describes a
recent study which examines the impact of the color
red on how attractive men perceive women to be.
(We examine a confidence interval involving these
data inExercise C.64 on page 530.) In the study,men
were randomly divided into two groups and were
asked to rate the attractiveness of women on a scale
of 1 (not at all attractive) to 9 (extremely attractive).
One group of men were shown pictures of women
on a white background and the other group were
shown the same pictures of women on a red back-
ground. The results are shown in Table C.16. Test to
see if men rate women as significantly more attrac-
tive (on average) when a red background is used
rather than a white background. Show all details
and clearly state your conclusion.

Table C.16 Does red increase
men’s attraction to women?

Color n x s

Red 15 7.2 0.6
White 12 6.1 0.4

C.103 Close Confidants and Social Networking
Sites Exercise 6.103 on page 460 introduced a study
in which 2006 randomly selected US adults (age 18
or older) were asked to give the number of people
in the last six months “with whom you discussed
matters that are important to you.” The average
number of close confidants for the full sample is 2.2.
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Table C.17 Number of hours spent exercising a week

Females 4 2 5 6 12 15 10 5 0 5

Males 10 10 6 5 7 8 4 12 12 4 15 10 5
5 2 2 7 3 5 15 6 6 5 0 8 5

In addition, the study asked participants whether or
not they had a profile on a social networking site.
For the 947 participants using a social networking
site, the average number of close confidants is 2.5
with a standard deviation of 1.4, and for the other
1059 participants who do not use a social network-
ing site, the average is 1.9 with a standard deviation
of 1.3. (We examine a confidence interval involving
these data in Exercise 6.214 on page 491.)

(a) What is the sample? What is the intended
population?

(b) Is this an experiment or an observational study?
Can we make causal conclusions from these
data?

(c) Do the sample data provide evidence that those
who use social networking sites tend to have
more close confidants on average?

(d) Describe a possible confounding variable that
might be influencing the association in part (c).

C.104 Near Death Experiences Exercise A.51 on
page 196 describes a study of the prevalence of
near-death experiences. A near-death experience
includes the sensation of seeing a bright light or
feeling separated from one’s body or sensing time
speeding up or slowing down, and sometimes is
experienced by people who have a brush with death.
Researchers interviewed 1595 people admitted to a
hospital cardiac care unit during a recent 30-month
period. Patients were classified as cardiac arrest
patients (in which the heart briefly stops after beat-
ing unusually quickly) or patients suffering other
serious heart problems (such as heart attacks). The
study found that 27 individuals reported having had
a near-death experience, including 11 of the 116 car-
diac arrest patients.

(a) What proportion of cardiac arrest patients in the
sample reported near-death experiences? What
proportion of other heart patients reported
them?

(b) Test, at a 5% level, to see if cardiac arrest
patients are more likely to have a near-death
experience than other heart patients.

C.105 Time Spent Exercising, between Males and
Females In the StudentSurvey data, there are 36
seniors: 26 males and 10 females. Table C.17 gives

the number of hours per week that each said he or
she spent exercising. Find a 95% confidence inter-
val for the difference in mean time spent exercising
between male and female seniors at this university.

C.106 Fighting Insomnia Exercise A.73 on
page 200 introduces a study investigating the effec-
tiveness of behavioral changes and prescription
medication in helping older people find improve-
ment in fighting insomnia. The results are summa-
rized in Table C.18.

(a) Some of the counts in the cells are very small,
definitely too small to use a normal-based
test. When this is the case, we often collapse
some of the cells together. Combine cells from
Table C.18 to fill in the cells in Table C.19 with
appropriate values.

(b) Although, when completed, one of the cells in
Table C.19 has only a count of 9, this is close to
10 and is only one cell, so we proceed with a
normal-based test. Test to see if training helps
people improve in the fight against insomnia.

Table C.18 Treating insomnia

Improvement Medication Training Both Neither Total
Much 5 7 10 0 22
Some 4 5 6 1 16
None 8 6 3 17 34
Total 17 18 19 18 72

Table C.19 Combine cells to create this table

Any Improvement Training No Training Total
Yes
No
Total

C.107 Heart Rates The typical resting pulse rate
in adults is 60 to 80 beats per minute. For the 200
Intensive Care Unit patients in the dataset ICUAd-
missions, the average pulse rate in the sample is
x = 98.9 bpm with s = 26.8 bpm. Test to see if this
provides evidence that the average pulse rate of ICU
patients is greater than 80.

C.108 Normal Body Temperature It is commonly
believed that normal human body temperature is
98.6∘F (or 37∘C). In fact, “normal” temperature can
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Table C.20 Body temperature during the day

97.6 98.0 98.8 98.9 98.7 98.1 97.7 98.1 98.9 98.9 98.8 98.3

vary from person to person, and for a given person
it can vary over the course of a day. Table C.20 gives
a set of temperature readings of a healthy woman
taken over a two-day period. Test to see if the mean
body temperature for this person is different from
98.6∘F.
C.109 Prostate Cancer and a Drug for Baldness
Exercise A.71 on page 200 introduces a study in
which the drug finasteride, marketed as Propecia to
help protect against male pattern baldness, is inves-
tigated for its protective effects against prostate can-
cer. Men were randomly assigned to receive either a
daily finasteride pill or a placebo, and the study was
double-blind. At the end of the seven-year study,
prostate cancer was found in 804 of 4368 men taking
finasteride and in 1145 of 4692men taking a placebo.
Test to see if men taking finasteride are less likely
to get prostate cancer than men taking a placebo.

C.110 Dark Chocolate for Good Health A recent
study examines chocolate’s effects on blood ves-
sel function in healthy people. In the randomized,
double-blind, placebo-controlled study, 11 people
received 46 grams (1.6 ounces) of flavonoid-rich
dark chocolate (which is normal dark chocolate)
every day for two weeks, while a control group of
10 people were given dark chocolate with reduced
flavonoid content. Participants had their vascular
health measured (by means of flow-mediated dila-
tion) before and after the two-week study. The
increase in flow-mediated dilation over the two
week period was measured, with larger numbers
indicating greater vascular health. For the group
getting the flavonoid-rich dark chocolate, the mean
increase was 1.3 with a standard deviation of 2.32,
while the control group had a mean change of
−0.96 with a standard deviation of 1.58. (We exam-
ine a confidence interval involving these data in
Exercise 6.213 on page 491.)

(a) Why were participants in the control group
given dark chocolate that had reduced flavo-
noids? Why weren’t they given nothing at all?

(b) Do the results of the study provide evidence that
vascular health (as measured by flow-mediated
dilation) is greater in those eating dark choco-
late daily? Are the results significant at the 5%
level? At the 1% level?

(c) Can we conclude that eating dark chocolate
improves vascular health? Why or why not?

C.111 How Old Are Scout Honeybees? Honeybee
colonies have specific “scout” honeybees, that are
entrusted with finding new sites for hives. The mean
age of honeybees in a hive is about 12 days.95 In
a sample of 50 scout honeybees, the average age is
29.1 days with a standard deviation of 5.6. Does this
provide evidence that scout bees are older, on aver-
age, than expected by random chance if they were
selected from the hive as a whole? Show all details
of the test.

C.112 Tribulus Tribulus is a food supplement that
some athletes use to enhance performance. A
study96 on the effects of this supplement involved
randomly assigning 20 athletes to take the sup-
plement for a 20-day period and comparing vari-
ous characteristics to 12 similar athletes who were
not given Tribulus. One of the measurements was
anaerobic alactic muscular power (AAMP) where
the Tribulus group showed a mean performance of
1305.6 with a standard deviation of 177.3 while the
control group had a mean AAMP of 1255.9 with a
standard deviation of 66.8.

(a) Test whether the data provide evidence that
mean AAMP is higher for athletes using Tribu-
lus compared to those not using the supplement.

(b) The authors of the study also report that the
mean AAMP of the 20 subjects in the exper-
imental group before they started the Tribulus
supplements was 1215.5 with a standard devia-
tion of 146.6. Explain why this is not sufficient
information to let us test for a difference in
means before and after using the supplement.

C.113 Homes for Sale The dataset HomesForSale
has data on houses available for sale in three Mid-
Atlantic states (NY, NJ, and PA) and California
(CA).97 We are interested in the proportion of Mid-
Atlantic houses that are larger than 2400 square
feet. In the sample of 90 Mid-Atlantic homes for
sale inHomesForSale, we see that 15 are larger then
2400 sq ft.

95Values approximated from information available in Seeley, T.,
Honeybee Democracy, Princeton University Press, Princeton,
NJ, 2010, p. 96.
96Milasius, K., Peciukoniene, M., Dadeliene, R., and Skernevi-
cius, J., “Efficacy of the Tribulus Food Supplement Used By
Athletes,” Acta Medica Lituanica, 2010; 17(1–2):65–70.
97Data collected from www.zillow.com.
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(a) What is the sample proportion? Estimate the
standard error of the sample proportion.

(b) Is the sample size large enough for the Central
Limit Theorem to apply?

(c) Find and interpret a 95% confidence interval for
the proportion of homes larger than 2400 sq. ft.
in the Mid-Atlantic states.

C.114 Homes for Sale in Mid-Atlantic States and
California The dataset HomesForSale has data on
houses available for sale in threeMid-Atlantic states
(NY, NJ, and PA) as well as California (CA). In
Exercise C.113 we see that in the sample of 90 Mid-
Atlantic homes for sale, 15 are larger than 2400 sq
ft. In the sample of 30 California homes, only 3 are
that large.

(a) Is the normal distribution appropriate to model
the proportion larger than 2400 sq. ft. for Mid-
Atlantic houses? California houses?

(b) Dowehave sufficient evidence at a 5% level that
the proportion of Mid-Atlantic homes larger
than 2400 sq. ft. is less then 25%? Perform an
appropriate test.

(c) Do we have sufficient evidence at a 5% level
that the proportion of California homes larger
than 2400 sq. ft. is less than 25%? Perform an
appropriate test.

C.115 How Big Is the Difference in Homes For
Sale?The datasetHomesForSale has data on houses
available for sale in three Mid-Atlantic states (NY,
NJ, and PA) as well as California (CA). In Exercise
C.114 we looked at the proportion of homes for sale
that were larger than 2400 sq ft. We found 15 large
houses out of 90 in the Mid-Atlantic states and 3
large houses out of 30 in California.

(a) Find a point estimate for the difference in pro-
portions, pM − pC.

(b) Find a 90% confidence interval for the differ-
ence in proportions, pM − pC.

(c) Based on the interval in part (b), is there evi-
dence of a difference in the proportion of large
houses between the two locations?

Table C.21 Systolic blood pressure of ICU patients

Teens 100 100 104 104 112 130 130 136 140 140 142
146 156

Eighties 80 100 100 110 110 122 130 135 136 138 140
141 162 190 190

C.116 Football Air PressureDuring the NFL’s 2014
AFC championship game, officials measured the
air pressure on game balls following a tip that one
team’s balls were under-inflated. In exercise 6.136
we found that the 11 balls measured for the New
England Patriots had a mean psi of 11.10 (well
below the legal limit) and a standard deviation of
0.40. Patriot supporters could argue that the under-
inflated balls were due to the elements and other
outside effects. To test this the officials also mea-
sured 4 balls from the opposing team (Indianapolis
Colts) to be used in comparison and found a mean
psi of 12.63, with a standard deviation of 0.12. There
is no significant skewness or outliers in the data.
Use the t-distribution to determine if the average
air pressure in the New England Patriot’s balls was
significantly less than the average air pressure in the
Indianapolis Colt’s balls.

C.117 Infection in Dialysis Patients Exercise A.79
on page 201 discusses a study showing the recur-
rence time to infection at the point of insertion of
the catheter for kidney patients using portable dial-
ysis equipment. There are 38 patients, and the mean
time to infection is x = 111.7 days with s = 144.0.

(a) Find a 99% confidence interval for the mean
time to infection for these patients. Give the
best estimate, the margin of error, and give and
interpret the confidence interval.

(b) Is it reasonable to find a patient with a time to
infection of 24 days? How about 152 days?

(c) Is it reasonable to find the mean time to infec-
tion in the population is 24 days? How about
152 days?

C.118 Age and Blood Pressure Table C.21 gives
systolic blood pressure readings (first introduced in
Exercise A.77 on page 201) for Intensive Care Unit
patients in their teens and those in their eighties.

(a) Find and interpret a 95% confidence interval for
the mean systolic blood pressure for each group.
Which has a largermargin of error?What aspect
of the data is the cause of that larger margin of
error?
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(b) Test to see if there is a difference in systolic
blood pressure readings between ICU patients
in their teens and those in their eighties.

C.119 Light at Night and Weight Gain A study
described in Data 4.1 found that mice exposed to
light at night gained substantially more weight than
mice who had complete darkness at night. In the
study, 27 mice were randomly divided into two
groups. (In this exercise, we combine the dim light
and bright light groups and consider results after 8
weeks.) After 8 weeks, the 8 mice with darkness at
night gained an average of 5.9 grams in body mass,
with a standard deviation of 1.9 g. The 19 mice with
light at night gained an average of 9.4 g with a stan-
dard deviation of 3.2 g. Is there evidence that mice
with light at night gain significantly more weight
(while eating the samenumberof calories) thanmice
with darkness at night? Justify your answer by show-
ing all details of the test. (We examine a confidence
interval involvingthesedata inExercise C.73onpage
531, and the figure in that exercise indicates that it is
appropriate to use a t-distribution for this test.)

C.120 CAOS Exam The Comprehensive Assess-
ment ofOutcomes in Statistics (CAOS) exam98 is an
online multiple-choice test on concepts covered in
a typical introductory statistics course. Students can
take a pretest version before instruction and then
a posttest version after instruction. Scores on the
pretest and posttest for a random sample of n = 10
students with one instructor are shown in Table C.22
and stored in CAOSExam. Use this information to
compute and interpret a 95%confidence interval for
the improvement inmeanCAOS scores between the
two exams for this instructor’s students.

C.121 CAOS Comparisons An article99 by the
developers of the CAOS exam described in
Exercise C.120 gives benchmark data based on a
very large number of students taking the CAOS
pretest and posttest. The mean score on the CAOS
pretest was 44.9 and the mean on the CAOS postest

98http://app.gen.umn.edu/artist/caos.html.
99DelMas, R., Garfield, J., Ooms, A., and Chance, B., “Assess-
ing Students’ Conceptual Understanding After a First Statistics
Course,” Statistics Education Research Journal, 2007; 6(2): 28–58.

Table C.22 CAOS pretest and posttest scores

Student A B C D E F G H I J

Pretest 42.5 40 47.5 65 60 47.5 42.5 37.5 42.5 37.5
Posttest 60 45 55 80 65 72.5 57.5 55 57.5 55

was 54.0 for an average improvement of 9.1 points.
We treat these values as population means for all
students taking the CAOS exams.

(a) Using the data in Table C.22 and CAOSExam
for a sample fromone instructor, is there enough
evidence to conclude at the 5% level that this
instructor’s students have a mean score on the
posttest that is higher than 54.0?

(b) Can we conclude that this instructor was start-
ing with stronger students? Test if the mean
score for this instructor’s students on the CAOS
pretest is higher than the benchmark mean of
44.9 points, using a 5% significance level.

(c) Can we conclude, at the 5% level, that the
mean improvement from pretest to posttest for
students with this instructor is higher than the
national norm of 9.1 points?

C.122 Sex and Commuting Time–St. Louis Some
computer output is shown on the next page from an
analysis to compare mean commute time between
males and females using data from St. Louis com-
muters in CommuteStLouis. Write a paragraph
interpreting what this output shows about the rela-
tionship (if any) between commuting time and sex
in St. Louis.

C.123 Sex and Commuting Time–Atlanta
Exercise C.122 gives computer output comparing
mean commute time between males and females
in the city of St. Louis. Use the data in Commute-
Atlanta to see if a similar relationship (or lack of
relationship) holds in Atlanta. Include both a con-
fidence interval and test for the difference in mean
commute time by sex in Atlanta.

C.124 Commuting by Bicycle: Which Type of Bike
Is Best? Dr. Jeremy Groves, a British anaesthetist,
often uses a bicycle for his 27-mile round-trip com-
mute to work. He bought an expensive, lightweight,
carbon bike but also had an older, heavier, steel
bike—so he decided to do an experiment.100 On
each day he biked to work he flipped a coin to
determine which bike he would ride. He used a

100“Bicycle weight and commuting time: randomised trial,”
British Medical Journal, 2010; 341: c6801. Thanks to Dr. Groves
for providing his data.
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Two-sample T for Time
Sex N Mean StDev SE Mean
F 240 21.6 13.9 0.90
M 260 22.3 14.6 0.90

Difference = mu (F) − mu (M)
Estimate for difference: −0.70
95% CI for difference: (−3.20, 1.80)
T-Test of difference = 0 (vs not =): T-Value = −0.55 P-Value = 0.585 DF = 497

bicycle computer to accurately record the commute
time each day as well as his maximum and average
speed for the day. His data for 56 days are stored in
BikeCommute. The type of bicycle (carbon or steel)
is in the Bike variable and his time (in minutes) is
stored inMinutes. Do the data provide evidence that
mean commute time differs between the two types
of bikes?

C.125 Marriage Ages Exercise B.6 on page 380
introduces the MarriageAges dataset that contains
the ages for husbands and wives from a sample of
105 marriage licenses in St. Lawrence County, New
York. In that exercise we use bootstrap and random-
ization methods to compare ages between husbands
and wives. Repeat the analyses now using technol-
ogy and the methods of this unit.

(a) For couples marrying in St. Lawrence County,
does the sample provide evidence that, on aver-
age, husbands are older than wives?

(b) Is the proportion of couples for which the hus-
band is older greater than 50%?

(c) For any significant results in parts (a) and (b),
construct and interpret a 95% confidence inter-
val for the parameter of interest.

C.126 Marriage Age Intervals Refer to Exer-
cise C.125 for a description of the data inMarriage-
Ages for a sample of 105 newly married couples.

(a) Use technology to find the mean age for the
wives in this sample and construct a 95% confi-
dence interval for the mean age at marriage for
wives in the population.

(b) Repeat part (a) for the husbands’ ages.

(c) Based on the confidence intervals in parts (a)
and (b), can we predict what a hypothesis test
for a difference in mean marriage age between
the husband and wife in a couple might con-
clude, based on this dataset? If so, explain what
that decision would be. If not, explain why not.

C.127 Better Traffic Flow Exercise A.87 on page
203 describes a study conducted by engineers in
Dresden, Germany looking at ways to improve traf-
fic flow by enabling traffic lights to communicate

with each other in real time. They simulated buses
moving along a street and recorded the delay time
(in seconds) for both the current fixed timed sys-
tem and a flexible interacting system of lights. They
repeated the simulation in each case for a total of
24 situations. The data in TrafficFlow show the total
delay time (in minutes) for both the Timed and the
Flexible simulations for each run, as well as a column
showing theDifference in the time for each pair, with
Difference = Timed − Flexible in each case. Use sta-
tistical software to find a 95% confidence interval
for the mean difference in delay time between the
two systems and to conduct a hypothesis test to see
if there is a difference in delay times between the
two systems. Interpret the confidence interval and
include all details of the test. Which method has the
least average delay time for traffic?

C.128 Hockey Malevolence Data 4.2 on page 285
describes a study of a possible relationship between
the perceived malevolence of a team’s uniform and
penalties called against the team. In Exercise 4.208
on page 368 we consider a randomization distribu-
tion to test for a positive correlation for National
Hockey League teams using the NHLMale𝑣olence
and ZPenMin data in MalevolentUniformsNHL.
Repeat this test, using the fact that the randomiza-
tion distribution is reasonably normal to find and
interpret a p-value.

C.129 More Hockey Malevolence Refer to the ran-
domization test described in Exercise C.128 for
the correlation between uniform malevolence and
penalty minutes for NHL teams. Suppose that a
student constructs randomization samples by scram-
bling the NHLMale𝑣olence variable in Malevolent-
UniformsNHL and computing the correlation with
ZPenMin. The student repeats this process 1000
times to generate a randomization distribution and
finds the standard deviation of the randomization
correlations to be 0.22. Since the distribution is
reasonably normal and the correlation between
these variables in the original sample is r = 0.521,
the student computes a 90% confidence inter-
val for the correlation using 0.521 ± 1.645 ⋅ 0.22 =
(0.159, 0.883).
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(a) Identify a clear error in the process that the stu-
dent has used to construct a confidence interval
for the correlation in this situation.

(b) Suggest a more appropriate method for esti-
mating the standard error to find a confidence
interval for the correlation between uniform
malevolence and standardized penalty minutes
for NHL teams, based on the sample data in
MalevolentUniformsNHL.

(c) Carry out the procedure you describe in part (b)
to obtain an estimate of the standard error.
Assuming that a normal distribution is appropri-
ate, use the standard error to find (and interpret)
a 90% confidence interval for the correlation in
this context.

(d) Does it look like a normal distribution is appro-
priate in this situation? Explain why or why not.

C.130 Penny Spinning Suppose that you hold a coin
vertically on edge, flick one side tomake it spin, then
see if it settles on heads or tails. Is this a fair pro-
cess? That is, will half of spins tend to fall heads
and the other half on tails? To investigate this ques-
tion, a student spun the same US penny 200 times
and recorded 84 heads and 116 tails. She uses these
results to test H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5, where
p is the proportion of penny spins that land heads.

The file RandomP50N200 contains counts and pro-
portions of heads for 5000 simulated samples of size
n = 200 when p = 0.50.

(a) Use the randomization proportions, the variable
Phat in RandomP50N200, to estimate the stan-
dard error for the sample proportion, p̂, in this
situation.

(b) Use the standard error from part (a) to com-
pute a standardized test statistic for testingH0∶
p= 0.5 based on her original sample of 200 spins.

(c) Under this null hypothesis, what should be the
mean of the distribution of counts of number of
heads in 200 spins?

(d) The counts of heads for each of the 5000 ran-
domization samples are in the variable Count.
Use these to estimate the standard deviation for
the counts (number of heads in 200 spins) under
this null hypothesis.

(e) Use the mean from part (c) and standard error
from part (d) to compute a standardized test
statistic based on the count of 84 heads in the
original sample of 200 spins. How does this test
statistic compare to the one based on the sample
proportions in part (b)?

(f) Use either test statistic and the fact that both
randomization distributions are relatively nor-
mal to compute and interpret a p-value for
this test.
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Inference for Multiple
Parameters

“The biggest leaps forward in the next several decades—in business,
science, and society at large—will come from insights gleaned through

perpetual, real-time analysis of data”

–IBM∗

U N I T O U T L I N E

7 Chi-Square Tests for
Categorical Variables

8 ANOVA to Compare Means

9 Inference for Regression

10 Multiple Regression
Essential Synthesis

In this unit, we consider statistical inference

for situations with multiple parameters: test-

ing categorical variables with more than two

categories, comparing means between more

than two groups, making inferences using the

slope and intercept of a regression model, and

building regression models with more than one

explanatory variable.

∗Advertisement, May 2010, seen in The Week, May 14, 2010, p. 12.
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C H A P T E R 7

Chi-Square
Tests for
Categorical
Variables

“The marshalling of data to test presumptions and locate paths to success is transforming

almost every aspect of human life.”

–Larry Summers∗

∗“What you (really) need to know,” The New York Times, January 22, 2012.
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C H A P T E R O U T L I N E

7 Chi-Square Tests for Categorical
Variables 544

7.1 Testing Goodness-of-Fit for a Single
Categorical Variable 546

7.2 Testing for an Association between
Two Categorical Variables 562

Here are some of the questions and issues we will discuss in this chapter:

• What is the most common sleep position?

• How common is binge drinking among college students?

• Which is most important to middle school students: good grades, athletic ability, or popularity?

• What superpower would you choose?

• Are left-handed people more likely to choose certain occupations?

• Can people delay death to make it to a special occasion?

• Are Canadian youth hockey players born early in the year more likely to become professional
hockey players than those born late in the year?

• Can people tell bottled water and tap water apart in a blind taste test?

• In Rock-Paper-Scissors, are the three options chosen equally often?

• Are hospitals deadlier in July?

• Which James Bond actor is the favorite?

• What proportion of college students have paying jobs?

• Is there a “sprinting gene”?

• Are children who are the youngest in their class more likely to be diagnosed with ADHD?

• Which food delivery app is most popular?

• Would you prefer to be healthy, happy, famous, or rich?
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7.1TESTING GOODNESS-OF-FIT FOR A SINGLE
CATEGORICAL VARIABLE

In Chapter 6, we discuss tests for proportions that deal with a single category of
a categorical variable. In this chapter, we develop methods for testing hypotheses
that involve two or more categories. To do this, we use chi-square tests. The data
for chi-square tests are frequency counts for the different categories, or cells, of one
or more categorical variables. In this section, we see how to use a chi-square test
to test an assumption about a single categorical variable. In the next section, we
see how to use a chi-square test to test for an association between two categorical
variables.

Section 6.1-HT discusses a test for a proportion that deals with a single category
for a categorical variable. If a categorical variable has more than two categories and
we want to test a hypothesis about the proportions across all of the categories, we
use a chi-square goodness-of-fit test.

Which letter is the best to guess?

D A T A 7 . 1 Multiple Choice Answers
Many standardized tests use questions with a multiple choice format. For
example, the Advanced Placement (AP) exams for various subjects frequently
use multiple choice questions for a portion of the exam, with five options
labeled A, B, C, D, and E. Are certain choices more or less likely to occur than
others as the correct answer? Table 7.1 shows the frequencies of the letters for
correct answers in a sample of 400 multiple choice questions selected from
previously released exams.1 The data are also stored in APMultipleChoice. ◼

Table 7.1 Choice for correct response of 400
AP multiple choice questions

Answer A B C D E
Frequency 85 90 79 78 68

Example 7.1
Use proper notation in answering each of the following questions.

(a) Find the relative frequency (proportion) of answers for each letter in Table 7.1.

(b) If the letter choices are really made at random, what should be the proportion
of all AP multiple choice questions that have each letter as the correct answer?

1Data obtained from released exams at http://apcentral.collegeboard.com.



7.1 Testing Goodness-of-Fit for a Single Categorical Variable 547

Solution (a) The data in Table 7.1 are from a sample of exam questions so we use the notation
for sample proportions when giving the relative frequencies. For example, for
letter A we have

p̂a =
85
400

= 0.2125

The other four proportions are

p̂b =
90
400

= 0.225 p̂c =
79
400

= 0.1975 p̂d =
78
400

= 0.195 p̂e =
68
400

= 0.170

(b) Because we are interested in the proportions for the population of all AP mul-
tiple choice questions, we use the notation p for a parameter. If each of the five
letters are equally often the correct choice, the proportion for each is 1/5 or 0.20.
We have

pa = pb = pc = pd = pe = 0.20

We could test the proportion in any one of the categories, for exampleH0 ∶ pa =
0.2 vs Ha ∶ pa ≠ 0.2, with the techniques of Chapter 4 or Section 6.1-HT. However,
we prefer to assess the evidence for/against “equally likely” using all five categories
at once.

Null and Alternative Hypotheses
The answer to part (b) of Example 7.1 is precisely the sort of hypothesis we would
like to test for a categorical variable. The null hypothesis specifies proportions for
each of the groups defined by the variable’s categories. The alternative hypothesis is
that at least one of those proportions is wrong. For the five multiple choice answers
we have

H0 ∶ pa = pb = pc = pd = pe = 0.2

Ha ∶ Some pi ≠ 0.2

Note that the alternative doesn’t specify which specific group has a proportion
different from 0.2, just that at least one of the null proportions (denoted by a generic
“pi”) is different from what the null hypothesis claims. Also, as the next example
illustrates, we don’t have to have all proportions equal to each other in the null
hypothesis. We can test all sorts of distributions of proportions for the groups.

PNC/Getty Images

Are the members of this jury representative?
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D A T A 7 . 2 Alameda County Jury Pools
Pools of prospective jurors are supposed to be drawn at random from eligible
adults in a community. The American Civil Liberties Union (ACLU) conducted an
analysis2 of the jury pools for a sample of 10 trials in Alameda County,
California. The racial makeup of those jury pools, a total of 1453 individuals, is
shown in Table 7.2. To see if these data are consistent with community
percentages, we also have census data on the percentage breakdown by race of
eligible jurors for the entire county. These percentages are also shown in
Table 7.2. ◼

Table 7.2 Racial makeup of Alameda County juries and community

Race White Black Hispanic Asian Other

Number in jury pools 780 117 114 384 58
Census percentage 54% 18% 12% 15% 1%

Example 7.2
Write down the null and alternative hypotheses for testing if the racial distribution
of Alameda County jury pools differs significantly from the census proportions of
the community.

Solution If we let p
𝑤
, pb, ph, pa, and po represent the proportions of Whites, Blacks, His-

panics, Asians and Others, respectively, in Alameda jury pools, the hypotheses of
interest are

H0 ∶ p
𝑤
= 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01

Ha ∶ Some pi is not as specified in H0

Notice that in both examples the alternative hypothesis is that things are not as
we expect and that something interesting is going on.

Expected Counts
The null hypothesis in both of these examples is more complicated than those in
earlier chapters. Neither reduces to a claim about the value of a single parameter
(such asH0 ∶ p = 0.2) or even about two parameters (such asH0 ∶ p1 = p2). For this
reason we need a more complicated test statistic than the form (sample statistic −
null parameter)∕SE that is common in Chapters 5 and 6. We begin by finding the
expected frequency counts in each category if the null hypothesis is true.

Example 7.3
In Data 7.1 about Advanced Placement exams, if we have a sample of size n = 400
multiple choice questions and assume the null hypothesis is exactly true (that the
proportion for each letter is equal to 0.2), what frequency counts do we expect to
see for each letter?

Solution If the data fit the null hypothesis perfectly, we would expect to see 400(0.2) = 80
counts in each cell, as in Table 7.3.

2http://www.aclunc.org/docs/racial_justice/racial_and_ethnic_disparities_in_alameda_county
_jury_pools.pdf.
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Table 7.3 Expected frequencies for n = 400 under
H0 ∶ pa = pb = pc = pd = pe = 0.2

Answer A B C D E
Expected count 80 80 80 80 80

In general, for a specific sample size, we compute the expected count for each
cell in a table by multiplying the sample size by the proportion specified in the null
hypothesis:

Expected count = n ⋅ pi

Example 7.4
The data on potential jurors in Table 7.2 is based on a sample containing 1453 indi-
viduals. Use the null hypothesis in Example 7.2 to find expected counts for each of
the racial groups.

Solution To find the expected count for each cell we multiply the sample size (n = 1453) by
the proportion given in the null hypothesis. For example, the expected number of
Whites is

Expected count = n ⋅ p
𝑤
= 1453(0.54) = 784.6

The expected count for each racial group is shown in Table 7.4.

Table 7.4 Expected juror counts based on null census proportions

Race White Black Hispanic Asian Other
Expected count 784.6 261.5 174.4 218.0 14.5

Of course, in practice we rarely see the actual counts observed in a real sample
exactly match the expected counts, even if the null hypothesis is true. The observed
counts tend to vary from sample to sample. Once again, we come to the key
question of a test of significance: “Are the observed counts in the original sample
farther from the expected counts than we would reasonably tend to see by random
chance alone (assuming the actual population proportions are as given in the null
hypothesis)?”

Chi-square Statistic
We need a statistic to compare the observed counts from a sample to the expected
counts from a null hypothesis and we would like it to combine the information from
all cells of the table. One common way of doing this is with a chi-square statistic.

Chi-square Statistic

The chi-square statistic, denoted with the Greek 𝜒
2, is found by

comparing the observed counts from a sample with expected counts
derived from a null hypothesis. The formula for computing the
statistic is

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

where the sum is over all cells of the table.
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Example 7.5
Use the information from Tables 7.1 and 7.3 to find the value of the chi-square statis-
tic for the sample of answers from multiple choice questions on AP exams.

Solution The summation is a bit tedious but straightforward:

𝜒
2 = (85 − 80)2

80
+ (90 − 80)2

80
+ (79 − 80)2

80
+ (78 − 80)2

80
+ (68 − 80)2

80
= 0.3125 + 1.25 + 0.0125 + 0.05 + 1.8

= 3.425

The square term in the formula for the chi-square statistic prevents large pos-
itive deviations from canceling large negative deviations when they are summed.
Dividing each square by the expected count for that cell is a way of standardizing
each term, since an Obser𝑣ed − Expected difference of 20 might be a large discrep-
ancy if the expected count is 30, but would be pretty good agreement if the expected
count is 3000. Note that large values of the chi-square statistic correspond to samples
that do not agree with the null hypothesis.

So nowwe have a test statistic, 𝜒2 = 3.425, that measures how close the observed
counts for the sample of 400 multiple choice answers are to the expected counts
under a null hypothesis of equal proportions. Is that an especially large value? Big-
ger than we would usually see by chance alone? Fortunately, we can apply random-
ization methods to address these questions.

Randomization Test for Goodness-of-Fit
Recall from Chapter 4 that we can obtain a p-value for almost any statistic by

simulating new randomization samples that are consistent with a null hypothesis,
constructing a randomization distribution of the statistics for those samples, and
seeing where the value from the original sample lies in that distribution. Let’s try
that now for the data on AP multiple choice answers.

The null hypothesis, H0 ∶ pa = pb = pc = pd = pe = 0.2, states that answers
should be chosen at random from among A, B, C, D, and E for each of the 400
questions in a sample. With technology we can randomly sample 400 values with
replacement from among those five letters, which is equivalent to sampling from a
population with all letters equally likely. For each randomization sample we count
how many times each of the five letters appears. Table 7.5 shows the results for one
such sample.

The value of the chi-square statistic for this randomization sample is

𝜒
2 = (77 − 80)2

80
+ (86 − 80)2

80
+ (73 − 80)2

80
+ (77 − 80)2

80
+ (87 − 80)2

80
= 1.90

Figure 7.1 shows a randomization distribution with the chi-square statistics for
1000 such simulated samples. The value from the original sample, 𝜒2 = 3.425, lies
somewhere in the middle of this distribution. In fact, 493 of these 1000 samples,
which were simulated with random choices of the letters for each question,
produced a chi-square statistic that is bigger (farther from the expected counts)
than the original sample. This gives a p-value of 0.493, which is not less than any

Table 7.5 Observed counts for one
randomization sample with n = 400

Answer A B C D E
Frequency 77 86 73 77 87
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Figure 7.1 Chi-square
statistics for 1000
samples simulated with
H0 ∶ pa = pb = pc = pd =
pe = 0.2
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3.425

8
ChiSquare Value

10 12 14 16 18

reasonable significance level. We do not have sufficient evidence to reject a null
hypothesis that the proportion for each possible answer is 0.2 for the population of
all multiple choice questions on AP exams.

Are we sure that the letters used for the correct responses really are equally
likely on AP exams? No. Remember that a lack of evidence to refute a null hypoth-
esis, even a p-value as large as 0.493, should not be misinterpreted as strong evidence
to acceptH0. Perhaps there are some small differences that this sample was not large
enough to detect, or we happened to pick a sample that was more “random” than
the rest of the population.

Chi-square Distribution
In Chapter 5 we see that many distributions of sample statistics can be approximated
with normal distributions. However, a quick glance at Figure 7.1 shows that a normal
distribution is not an appropriate model for the simulated chi-square statistics. The
distribution is clearly skewed to the right and can never have values below zero.

Fortunately, the shape of the distribution of the statistics in Figure 7.1 is quite
predictable. We use a new distribution, called a chi-square distribution, as a model
for this shape. Similar to a t-distribution, the chi-square distribution has a degrees
of freedom parameter that is determined by the number of categories (cells) in the
table. In general, for a goodness-of-fit test based on a table with k cells, we use a
chi-square distribution with k − 1 degrees of freedom.

For the five cells in Table 7.1 we use a chi-square distribution with four degrees
of freedom. Because we know the total sample size, if we “free”-ly choose any four
of the sample counts in Table 7.1 or 7.5, the fifth count is completely determined
by the sample size. That is why we have just four degrees of freedom. Figure 7.2
shows a histogram for the 1000 randomization chi-square statistics from Figure 7.1

Figure 7.2 Chi-square
distribution with four
degrees of freedom fits a
histogram of simulated
statistics

0 2 4 6 8 10 12 14 16 18

ChiSquare Value
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Figure 7.3 P-value for
𝝌2 = 3.425 from a
chi-square distribution
with df = 4
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with the density curve for a chi-square distribution with four degrees of freedom.
This provides a good model for the distribution of these statistics under the null
hypothesis.

We can compute a p-value for a sample statistic, such as 𝜒2 = 3.425, as the area
under a chi-square distribution. Figure 7.3 shows this area using four degrees of free-
dom. Compare this plot to Figure 7.1. The resulting p-value (0.4894) is quite close
to the empirical value (0.493) that we obtained from the randomization distribution.
Note that in both cases we use the upper tail (above the observed chi-square statis-
tic) since those values represent samples that are as far (or farther) away from the
null expected counts.

As with the Central Limit Theorems of Chapters 5 and 6, the fit of a chi-square
distribution tends to get better for larger sample sizes. As a general rule, if the
expected count in each cell is at least five, the chi-square distribution should be a
good approximation.

Chi-square Goodness-of-Fit Test

To test a hypothesis about the proportions of a categorical variable,
based on a table of observed counts in k cells:

H0 ∶ Specifies proportions,pi, for each cell

Ha ∶ At least one pi is not as specified

• Compute the expected count for each cell using n ⋅ pi, where n is the
sample size and pi is given in the null hypothesis.

• Compute the value of the chi-square statistic,

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

• Find the p-value for 𝜒2 using the upper tail of a chi-square distribu-
tion with k − 1 degrees of freedom.

The chi-square distribution is appropriate if the sample size is large
enough that each of the expected counts is at least 5.
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Be sure that all possible categories of a categorical variable are listed when doing a
chi-square goodness-of-fit test. The probabilities given in the null hypothesis for all
the categories should add up to one, and the sum of the expected counts will be the
sample size, which is also the sum of the observed counts.

Example 7.6
Alameda County Jurors

Use the data in Table 7.2 to test whether the racial proportions of jury pools tend to
differ from the racial make-up in the Alameda County community.

Solution The hypotheses are

H0 ∶ p
𝑤
= 0.54, pb = 0.18, ph = 0.12, pa = 0.15, po = 0.01

Ha ∶ Some pi is not as specified

Table 7.6 shows the observed counts from the sample together with the expected
counts (in parentheses) that we found for a sample of size n = 1453 in Example 7.4
on page 549.

We calculate the chi-square statistic using the observed and expected counts:

𝜒
2 = (780 − 784.6)2

784.6
+ (117 − 261.5)2

261.5
+ (114 − 174.4)2

174.4

+ (384 − 218.0)2

218.0
+ (58 − 14.5)2

14.5

= 0.03 + 79.8 + 20.9 + 126.4 + 130.5

= 357.6

Checking a chi-square distribution with four degrees of freedom (df = #cells − 1)
we see that 𝜒2 = 357.6 is extremely far in the tail, giving a p-value that is essentially
zero. The data provide very strong evidence that the proportions of racial groups
in Alameda County jury pools are quite different from the racial makeup of the
community.

Table 7.6 Observed (expected) juror counts in Alameda County

Race White Black Hispanic Asian Other

780 (784.6) 117 (261.5) 114 (174.4) 384 (218.0) 58 (14.5)

The chi-square statistic of Example 7.6 provides strong evidence against the
null hypothesis, but that doesn’t tell us which groups might be over- or under-
represented. One way to address this is to compare the observed and expected
counts and look at the contribution to the chi-square statistic from each cell.
Although the agreement is very close for Whites, the other four groups show
very large discrepancies. It would appear that Blacks and Hispanics are under-
represented in Alameda County jury pools while more Asians and Others are
present than we would expect by their share of the population.

In practice we generally use technology to automate the calculations for a
goodness-of-fit test. Some typical output (with more decimal places shown) for the
test on Alameda County jurors in Example 7.6 is shown below.
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Test Contribution
Category Observed Proportion Expected to Chi-Sq
White 780 0.54 784.62 0.027
Black 117 0.18 261.54 79.880
Hispanic 114 0.12 174.36 20.895
Asian 384 0.15 217.95 126.509
Other 58 0.01 14.53 130.051

N DF Chi-Sq P-Value
1453 4 357.362 0.000

Example 7.7
We complete a chi-square test for testing jury pools in Alameda County in
Example 7.6. Explain why a chi-square test is appropriate in that situation.

Solution We use a chi-square test when the variable is categorical and the data are frequency
counts, which is the case for the Alameda County jury data. In addition, it is appro-
priate to use a 𝜒

2-distribution if all the expected counts are 5 or greater. We see in
Example 7.6 and in the computer output above that the smallest expected count is
14.53, so it is appropriate to use the 𝜒2-distribution in the test.

Goodness-of-Fit for Two Categories

Example 7.8
Penny Spins

Exercise C.130 on page 542 describes a sample a student collected by spinning a
penny on edge to see if it would land Heads or Tails. Her data showed 84 heads
and 116 tails in 200 spins. Test to see if this provides evidence that spinning a coin is
biased away from a 50–50 distribution of heads and tails. Do this test two ways:

(a) Using a normal-based test for a proportion

(b) Using a chi-square goodness-of-fit test

Solution (a) If we let p denote the proportion of all penny spins that land heads, the hypothe-
ses are H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5. Based on seeing 84 heads in 200 sample
spins the sample proportion is p̂ = 84∕200 = 0.42. The standardized test statis-
tic is

z =
p̂ − p0√
p0(1−p0)

n

= 0.42 − 0.50√
0.50(1−0.50)

200

= −2.263

Comparing to a standard normal distribution, the p-value for this two-tailed test
is 2(0.0118) = 0.0236. At a 5% significance level, this is a small p-value and pro-
vides evidence that the proportion of heads when spinning a penny is different
from 0.5.

(b) We can think of this as a goodness-of-fit test for a variable with just two
categories: heads and tails. The null hypothesis is H0 ∶ ph = pt = 0.5 and the
alternative is Ha ∶ ph ≠ 0.5 or pt ≠ 0.5. For 200 spins the expected counts
should be 200(0.5) = 100 in both cells. The observed data and expected counts
(in parentheses) are shown in Table 7.7.

We calculate the chi-square statistic.

𝜒
2 = (84 − 100)2

100
+ (116 − 100)2

100
= 2.56 + 2.56 = 5.12
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Table 7.7 Observed (expected)
counts for 200 penny spins

Heads Tails

84 (100) 116 (100)

Comparing this to a chi-square distribution with just one (2 − 1 = 1) degree of
freedom, we see that the area beyond 𝜒

2 = 5.12 gives a p-value of 0.0236. At
a 5% significance level, this is a small p-value and provides evidence that the
proportions of heads and tails when spinning a penny are not both 0.5.

Note that the p-values in both parts of Example 7.8 are the same. This is not
a coincidence. The two methods, a two-tailed test for a proportion based on the
normal distribution and a chi-square test for two categories, are equivalent. In fact,
you can check that the 𝜒

2-test statistic for the goodness-of-fit test (5.12) is just the
square of the z-statistic (−2.263). That’s one reason for having “square” in the name
chi-square. If you are mathematically inclined, you might try to show algebraically
(using the formulas for both test statistics) that this always happens. Furthermore,
in Exercise C.130 you are asked to do this test using a randomization distribution.
The p-value by that method turns out to be 0.024. This is consistent with both the
normal and chi-square tests. Remember that the randomization procedure is still a
viable option in all situations, including those (like small sample sizes) where the
distribution-based tests might not be appropriate.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Test a hypothesis about a categorical variable using a chi-square
goodness-of-fit test

• Recognize when a chi-square distribution is appropriate for testing a
categorical variable

Exercises for Section 7.1

SKILL BUILDER 1
In Exercises 7.1 to 7.4, find the expected counts in
each category using the given sample size and null
hypothesis.

7.1 H0 ∶ p1 = p2 = p3 = p4 = 0.25; n = 500

7.2 H0 : All three categories A, B, C are equally
likely; n = 1200

7.3 H0 ∶ pA = 0.50, pB = 0.25, pC = 0.25;
n = 200

7.4 H0 ∶ p1 = 0.7, p2 = 0.1, p3 = 0.1, p4 = 0.1;
n = 400

SKILL BUILDER 2
In Exercises 7.5 to 7.8, the categories of a categorical
variable are given along with the observed counts
from a sample. The expected counts from a null
hypothesis are given in parentheses. Compute the
𝜒
2-test statistic, and use the 𝜒

2-distribution to find
the p-value of the test.

7.5
Category A B C
Observed 35 (40) 32 (40) 53 (40)
(Expected)
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7.6
Category A B C
Observed 61 (50) 35 (50) 54 (50)
(Expected)

7.7
Category A B C D
Observed 132 (160) 181 (160) 45 (40) 42 (40)
(Expected)

7.8
Category A B C D
Observed 38 (30) 55 (60) 79 (90) 128 (120)
(Expected)

SKILL BUILDER 3
Exercises 7.9 to 7.12 give a null hypothesis for a
goodness-of-fit test and a frequency table from a
sample. For each table, find:

(a) The expected count for the category labeled B.

(b) The contribution to the sum of the chi-square
statistic for the category labeled B.

(c) The degrees of freedom for the chi-square dis-
tribution for that table.

7.9 H0 : pa = pb = pc = pd = 0.25
Ha : Some pi ≠ 0.25

A B C D Total
40 36 49 35 160

7.10 H0 : pa = pb = pc = pd = 0.25
Ha : Some pi ≠ 0.25

A B C D Total
120 148 105 127 500

7.11 H0 : pa = 0.1, pb = 0.35, pc = 0.2,
pd = 0.05, pe = 0.1, pf = 0.2

Ha : Some pi is wrong

A B C D E F
210 732 396 125 213 324

7.12 H0 : pa = 0.2, pb = 0.80
Ha : Some pi is wrong

A B
132 468

7.13 Are Food Delivery Apps Equally Popular?
Exercise 1.61 introduces a 2019 study which asked
160 US adults who regularly use a food delivery app
which one they used most recently. The results are
shown in Table 7.8. Test to see if the four options
are equally likely among US adults who regularly
use a food deliver app.

Table 7.8 Food delivery apps

App Frequency

DoorDash 44
Grubhub 43
UberEats 40
Other 33

Total 160

7.14 College Students and Paying Jobs Exercise
2.16 introduces data from a survey that included
5204 first-year, full-time college students. Their
responses to a question about whether they worked
at a paying job while attending college are given in
Table 7.9. It is assumed that 50% will not work at a
paying job, while 25% will work on campus and the
other 25% will work off campus.

(a) Test whether the data contradict the assumed
proportions.

(b) Which category contributes the most to the 𝜒
2

statistic? For this category, is the observed value
greater than or less than what is expected?

Table 7.9 Proportion of first-year full-time
students with a job

Assumed
Paying job? Frequency Proportion

Works on campus 1436 0.25
Works off campus 1119 0.25
Does not work 2649 0.50

Total 5204

7.15 Favorite Skittles Flavor Skittles are a popu-
lar fruity candy with five different flavors (colored
green, orange, purple, red, and yellow). A sample
of 66 people3 recorded their favorite flavor and
the results are shown in Table 7.10. Perform a chi-
square test, as indicated in the steps below, to see
whether or not the flavors are equally popular.

(a) State the null and alternative hypotheses.

(b) If every flavor of Skittles were equally popular,
how many people (in a sample of 66) would we
expect to choose each?

3http://www.quibblo.com.
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(c) How many degrees of freedom do we have?

(d) Calculate the chi-square test statistic.

(e) What is the conclusion about the popularity of
the Skittles flavors?

Table 7.10 Skittles popularity

Green Orange Purple Red Yellow

18 9 15 13 11

7.16 Rock-Paper-Scissors In Data 6.1 on page 444
we see a table, reproduced in Table 7.11, that shows
the choices made by 119 players on the first turn
of a Rock-Paper-Scissors game. Recall that rock
beats scissors which beats paper which beats rock.
A player gains an advantage in playing this game if
there is evidence that the choices made on the first
turn are not equally distributed among the three
options. Use a goodness-of-fit test to see it there is
evidence that any of the proportions are different
from 1∕3.

Table 7.11 Frequencies for first
turn in Rock-Paper-Scissors

Option Selected Frequency

Rock 66
Paper 39
Scissors 14

Total 119

7.17 Gas, Charcoal, or Wood Pellets? A con-
sumer research organization4 had 114 staffers taste
chicken that had been cooked on grills heated by
gas, charcoal, and wood pellets. They report that 41
of them (36%) preferred the gas grilled chicken, 39
(34%) picked charcoal, and the remaining 34 (30%)
went with wood pellets. Does this information pro-
vide enough evidence to conclude that one type of
grill heat is preferred over another?

7.18 What Is Your Sleep Position? How do you
position yourself when you are going to sleep?
A website5 tells us that 41% of us start in the
fetal position, another 28% start on our side with

4“Which Grill Makes the Tastiest Food?”, Consumer Reports,
May 2020.
5Foltz-Gray, D. “The Best and Worst Sleeping Positions,”
http://spryliving.com/articles/best-and-worst-sleeping-positions/,
January 20, 2015.

legs straight, 13% start on their back, and 7% on
their stomach. The remaining 11% have no stan-
dard starting sleep position. If a random sample of
1000 people produces the frequencies in Table 7.12,
should you doubt the proportions given in the arti-
cle on the website? Show all details of the test, and
use a 5% significance level.

Table 7.12 Starting sleep
positions

Sleep position Frequency

Fetal 391
Side, legs straight 257
Back 156
Stomach 89
None 107

Total 1000

ADHD? OR JUST YOUNGEST IN THE
CLASS?
A study6 indicates that the youngest children
in a school grade are more likely to be diag-
nosed with attention-deficit/hyperactivity disorder
(ADHD) than their older peers in the same grade.
The study involved 937,943 children between 6 and
12 years old in British Columbia, Canada. The cut-
off date for entering school in any year in British
Columbia is December 31st, so in any given class,
those born late in the year are almost a year
younger than those born early in the year. Is it
possible that the younger students are being over-
diagnosed with ADHD? Exercises 7.19 and 7.20
examine this question.

7.19 Boys: ADHD or Just Young? Table 7.13 shows
the number of boys diagnosed with ADHD based
on the quarter of the year in which they were born,
as well as the proportion of all boys born during that
quarter.

(a) What is the total number of boys diagnosed with
ADHD in the sample?

(b) For the null hypothesis, use the overall propor-
tion of births in a quarter to give the null pro-
portion for that quarter. Compute the expected
number of ADHD diagnoses for each quarter
under this hypothesis.

(c) Compute the 𝜒
2-statistic.

6Morrow, R., et al., “Influence of relative age on diagnosis and
treatment of attention-deficit/hyperactivity disorder in children,”
Canadian Medical Association Journal, April 17, 2012; 184(7):
755–762.
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(d) Give the degrees of freedom and find the
p-value.

(e) State the conclusion of the test. For which group
of children does ADHD appear to be diagnosed
more frequently than we would expect? Less
frequently? Write a sentence explaining what
this means about ADHD and relative age in
school.

Table 7.13 ADHD diagnoses and birth date
for boys

Birth Date ADHD Diagnoses Proportion of Births

Jan–Mar 6880 0.244
Apr–Jun 7982 0.258
Jul–Sep 9161 0.257
Oct–Dec 8945 0.241

7.20 Girls: ADHD or Just Young? Exercise 7.19
examines a relationship between relative age in a
class and likelihood of ADHD diagnosis for boys
in British Columbia. Girls are less likely overall to
be diagnosed with ADHD but does the same rela-
tionship exist with relative age in school? Table 7.14
shows the number of girls diagnosed with ADHD
based on the quarter of the year in which they were
born, as well as the proportion of girls born dur-
ing that quarter. Answer the same questions as in
Exercise 7.19, using the data for girls instead of boys.

Table 7.14 ADHD diagnoses and birth date
for girls

Birth Date ADHD Diagnoses Proportion of Births

Jan–Mar 1960 0.243
Apr–Jun 2358 0.258
Jul–Sep 2859 0.257
Oct–Dec 2904 0.242

7.21 Birth Date and Canadian Ice Hockey In his
book Outliers: The Story of Success (2008), Mal-
colm Gladwell speculates that Canadian ice hockey
players who are born early in the year have an
advantage. This is because the birthdate cutoff for
different levels of youth hockey leagues in Canada
is January 1st, so youth hockey players who are
born in January and February are slightly older
than teammates born later in the year. Does this
slight age advantage in the beginning lead to suc-
cess later on? A 2010 study7 examined the birthdate

7Nolan, J. and Howell, G., “Hockey success and birth date: The
relative age effect revisited,” International Review of Sociology
of Sport, 2010; 45(4): 507–512.

distribution of players in the Ontario Hockey
League (OHL), a high-level and selective Canadian
hockey league (ages 15–20), for the 2008–2009 sea-
son. The number of OHL players born during the
1st quarter (Jan–Mar), 2nd quarter (Apr–Jun), 3rd
quarter (Jul–Sep), and 4th quarter (Oct–Dec) of the
year is shown in Table 7.15. The overall percent-
age of live births in Canada (year 1989) are also
provided for each quarter. Is this evidence that the
birthdate distribution for OHL players differs sig-
nificantly from the national proportions? State the
null and alternative hypotheses, calculate the chi-
square statistic, find the p-value, and state the con-
clusion in context.

Table 7.15 Birthdates nationally in Canada
and for elite hockey players

Qtr 1 Qtr 2 Qtr 3 Qtr 4

OHL players 147 110 52 50
% of Canadian births 23.7% 25.9% 25.9% 24.5%

7.22 Birthdate and Australian Football Most Aus-
tralian youth-sports leagues separate athletes by
birthdate, and the cutoff date is January 1st. Thus,
those children born in January and February have
some physical advantages in youth sports over those
born in November and December. A study8 sug-
gests that those physical advantages enjoyed early
in life impact the likelihood of a child becoming a
professional athlete. Table 7.16 gives the number of
Australian-born 2009 Australian Football League
players born in different months of the year, as well
as the proportion of births expected if the birth-
dates of the athletes matched the distribution of
all births nationally. Which parts of the year have
a higher than expected number of AFL athletes?

Table 7.16 Birthdates nationally in Australia
and for Australian football players

Proportion Actual for
Months Nationally AFL Players

Jan–Mar 0.248 196
Apr–June 0.251 162
Jul–Sep 0.254 137
Oct–Dec 0.247 122

8Biderman, D., “Born Late Year? Choose Another Sport,” The
Wall Street Journal, March 21, 2010.
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Which have a lower than expected number? Is there
evidence that the distribution of birthdates of AFL
athletes is not the same as the distribution of birth-
dates nationally? If there is evidence of a difference
between the actual and expected counts, which cat-
egories are contributing the most to the sum for the
chi-square test statistic?

7.23 Are Hospitals Deadlier in July? Most
medical school graduates in the US enter their res-
idency programs at teaching hospitals in July. A
study suggests that a spike in deaths due to med-
ication errors coincides with this influx of new
practitioners.9 The study indicates that the num-
ber of deaths is significantly higher than expected
in July.

(a) What type of statistical analysis was probably
done to arrive at this conclusion?

(b) Is the 𝜒
2 statistic likely to be relatively large or

relatively small?

(c) Is the p-value likely to be relatively large or rel-
atively small?

(d) What does the relevant categorical variable
record?

(e) What cell contributes the most to the 𝜒
2

statistic?

(f) In the cell referred to in part (e), which is
higher: the observed count or the expected
count?

7.24 Can People Delay Death? A study indicates
that elderly people are able to postpone death for
a short time to reach an important occasion. The
researchers10 studied deaths from natural causes
among 1200 elderly people of Chinese descent
in California during six months before and after
the Harvest Moon Festival. Thirty-three deaths
occurred in the week before the Chinese festival,
compared with an estimated 50.82 deaths expected
in that period. In the week following the festival,
70 deaths occurred, compared with an estimated
52. “The numbers are so significant that it would
be unlikely to occur by chance,” said one of the
researchers.

(a) Given the information in the problem, is the 𝜒
2

statistic likely to be relatively large or relatively
small?

9Young, J., et al., “July Effect: Impact of the Academic Year-
End Changeover on Patient Outcomes. A Systematic Review,”
Annals of Internal Medicine, 2011; 155(5): 309–315.
10Phillips, D. and Smith, D., “Postponement of Death Until
Symbolically Meaningful Occasions,” Journal of the American
Medical Association, 1990; 263(14): 1947–1951.

(b) Is the p-value likely to be relatively large or rel-
atively small?

(c) In the week before the festival, which is higher:
the observed count or the expected count?
What does this tell us about the ability of elderly
people to delay death?

(d) What is the contribution to the 𝜒
2-statistic for

the week before the festival?

(e) In the week after the festival, which is higher:
the observed count or the expected count?
What does this tell us about the ability of elderly
people to delay death?

(f) What is the contribution to the 𝜒
2-statistic for

the week after the festival?

(g) The researchers tell us that in a control group
of elderly people in California who are not of
Chinese descent, the same effect was not seen.
Why did the researchers also include a control
group?

7.25 Favorite James Bond Actor? Movies based on
Ian Fleming’s novels starring British secret agent
James Bond have become one of the longest run-
ning film series to date. Over the course of the series,
six different actors have portrayed the secret agent.
Which actor is the best James Bond? A sample of
responses11 to this question is shown in Table 7.17.

(a) Does the sample provide evidence of a signif-
icant difference in popularity among the six
actors, at a 5% significance level?

(b) Repeat the test from part (a) if we ignore the
results for George Lazenby, who only appeared
in one Bond film. Do we find evidence of a
significant difference in popularity among the
remaining five actors?

(c) Themessage fromChapter 1 still holds true: Pay
attention to where the data come from! These
data come from a poll held on a James Bond fan
site. Can we generalize the results of this poll to
the movie-watching population?

Table 7.17 Favorite James
Bond actor

Actor Frequency

Sean Connery 98
George Lazenby 5
Roger Moore 23
Timothy Dalton 9
Pierce Brosnan 25
Daniel Craig 51

11http://www.jamesbondwiki.com/page/Poll+Results.



560 CHA P T E R 7 Chi-Square Tests for Categorical Variables

7.26 Genetic Variation in Fast-Twitch Muscles Chi-
square tests are common in genetics. A gene called
ACTN3 encodes a protein which functions in fast-
twitch muscles. People have different variants of
this gene, classified as RR, RX, or XX. Computer
output is shown for testing whether the proportions
in these categories are 0.25, 0.50, and 0.25, respec-
tively. The observed counts come from a study12

conducted in Australia. (We examine the connec-
tion of these variations to fast-twitch muscles in
Exercises 7.57 to 7.59 in the next section.)

Chi-Square Goodness-of-Fit Test for Observed Counts
Test Contribution

Category Observed Proportion Expected to Chi-Sq
RR 130 0.25 109 4.04587
RX 226 0.50 218 0.29358
XX 80 0.25 109 7.71560

N DF Chi-Sq P-Value
436 2 12.0550 0.002

(a) What is the sample size?

(b) What is the observed number of people with the
variant RR for this gene? What is the expected
number of people in this group under H0?

(c) Which variant contributes the most to the chi-
square statistic? For this variant, is the observed
value greater than or less than expected?

(d) What are the degrees of freedom for the test?

(e) What is the p-value? Give the conclusion of the
test in context.

7.27 Examining Genetic Alleles in Fast-Twitch
MusclesExercise 7.26 discusses a study investigating
the ACTN3 genotypes RR, RX, and XX. The same
study also examines the ACTN3 genetic alleles R
and X, also associated with fast-twitch muscles. Of
the 436 people in this sample, 244 were classified R
and 192 were classified X. Does the sample provide
evidence that the two options are not equally likely?

(a) Conduct the test using a chi-square goodness-
of-fit test. Include all details of the test.

(b) Conduct the test using a test for a proportion,
using H0 ∶ p = 0.5 where p represents the pro-
portion of the population classified R. Include
all details of the test.

(c) Compare the p-values and conclusions of the
two methods.

12Yang, N., et al., “ACTN3 genotype is associated with human
elite athletic performance,” American Journal of Human Genet-
ics, September 2003; 73: 627–631.

PENNSYLVANIA HIGH SCHOOL SENIORS
Exercises 7.28 to 7.31 refer to a survey introduced
in Exercise 1.24. The survey was given to a sam-
ple of high school seniors in Pennsylvania between
2010 and 2019, and includes many different vari-
ables. The data is in PASeniors.

7.28 PA Seniors Superpowers One of the variables
in the survey asked the students to indicate which
of a list of five superpowers they would most want
to have. The results are shown in Table 7.18 and are
available in Superpower in PASeniors. Test to see
if the five superpowers are equally popular among
Pennsylvania seniors.

Table 7.18 Which superpower is most
popular?

Superpower Frequency

Fly 120
Freeze time 129
Invisibility 80
Super strength 19
Telepathy 105

Total 453

7.29 PA Seniors Favorite Season One of the vari-
ables in the survey asked the students to indicate
which season was their favorite. The results are
shown in Table 7.19 and are available in Season
in PASeniors. Test to see if the four seasons are
equally popular among Pennsylvania seniors.

Table 7.19 Which season is most
popular?

Season Frequency

Winter 59
Spring 78
Summer 157
Fall 160

Total 454

7.30 PA Seniors Want to Be Happy! One of the
variables in the survey asked the students to indi-
cate, if they had to only pick one, whether they
would prefer to be Famous, Happy, Healthy, or
Rich. The results are shown in Table 7.20 and are
available in Preference in PASeniors. Past prefer-
ences lead us to assume that 70%will choose happy,
with 10% each choosing each of the other three.

(a) Test to see if the data in this sample lead us to
reject these assumed proportions.
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(b) Describe the ways in which the observed counts
differ from the expected counts.

Table 7.20 What proportion choose
happy?

Preference Frequency

Famous 19
Happy 298
Healthy 44
Rich 90

Total 451

7.31 PA Seniors Feel Stressed about School One
of the variables in the survey asked the students
to indicate the amount of pressure they felt due
to schoolwork. The results are shown in Table 7.21
and are available in SchoolPressure in PASeniors.
Past results lead us to assume that 40% will say ’A
lot’, 40% will say ’Some’, with only 10% each saying
’Very little’ or ’None’.

(a) Test to see if the data in this sample lead us to
reject these assumed proportions.

(b) What category contributes the most to the chi-
square statistic? Is the observed count greater
than or less than the expected count in this cat-
egory?

Table 7.21 Amount of pressure felt
from schoolwork

Pressure Frequency

A lot 184
Some 200
Very little 55
None 16

Total 455

Table 7.22 Proportions for leading digits under Benford’s law

Leading digit 1 2 3 4 5 6 7 8 9
Proportion 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Table 7.23 Leading digits for 1188 addresses

Leading digit 1 2 3 4 5 6 7 8 9
Observed count 345 197 170 126 101 72 69 51 57

7.32 Benford’s Law Frank Benford, a physicist
working in the 1930s, discovered an interesting
fact about some sets of numbers. While you might
expect the first digits of numbers such as street
addresses or checkbook entries to be randomly dis-
tributed, Benford showed that in many cases the
distribution of leading digits is not random, but
rather tends to have more ones, with decreasing fre-
quencies as the digits get larger.13 Table 7.22 shows
the proportions of leading digits for data that satisfy
Benford’s law.

Professor Rick Cleary of Bentley University
has given several public lectures about Benford’s
law. As part of his presentation, he rips out pages
of a telephone book and asks audience members to
select entries at random and record the first digit
of the street address. Counts for the leading digits
of 1188 such addresses are shown in Table 7.23 and
stored in a variable called Address in the dataset
Benford. Test if these counts are inconsistent with
the probabilities given by Benford’s law.

7.33 Auditing a Company with Benford’s Law
Refer to the discussion of Benford’s law in
Exercise 7.32. While this may seem like a curious
oddity, researchers have developed some important
applications for these proportions. One involves
auditing company records to look for instances
of fraud or other financial malfeasance. In many
cases accounting records tend to follow Benford’s
law and significant departures can help auditors
discover patterns that should be examined more
closely. For example, if a company’s policy requires
co-signatures for expenses over $10,000 and audi-
tors find an unusually high number of claims start-
ing with the digit “9,” they might be suspicious and
examine those claims more closely.

13According to Benford’s law, the proportion of leading digits
that are d is log10(1 + 1∕d).
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Two of Professor Cleary’s students obtained
data for 7273 invoices at a company. The observed
counts for the leading digits of the invoice amounts
are shown in Table 7.24 and stored in the In𝑣oices
variable of theBenford data file. Test if these counts
are inconsistent with the probabilities given by
Benford’s law.

Table 7.24 Leading digits for 7273 invoices

Leading
digit 1 2 3 4 5 6 7 8 9

Observed
count 2225 1214 881 639 655 532 433 362 332

7.34 Private, Profit, or Public? Exercise 2.49 on
page 71 looks at the distribution of type of Con-
trol (Private, Profit, Public) for all post-secondary
schools in the United States. Using the data in Col-
legeScores we get the percentages in Table 7.25 for
the population of all 6,141 schools. The data in Sam-
pColleges is supposed to be a random sample of 50
schools taken from this population. Create a null
hypothesis based on the population information in
Table 7.25 and test if the Control counts in Samp-
Colleges are not consistent with these population
proportions.

Table 7.25 Types of
Control for US Colleges

Private Profit Public
29.8% 38.0% 32.2%

7.35 Random Digits in Students’ Random
Numbers? How well can people generate random
numbers? A sample of students were asked to write
down a “random” four-digit number. Responses
from 150 students are stored in the file Digits. The
data file has separate variables (RND1, RND2,
RND3, and RND4) containing the digits in each
of the four positions.

(a) If the numbers are randomly generated, we
would expect the last digit to have an equal
chance of being any of the 10 digits. Test H0 ∶
p0 = p1 = p2 = · · · = p9 = 0.10 using technology
and the data in RND4.

(b) Since students were asked to produce four-digit
numbers, there are only nine possibilities for the
first digit (zero is excluded). Use technology to
test whether there is evidence in the values of
RND1 that the first digits are not being chosen
by students at random.

7.36 Random Digits in Social Security Numbers?
Refer to the data in Digits that are described in
Exercise 7.35. The 150 students were also asked to
give the last two digits of their nine-digit social secu-
rity number. Those digits are stored in SSN8 and
SSN9 in the same file. Does the government do a
better job at assigning numbers at random? Pick
either of the two columns (SSN8 or SSN9) and
use technology to test whether there is evidence
that the digits are not equally likely (Ha ∶ Some
pi ≠ 0.10).

7.2TESTING FOR AN ASSOCIATION BETWEEN
TWO CATEGORICAL VARIABLES

In Section 2.1 we consider two-way tables as a way to investigate a relationship
between two categorical variables. While we may get some feel for a possible rela-
tionship by just looking at a two-way table, we need a mechanism to formally test
whether an association is really present or whether the apparent pattern might just
be due to random chance.

Example 7.9
One True Love?—Revisited

Data 2.1 on page 54 describes a study in which people are asked how they feel about
a statement that “there is only one true love for each person.” The results, broken
down by sex, are reproduced in Table 7.26. What proportion of the sample agree?
Disagree? Don’t know? What proportion of the males agree with the statement?
What proportion of the females agree?
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Table 7.26 Two-way table: Is there one true
love for each person?

↓Attitude/Sex→ Male Female Total
Agree 372 363 735
Disagree 807 1005 1812
Don’t know 34 44 78
Total 1213 1412 2625

Solution We divide each of the row totals in Table 7.26 by the sample size (n = 2625) to find
the proportion of people in the sample with each attitude. This means 735∕2625 =
0.28 or 28% agree, 1812∕2625 = 0.69 or 69% disagree, and 78∕2625 = 0.03 or 3%
don’t know. If we look at just the 1213 males the proportion who agree is 372∕1213 =
0.307 or 30.7%, while the 1412 females have 363∕1412 = 0.257 or 25.7% agreeing.

Is the difference in this sample between the proportion of males who agree
(0.307) and the proportion of females who agree (0.257) significant enough to con-
clude there is a difference in attitude on this subject between males and females
in the entire population? While we could use the techniques of Section 6.3-HT to
formally test for a difference in these two proportions, we would be ignoring the
other two groups (Disagree and Don’t know). Just as in Section 7.1 where we want
to test all cells of a one-way table simultaneously, we would like to be able to assess
a possible association between sex and attitude toward one true love using all of the
information in Table 7.26, not just the “Agree” row.

The distributions of sample responses for males and females are shown in the
comparative bar charts in Figure 7.4. While the distributions are not identical, are
the differences likely to be due to random chance or are they significant enough that
we can generalize to the entire population? We use a chi-square test to answer this
question.

Figure 7.4 Are these
distributions significantly
different?
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Null and Alternative Hypotheses
Up to this point, most of the hypotheses we have tested make specific claims about
one or more parameters of a population. The hypotheses we use when testing asso-
ciation between variables in a two-way table are a bit more general and tend to
be expressed in words rather than through parameters. For example, to test for an
association between Attitude and Sex with the one true love data we use

H0 ∶ Attitude is not associated with Sex

Ha ∶ Attitude is associated with Sex

As usual, the null hypothesis reflects the belief that nothing significant or interesting
is going on. The alternative says that there is some association between the two
variables. Remember that we only discard the null and go with the alternative if
there is substantial evidence of an association.

Another way to think of an association is that the distribution of one variable
(such as Attitude) is different for different values of the other variable (such as Sex).
In this example, an association means that the percent who agree, disagree, and don’t
know is different betweenmales and females. Of course, the sample distributions will
always tend to differ by some amount. We need to assess whether the differences are
large enough to signal that the population distributions are actually different.

Expected Counts for a Two-Way Table
In Section 7.1, we see how to use a chi-square test to compare observed to expected
counts for a single categorical variable. The chi-square test for an association
between two categorical variables takes the same approach. How might we
compute the expected counts?

The expected counts are computed assuming the null hypothesis is true. Since
the null hypothesis states that there is no association, we compute the expected
counts to reflect identical percent distributions for males and females that are equal
to the overall percent distribution. Furthermore, we keep the row and column totals
the same, as in Table 7.27.

Table 7.27 Expected counts should match overall distribution

↓Attitude/Sex→ Male Female Total Relative Frequency
Agree 735 0.28
Disagree 1812 0.69
Don’t know 78 0.03
Total 1213 1412 2625 1.0

Since 28% of the people in the entire sample agree, we expect 28% of the
males and 28% of the females to agree, when the null hypothesis is strictly followed.
This gives expected counts of 0.28(1213) = 339.6 for the first row of the males and
0.28(1412) = 395.4 for the first row of the females. Similarly, we use 69% to find the
expected counts for the Disagree row and 3% for the Don’t know row.

Looking again at the computation of the expected count for males who agree,
we have

339.6 = 0.28 ⋅ 1213 = 735
2625

⋅ 1213 = 735 ⋅ 1213
2625
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The computation (735 ⋅ 1213)∕2625 is an alternate way to compute the expected
count that reduces round-off error and also shows that the computation is com-
pletely symmetric: It doesn’t matter which variable is in the rows and which is in the
columns.

In general, we find the expected counts for the cells of a two-way table using

Expected count = Row total ⋅ Column total
Sample size

For the first cell in Table 7.28, this calculation for the expected count for males who
agree is

Agree row total ⋅Male column total
n

= 735 ⋅ 1213
2625

= 339.6

Computing all the expected counts this way, we arrive at the table of expected counts
shown in Table 7.28.

Table 7.28 Expected counts when Attitude and
Sex are not related

↓Attitude/Sex→ Male Female Total
Agree 339.6 395.4 735
Disagree 837.3 974.7 1812
Don’t know 36.0 42.0 78
Total 1213 1412 2625

Note that (up to round-off differences) the data in Table 7.28 has the same row
and column totals as the original data. However, with the expected counts, the dis-
tribution (as proportions) is the same in each column (0.28, 0.69, 0.03) so that the
null hypothesis is exactly true.14

Chi-square Test for Association
Now that we can compute expected counts to produce a table that exactly matches
the null hypothesis of no relationship, the remaining task is to assess how far away
our actual sample is from this ideal table. As with the goodness-of-fit test in the
previous section, we use a chi-square statistic:

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

where the sum now is over all of the cells in the two-way table.
For the one true love survey data in Table 7.26, we have 6 cells and the calcu-

lation of the chi-square statistic is:

𝜒
2 = (372 − 339.6)2

339.6
+ (363 − 395.4)2

395.4
+ (807 − 837.3)2

837.3
+ (1005 − 974.7)2

974.7

+ (34 − 36.0)2

36.0
+ (44 − 42.0)2

42.0

= 3.09 + 2.65 + 1.10 + 0.94 + 0.11 + 0.10

= 7.99

14The expected counts in Table 7.28 also have exactly the same distribution across each row, 0.462 male
and 0.538 female.
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Just one more detail before we can find a p-value and finish the test—how many
degrees of freedom for the chi-square distribution? We say that a two-way table
with 3 categories for rows and 2 categories for columns, such as Table 7.26, has just
2 degrees of freedom because once two cells are “freely” established, the rest of
the cell values are automatically determined based on the row and column totals.
In general, if a two-way table has r rows and c columns, the degrees of freedom is
(r − 1) ⋅ (c − 1). Think of covering up the last row and column (not including totals)
and counting how many cells are left. That gives the degrees of freedom for the
table.

We are finally in a position to complete the test for association betweenAttitude
on the one true love issue and Sex. We find that the p-value for the statistic, 𝜒2 =
7.99, using the upper tail of a chi-square distribution with 2 degrees of freedom, is
0.018. This is a small p-value, less than 5%, so we have fairly strong evidence that
attitudes on the existence of one true love are associated with sex.

Note that the conclusion of the hypothesis test doesn’t tell us how the two vari-
ables are associated, only that the relationship in the data is more extreme than we
would reasonably expect to see by random chance alone. By comparing observed
and expected counts, we see that males tend to be more likely to agree than the
expected count would indicate, females aremore likely to disagree than the expected
count would indicate, and males and females choose don’t know at about the rate
we would expect.

Chi-square Test for Association

To test for an association between two categorical variables, based on
a two-way table that has r rows as categories for variable A and c
columns as categories for variable B:

Set up hypotheses:

H0 ∶ Variable A is not associated with variable B

Ha ∶ Variable A is associated with variable B

Compute the expected count for each cell in the table using

Expected count = Row total ⋅ Column total
Sample size

Compute the value for a chi-square statistic using

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

Find a p-value using the upper tail of a chi-square distribution with
(r − 1)(c − 1) degrees of freedom.

The chi-square distribution is appropriate if the expected count is
at least five in each cell.

A two-way table in a chi-square test is sometimes referred to as an r × c contin-
gency table, where r denotes the number of rows and c is the number of columns,
and the test is also sometimes referred to as a 𝜒

2 test for independence.
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D A T A 7 . 3 Water Taste Preferences
Some students at Longwood University in Virginia were interested in people’s
taste preferences among various brands of bottled water.15 They collected data
from community members, including a double-blind taste test where parti-
cipants ranked water from four sources (tap water, and bottled water from
Aquafina, Fiji, and Sam’s Choice, presented in a random order). Some of the
data from this study are stored in WaterTaste and Table 7.29 shows the top
choices of 100 participants as well as their usual water source (bottled or
tap/filtered). ◼

iStock.com/97

Which type of water is preferred?

Table 7.29 Usual water source and preferred brand for taste

↓Usual Source/Top Choice→ Tap Aquafina Fiji Sam’s Choice Total
Bottled 4 14 15 8 41
Tap/Filtered 6 11 26 16 59
Total 10 25 41 24 100

Example 7.10
Based on the information in this 2 × 4 table, is there evidence that the top choices
for taste preference are associated with whether or not people usually drink bottled
water?

Solution The hypotheses for this chi-square test are:

H0 ∶ Choice for best tasting brand is not related to the usual water source

Ha ∶ Choice for best tasting brand is related to the usual water source

We see that

Expected count for (Bottled, Tap) cell = 41 ⋅ 10
100

= 4.1

15Lunsford, M. and Fink, A., “Water Taste Data,” Journal of Statistics Education, 2010; 18(1).
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Table 7.30 Observed (expected) counts for water taste test

↓Usual Source/Top Choice→ Tap Aquafina Fiji Sam’s Choice Total
Bottled 4 (4.1) 14 (10.3) 15 (16.8) 8 (9.8) 41
Tap/Filtered 6 (5.9) 11 (14.8) 26 (24.2) 16 (14.2) 59
Total 10 25 41 24 100

Computing the rest of the expected counts similarly, we obtain the values shown in
parentheses in Table 7.30. The observed count for the (Bottled, Tap) cell is 4—there
are four people who usually drink bottled water that actually prefer tap water! We
see that one expected count is less than 5, but because it is just one cell and only
slightly less than 5, we proceed but with some caution.

The value of the chi-square statistic for this table is

𝜒
2 = (4 − 4.1)2

4.1
+ (14 − 10.3)2

10.3
+ (15 − 16.8)2

16.8
+ (8 − 9.8)2

9.8

+ (6 − 5.9)2

5.9
+ (11 − 14.8)2

14.8
+ (26 − 24.2)2

24.2
+ (16 − 14.2)2

14.2

= 0.002 + 1.329 + 0.193 + 0.331 + 0.002 + 0.976 + 0.134 + 0.228

= 3.195

The degrees of freedom for the 2 × 4 table are (2 − 1) ⋅ (4 − 1) = 1 ⋅ 3 = 3. The upper
tail of a chi-square distribution with 3 degrees of freedom gives a p-value of 0.363,
which is not small at all. See Figure 7.5. Therefore the table provides no significant
evidence that the brand preferred by taste is related to whether or not people usually
drink bottled water.

Figure 7.5 P-value from
a chi-square distribution
with df = 3 0 3.195

0.363

Distribution Plot
Chi-Square, df=3

Special Case for a 𝟐 × 𝟐 Table
Recall from Section 7.1 that a test for a single proportion can be viewed as a special
case of a goodness-of-fit test when the variable has just two categories. As we see
in the next example, a similar relationship exists between a z-test to compare two
proportions and a chi-square test for a 2 × 2 table.
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Example 7.11
Split or Steal?—Revisited

Data 6.4 on page 478 describes decisions made on the Golden Balls game show to
split a prize or attempt to steal it from another contestant. The decisions made
by a sample of 574 contestants are shown in Table 7.31 along with information on
age (Younger = under 40 years old, Older = 40 or older). Use a chi-square test to
determine if the table provides evidence that split/steal decisions are related to age.

Table 7.31 Split/steal choice by
age group

Split Steal Total
Younger 187 195 382
Older 116 76 192
Total 303 271 574

Solution The hypotheses are:

H0 ∶ Split/steal decision is not related to age

Ha ∶ Split/steal decision is related to age

Table 7.32 shows the expected counts (in parentheses) along with the observed
counts. For example, to get the expected count in the first (Younger, Split) cell we
find (382 ⋅ 303)∕574 = 201.6.

Table 7.32 Observed (expected) counts for
split/steal decision by age

Split Steal Total
Younger 187 (201.6) 195 (180.4) 382
Older 116 (101.4) 76 (90.6) 192
Total 303 271 574

The chi-square statistic for this table is

𝜒
2 = (187 − 201.6)2

201.6
+ (195 − 180.4)2

180.4
+ (116 − 101.4)2

101.4
+ (76 − 90.6)2

90.6

= 1.06 + 1.18 + 2.10 + 2.35

= 6.69

We find the p-value as the area in the tail above 𝜒
2 = 6.69 for a chi-square distri-

bution with df = 1 since (2 − 1) ⋅ (2 − 1) = 1 ⋅ 1 = 1. This gives a p-value of 0.0097,
which is quite small, providing substantial evidence that the split/steal decision is
related to age.

If we look back at Example 6.23 on page 479, we see the same data analyzed
with a z-test to compare the proportion of “Younger” who split (0.490 in the sam-
ple) to the proportion who split in the “Older” group (0.604). The standardized test
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statistic for the difference in proportions is z = −2.60 and produces a two-tailed
p-value from the normal distribution of 0.0094. Note that the p-value matches
the p-value from the chi-square test for the 2 × 2 table (up to round-off error) and
you may check that the chi-square statistic is the square of the normal z-statistic.
This is always the case when comparing a chi-square test for a 2 × 2 table with the
corresponding two-tailed test for a difference in two proportions.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Test for an association between two categorical variables based on data
in a two-way table

• Recognize when a chi-square distribution is appropriate for testing with
a two-way table

Exercises for Section 7.2

SKILL BUILDER 1
Exercises 7.37 to 7.40 give a two-way table and spec-
ify a particular cell for that table. In each case find
the expected count for that cell and the contribution
to the chi-square statistic for that cell.

7.37 (Group 3, Yes) cell

Yes No Total
Group 1 56 44 100
Group 2 132 68 200
Group 3 72 28 100
Total 260 140 400

7.38 (B, E) cell

D E F G Total
A 39 34 43 34 150
B 78 89 70 93 330
C 23 37 27 33 120
Total 140 160 140 160 600

7.39 (Control, Disagree) cell

Strongly Dis- Strongly
Agree Agree Neutral agree Disagree

Control 40 50 5 15 10
Treatment 60 45 10 5 0

7.40 (Group 2, No)

Yes No
Group 1 720 280
Group 2 1180 320

SKILL BUILDER 2
Exercises 7.41 to 7.44 refer to the tables in Skill
Builder 1. In each case, give the degrees of freedom
for the chi-square test based on that two-way table.

7.41 Two-way table in Exercise 7.37.

7.42 Two-way table in Exercise 7.38.

7.43 Two-way table in Exercise 7.39.

7.44 Two-way table in Exercise 7.40.

7.45 Household Income and College Plans
Exercise 3.93 introduces a survey of a represen-
tative sample of 920 US teens (ages 13 to 17). One
of the questions asked whether the teen planned to
attend a four-year college. The household income of
the participants was also recorded, and the results
are shown in Table 7.33. Test to see whether there
is an association between household income and
plans for four-year college.

Table 7.33 Household income and college
plans

Household 4-yr Not 4-yr
income college college Total
Less than
$30,000 88 122 210

$30,000 to
$75,000 170 156 326

More than
$75,000 276 108 384

Total 534 386 920
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7.46 Social Media Use and ADHD Exercise 2.23
introduces a study examining whether frequent use
of digital social media during adolescence is associ-
ated with subsequent occurrence of ADHD symp-
toms. Researchers rated the frequency of digital
social media use (high frequency or low frequency
of use) of teens who were 15 or 16 years old and did
not show symptoms of ADHD at the start of the
study. They then followed the participants for two
years, and recorded whether or not ADHD symp-
toms appeared. The results are shown in Table 7.34.

(a) Conduct a 𝜒
2 test for association to see if fre-

quency of social media use and diagnosis of
ADHD are associated. Use a 5% significance
level.

(b) Which cell contributes the most to the chi-
square statistic? In this cell, is the observed
count greater than or less than the expected
value? Interpret your result in terms of ADHD
and social media use.

(c) Can we conclude that higher social media
use increases the likelihood of a diagnosis of
ADHD?

Table 7.34 Social Media Use and ADHD
Diagnosis

Social Media Use ADHD No ADHD Total
High frequency 16 149 165
Low frequency 23 472 495
Total 39 621 660

7.47 Sex and Award Preference Example 2.6 on
page 59 contains a two-way table showing prefer-
ences for an award (Academy Award, Nobel Prize,
Olympic gold medal) by sex for the students sam-
pled in StudentSurvey. The data are reproduced in
Table 7.35. Test whether the data indicate there is
some association between sex and preferred award.

Table 7.35 Two-way table of sex and
preferred award

Academy Nobel Olympic Total
Female 20 76 73 169
Male 11 73 109 193
Total 31 149 182 362

7.48 One True Love by Educational Level In
Data 2.1 on page 54, we introduce a study in
which people were asked whether they agreed or
disagreed with the statement that there is only one

true love for each person. Table 7.36 gives a two-
way table showing the answers to this question as
well as the education level of the respondents. A
person’s education is categorized as HS (high school
degree or less), Some (some college), or College
(college graduate or higher). Is the level of a per-
son’s education related to how the person feels
about one true love? If there is a significant asso-
ciation between these two variables, describe how
they are related.

Table 7.36 Educational level and
belief in one true love

HS Some College Total
Agree 363 176 196 735
Disagree 557 466 789 1812
Don’t know 20 26 32 78
Total 940 668 1017 2625

7.49 Metal Tags on Penguins In Exercise 6.160 on
page 476 we perform a test for the difference in the
proportion of penguins who survive over a ten-year
period, between penguins tagged with metal tags
and those tagged with electronic tags. We are inter-
ested in testing whether the type of tag has an effect
on penguin survival rate, this time using a chi-square
test. In the study, 10 of the 50metal-tagged penguins
survived while 18 of the 50 electronic-tagged pen-
guins survived.

(a) Create a two-way table from the information
given.

(b) State the null and alternative hypotheses.

(c) Give a table with the expected counts for each
of the four categories.

(d) Calculate the chi-square test statistic.

(e) Determine the p-value and state the conclusion
using a 5% significance level.

7.50 Treatment for Cocaine Addiction Cocaine
addiction is very hard to break. Even among addicts
trying hard to break the addiction, relapse is com-
mon. (A relapse is when a person trying to break
out of the addiction fails and uses cocaine again.)
Data 4.7 on page 353 introduces a study investi-
gating the effectiveness of two drugs, desipramine
and lithium, in the treatment of cocaine addic-
tion. The subjects in the six-week study were
cocaine addicts seeking treatment. The 72 subjects
were randomly assigned to one of three groups
(desipramine, lithium, or a placebo, with 24 sub-
jects in each group) and the study was double-blind.
In Example 4.34 we test lithium vs placebo, and in
Exercise 4.210 we test desipramine vs placebo. Now
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we are able to consider all three groups together
and test whether relapse rate differs by drug. Ten
of the subjects taking desipramine relapsed, 18 of
those taking lithium relapsed, and 20 of those taking
the placebo relapsed.

(a) Create a two-way table of the data.

(b) Find the expected counts. Is it appropriate to
analyze the data with a chi-square test?

(c) If it is appropriate to use a chi-square test, com-
plete the test. Include hypotheses, and give the
chi-square statistic, the p-value, and an informa-
tive conclusion.

(d) If the results are significant, which drug is most
effective? Can we conclude that the choice of
treatment drug causes a change in the likeli-
hood of a relapse?

7.51 Painkillers and Miscarriage Exercise A.52 on
page 196 describes a study examining the link
between miscarriage and the use of painkillers dur-
ing pregnancy. Scientists interviewed 1009 women
soon after they got positive results from preg-
nancy tests about their use of painkillers around the
time of conception or in the early weeks of preg-
nancy. The researchers then recorded which of the
pregnancies were successfully carried to term. The
results are in Table 7.37. (NSAIDs refer to a class
of painkillers that includes aspirin and ibuprofen.)
Does there appear to be an association between
having a miscarriage and the use of painkillers? If
so, describe the relationship. If there is an associ-
ation, can we conclude that the use of painkillers
increases the chance of having a miscarriage?

Table 7.37 Does the use of painkillers increase
the risk of miscarriage?

Miscarriage No miscarriage Total

NSAIDs 18 57 75
Acetaminophen 24 148 172
No painkiller 103 659 762

Total 145 864 1009

7.52 Binge Drinking The American College Health
Association—National College Health Assessment
survey,16 introduced on page 67, was administered
at 44 colleges and universities in Fall 2011 with

16www.acha-ncha.org/docs/ACHA-NCHA-II_ReferenceGroup
_DataReport_Fall2011.pdf.

more than 27,000 students participating in the sur-
vey. Students in the ACHA-NCHA survey were
asked “Within the last two weeks, how many times
have you had five or more drinks of alcohol at a sit-
ting?” The results are given in Table 7.38. Is there
a significant difference in drinking habits between
males and females? Show all details of the test.
If there is an association, use the observed and
expected counts to give an informative conclusion
in context.

Table 7.38 In the last two weeks,
how many times have you had five or
more drinks of alcohol?

Male Female Total

0 5,402 13,310 18,712
1–2 2,147 3,678 5,825
3–4 912 966 1,878
5+ 495 358 853

Total 8,956 18,312 27,268

7.53 Which Is More Important: Grades, Sports, or
Popularity? 478 middle school (grades 4 to 6) stu-
dents from three school districts in Michigan were
asked whether good grades, athletic ability, or pop-
ularity was most important to them.17 The results
are shown below, broken down by sex:

Grades Sports Popular

Boy 117 60 50
Girl 130 30 91

(a) Do these data provide evidence that grades,
sports, and popularity are not equally valued
among middle school students in these school
districts? State the null and alternative hypothe-
ses, calculate a test statistic, find a p-value, and
answer the question.

(b) Do middle school boys and girls have different
priorities regarding grades, sports, and popu-
larity? State the null and alternative hypothe-
ses, calculate a test statistic, find a p-value, and
answer the question.

7.54 Juvenile Diabetes Treatment Exercise 2.22
introduces an experiment in which 76 children
at high risk for juvenile diabetes are randomly
assigned to receive either a new drug (teplizumab)
or a placebo as a control. Whether or not the

17Chase, M. and Dummer, G., “The Role of Sports as a Social
Determinant for Children,” Research Quarterly for Exercise and
Sport, 1992; 63: 418–424.



7.2 Testing for an Association between Two Categorical Variables 573

children developed juvenile diabetes was recorded,
and the results are shown in Table 7.39. Conduct a
𝜒
2 test for association to see of the drug and the out-

come are associated. Use a 5% significance level.

Table 7.39 Juvenile diabetes treatment

Diabetes No diabetes Total
Teplizumab 16 22 38
Control 26 12 38
Total 42 34 76

7.55 Favorite Skittles Flavor? Exercise 7.15 on
page 556 discusses a sample of people choosing
their favorite Skittles flavor by color (green, orange,
purple, red, or yellow). A separate poll sampled
91 people, again asking them their favorite Skittles
flavor, but rather than by color they asked by the
actual flavor (lime, orange, grape, strawberry, and
lemon, respectively).18 Table 7.40 shows the results
from both polls. Does the way people choose their
favorite Skittles type, by color or flavor, appear to
be related to which type is chosen?

(a) State the null and alternative hypotheses.

(b) Give a table with the expected counts for each
of the 10 cells.

(c) Are the expected counts large enough for a chi-
square test?

(d) How many degrees of freedom do we have for
this test?

(e) Calculate the chi-square test statistic.

(f) Determine the p-value. Do we find evidence
that method of choice affects which is chosen?

Table 7.40 Skittles popularity

Green Purple Red Yellow
(Lime) Orange (Grape) (Strawberry) (Lemon)

Color 18 9 15 13 11
Flavor 13 16 19 34 9

7.56 Handedness and Occupation Is the career
someone chooses associated with being left- or
right-handed? In one study19 a sample of Ameri-
cans from a variety of professions were asked if they

18http://www.deviantart.com.
19Schachter, S. and Ransil, B., “Handedness Distributions in
Nine Professional Groups,” Perceptual and Motor Skills, 1996;
82: 51–63.

consider themselves left-handed, right-handed, or
ambidextrous (equally skilled with the left and right
hand). The results for five professions are shown in
Table 7.41.

(a) In this sample, what profession had the greatest
proportion of left-handed people? What pro-
fession had the greatest proportion of right-
handed people?

(b) Test for an association between handedness and
career for these five professions. State the null
and alternative hypotheses, calculate the test
statistic, and find the p-value.

(c) What do you conclude at the 5% significance
level? What do you conclude at the 1% signifi-
cance level?

Table 7.41 Handedness vs profession

Right Left Ambidextrous Total
Psychiatrist 101 10 7 118
Architect 115 26 7 148
Orthopedic surgeon 121 5 6 132
Lawyer 83 16 6 105
Dentist 116 10 6 132
Total 536 67 32 635

GENETICS AND FAST-TWITCH MUSCLES
Exercises 7.57 to 7.59 investigate the gene ACTN3,
which encodes a protein that functions in fast-twitch
muscles. People can be classified according to which
genotype of this gene they have, RR, RX, or XX,
and also according to which genetic allele they have,
R or X. The study20 described here, and introduced
in Exercises 7.26 and 7.27 on page 560, examines the
association between this gene and different sub-
groups of the population. All participants in the
study live in Australia. The earlier exercises only
included the control group.

7.57 Testing Genotypes for Fast-Twitch Muscles
The study on genetics and fast-twitch muscles
includes a sample of elite sprinters, a sample of
elite endurance athletes, and a control group of non-
athletes. Is there an association between genotype
classification (RR, RX, or XX) and group (sprinter,
endurance, control group)? Computer output is
shown for this chi-square test. In each cell, the top
number is the observed count, the middle number
is the expected count, and the bottom number is the
contribution to the chi-square statistic.

20Yang, N., et al., “ACTN3 genotype is associated with human
elite athletic performance,” American Journal of Human Genet-
ics, 2003; 73: 627–631.
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RR RX XX Total
Control 130 226 80 436

143.76 214.15 78.09
1.316 0.655 0.047

Sprint 53 48 6 107
35.28 52.56 19.16
8.901 0.395 9.043

Endurance 60 88 46 194
63.96 95.29 34.75
0.246 0.558 3.645

Total 243 362 132 737

Chi-Sq = 24.805, DF = 4, P-Value = 0.000

(a) What is the expected count for endurance ath-
letes with the XX genotype? For this cell, what
is the contribution to the chi-square statistic?
Verify both values by computing them yourself.

(b) What are the degrees of freedom for the test?
Verify this value by computing it yourself.

(c) What is the chi-square test statistic? What is the
p-value? What is the conclusion of the test?

(d) Which cell contributes the most to the chi-
square statistic? For this cell, is the observed
count greater than or less than the expected
count?

(e) Which genotype is most over-represented in
sprinters? Which genotype is most over-
represented in endurance athletes?

7.58 Testing Genetic Alleles for Fast-Twitch Mus-
cles The study on genetics and fast-twitch muscles
includes a sample of elite sprinters, a sample of elite
endurance athletes, and a control group of non-
athletes. Is there an association between genetic
allele classification (R or X) and group (sprinter,
endurance, control)? Computer output is shown for
this chi-square test. In each cell, the top number
is the observed count, the middle number is the
expected count, and the bottom number is the con-
tribution to the chi-square statistic.

R X Total
Control 244 192 436

251.42 184.58
0.219 0.299

Sprint 77 30 107
61.70 45.30
3.792 5.166

Endurance 104 90 194
111.87 82.13
0.554 0.755

Total 425 312 737

Chi-Sq = 10.785, DF = 2, P-Value = 0.005

(a) How many endurance athletes were included in
the study?

(b) What is the expected count for sprinters with
the R allele? For this cell, what is the contri-
bution to the chi-square statistic? Verify both
values by computing them yourself.

(c) What are the degrees of freedom for the test?
Verify this value by computing it yourself.

(d) What is the chi-square test statistic? What is the
p-value? What is the conclusion of the test?

(e) Which cell contributes the most to the chi-
square statistic? For this cell, is the observed
count greater than or less than the expected
count?

(f) Which allele is most over-represented in sprint-
ers? Which allele is most over-represented in
endurance athletes?

7.59 Sex and ACTN3 Genotype We see in the pre-
vious two exercises that sprinters are more likely
to have allele R and genotype RR versions of the
ACTN3 gene, which makes these versions associ-
ated with fast-twitch muscles. Is there an associa-
tion between genotype and sex? Computer output
is shown for this chi-square test, using the control
group in the study. In each cell, the top number
is the observed count, the middle number is the
expected count, and the bottom number is the con-
tribution to the chi-square statistic. What is the p-
value? What is the conclusion of the test? Is sex
associated with the likelihood of having a “sprinting
gene”?

RR RX XX Total
Male 40 73 21 134

40.26 69.20 24.54
0.002 0.208 0.509

Female 88 147 57 292
87.74 150.80 53.46
0.001 0.096 0.234

Total 128 220 78 426

Chi-Sq = 1.050, DF = 2, P-Value = 0.592

PENNSYLVANIA HIGH SCHOOL SENIORS
Exercises 7.60 to 7.64 refer to a survey introduced
in Exercise 1.24. The survey was given to a sam-
ple of high school seniors in Pennsylvania between
2010 and 2019, and includes many different vari-
ables. The data is in PASeniors.

7.60 PA Seniors: Superpowers by Gender One of
the variables in the survey asks the students to
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indicate which in a list of five superpowers they
would most want to have. The results are shown
in Table 7.42 by gender, and are available in the
two categorical variables Superpower andGender in
PASeniors.

(a) Test to see if the distribution of superpower
preferences is different between males and
females for high school seniors in Pennsylvania.

(b) Which cells contribute the most to the chi-
square statistic? For these cells, describe how
the observed counts compare to the expected
counts for males and females.

Table 7.42 Superpower preference by gender

Superpower Female Male Total
Fly 51 69 120
Freeze time 58 71 129
Invisibility 39 41 80
Super strength 5 14 19
Telepathy 68 37 105
Total 221 232 453

7.61 PA Seniors: Preference by Gender One of
the variables in the survey asks the students to
indicate whether they would prefer to be Famous,
Happy, Healthy, or Rich. The results are shown
in Table 7.43 by gender, and are available in the
two categorical variables Preference and Gender in
PASeniors.

(a) Test to see if the distribution of preferences is
different between males and females for high
school seniors in Pennsylvania.

(b) Which two choices of the four possible pref-
erences contribute the most to the chi-square
statistic? For these cells, describe how the
observed counts compare to the expected
counts for males and females.

Table 7.43 Preference by gender

Preference Female Male Total
Famous 5 14 19
Happy 159 139 298
Healthy 33 11 44
Rich 24 66 90
Total 221 230 451

7.62 PA Seniors: Preference by Allergies One of
the variables in the survey asks the students to
indicate whether they would prefer to be Famous,
Happy, Healthy, or Rich. The results are shown

in Table 7.44 broken down by whether the student
has allergies (Yes or No), and are available in the
two categorical variables Preference andAllergies in
PASeniors. Test to see if the distribution of prefer-
ences is different between people who have aller-
gies and those who don’t for high school seniors in
Pennsylvania.

Table 7.44 Does preference depend on whether
the student has allergies or not?

Preference No Yes Total
Famous 9 10 19
Happy 167 131 298
Healthy 22 22 44
Rich 51 39 90
Total 249 202 451

7.63 PA Seniors: Favorite Season by Gender One
of the variables in the survey asks the students to
indicate their favorite season. The results are shown
in Table 7.45 by gender, and are available in the two
categorical variables Season and Gender in PASe-
niors.

(a) Test to see if the distribution of preferences is
different between males and females for high
school seniors in Pennsylvania. Use a 5% sig-
nificance level.

(b) Which cells contribute the most to the chi-
square statistic? For these cells, describe how
the observed counts compare to the expected
counts for males and females.

Table 7.45 Favorite season by gender

Season Female Male Total
Winter 23 36 59
Spring 35 43 78
Summer 70 87 157
Fall 95 65 160
Total 223 231 454

7.64 PA Seniors: Favorite Way to Communicate by
Gender One of the variables in the survey asks the
students to indicate their favorite way to communi-
cate. The results are shown in Table 7.46 by gender,
and are available in the two categorical variables
Communicate and Gender in PASeniors.

(a) Test to see if the distribution of preferences is
different between males and females for high
school seniors in Pennsylvania. Use a 5% sig-
nificance level.
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(b) Which cells contribute the most to the chi-
square statistic? For these cells, describe how
the observed counts compare to the expected
counts for males and females.

Table 7.46 Favorite way to communicate,
broken down by gender

Communicate Female Male Total
App 23 44 67
In person 50 46 96
Phone 21 15 36
Text 129 120 249
Total 223 225 448

7.65 Another Test for Cocaine Addiction Exer-
cise 7.50 on page 571 describes an experiment on
helping cocaine addicts break the cocaine addic-
tion, in which cocaine addicts were randomized to
take desipramine, lithium, or a placebo. The results
(relapse or no relapse after six weeks) are summa-
rized in Table 7.47.

(a) In Exercise 7.50, we calculate a 𝜒
2 statistic of

10.5 and use a 𝜒
2 distribution to calculate a

p-value of 0.005 using these data, but we also
could have used a randomization distribution.
Howwould you use cards to generate a random-
ization sample? What would you write on the
cards, how many cards would there be of each
type, and what would you do with the cards?

(b) If you generated 1000 randomization sam-
ples according to your procedure from part (a)
and calculated the 𝜒

2 statistic for each,
approximately how many of these statistics do

you expect would be greater than or equal to
the 𝜒

2 statistic of 10.5 found using the original
sample?

Table 7.47 Breaking the cocaine addiction

Relapse No Relapse Total
Desipramine 10 14 24
Lithium 18 6 24
Placebo 20 4 24
Total 48 24 72

7.66 Who Is More Likely to Take Vitamins: Males
or Females? Data 2.11 on page 125 introduces
the dataset NutritionStudy which contains, among
other things, information about vitamin use and sex
of the participants. Is there a significant association
between these two variables? Use a statistical soft-
ware package and the variables VitaminUse and Sex
to conduct a chi-square analysis and clearly give the
results.

7.67 Who Is More Likely to Smoke: Males or
Females? Data 2.11 on page 125 introduces the
dataset NutritionStudy which contains, among
other things, information about smoking history
and sex of the participants. Is there a signifi-
cant association between these two variables? Use
a statistical software package and the variables
PriorSmoke and Sex to conduct a chi-square anal-
ysis and clearly give the results. The variable
PriorSmoke is coded as 1 = never smoked, 2 = prior
smoker, and 3 = current smoker.
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“When moral posturing is replaced by an honest assessment of the data, the result is often a

new, surprising insight.”

–Steven Levitt and Stephen Dubner∗

∗Freakonomics, Harper Collins, New York, 2009, p. 11.
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Here are some of the questions and issues we will discuss in this chapter:

• What type of sandwich do ants prefer?

• Does hearing a mother’s voice reduce stress levels? Does it matter if the voice is on the phone
rather than in person? Does it matter if the contact is through texting?

• Does a person’s ability to solve a problem depend on the color in which the problem is written?

• We’ve seen that having a light on at night increases weight gain. Why?

• Does regular exercise help give people (or rats) resilience to stress?

• Does adopting a dominant posture enable one to deal with pain more easily?

• What types of incentives are most effective at encouraging sedentary people to exercise?

• Does synchronized movement (such as dancing or marching) increase feelings of closeness?

• Does drawing an image help a person to remember it?

• Is aggressive treatment or mild treatment better at minimizing drug-resistant pathogens?

• What type of courses have the highest textbook costs?

• Does pressure at school influence time with friends?

579
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8.1ANALYSIS OF VARIANCE

In the previous chapter, we use chi-square tests to extend tests for a proportion or
a difference in proportions. In this chapter, we investigate a method to extend a
difference in means test. This procedure allows us to analyze a relationship between
a quantitative variable and a categorical variable.

In Section 6.4-HT we use a t-test to compare the means of a quantitative vari-
able between two groups. What if we want to compare more than two groups? The
goal of this chapter is to develop a method to test for a difference in means among
several groups. The procedure is quite different from tests introduced earlier in this
text. The basic idea is to compare measures of variability, both between the groups
and within each group, as a way to assess how different the groups really are. Using
variability to test for a difference in means may seem strange to you at first, but this
is a general statistical approach that can be applied in many important settings. We
call such tests analysis of variance or just ANOVA for short.

Nick Koudis/Getty Images

D A T A 8 . 1 Sandwich Ants
As young students in Australia, Dominic Kelly and his friends enjoyed watching
ants gather on pieces of sandwiches. Later, as a university student, Dominic
decided to study this with a more formal experiment. He chose three types of
sandwich fillings to compare: vegemite, peanut butter, and ham & pickles. To
conduct the experiment he randomly chose a sandwich, broke off a piece, and
left it on the ground near an ant hill. After several minutes he placed a jar over
the sandwich bit and counted the number of ants. He repeated the process,
allowing time for ants to return to the hill after each trial, until he had eight
samples for each of the three sandwich fillings. The data (number of ants) are
shown in Table 8.1 and stored in the file SandwichAnts1 along with some
additional information about the sandwiches. ◼

1Mackisack, M., “Favourite Experiments: An Addendum to What Is the Use of Experiments Con-
ducted by Statistics Students?” Journal of Statistics Education, 1994, http://www.amstat.org/publications
/jse/v2n1/mackisack.supp.html.
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Table 8.1 Number of ants visiting sandwiches

Vegemite 18 29 42 42 31 21 38 25
Peanut Butter 43 59 22 25 36 47 19 21
Ham & Pickles 44 34 36 49 54 65 59 53

Null and Alternative Hypotheses
As usual, we have two competing hypotheses. The null hypothesis is that all three
types of sandwiches are equally liked by the ants and attract the same mean number
of ants. If we let 𝜇1, 𝜇2, and 𝜇3 represent the mean number of ants on the respective
sandwich types, we have

H0 ∶ 𝜇1 = 𝜇2 = 𝜇3

The alternative hypothesis is that the means are not all the same. This doesn’t imply
that all three types of sandwiches have different means, just that the mean for at
least one of the fillings is different from the mean for another filling. To state this we
use

Ha ∶ At least one 𝜇i ≠ 𝜇j

The alternative hypothesis again indicates that something is going on: that there is
an association between the categorical variable (which defines the groups) and the
quantitative variable for which we computemeans. Note that the alternative hypoth-
esis does not say which two sandwich fillings have different means or give a direction
as we might see in a one-tailed test. The ANOVA procedure for testing a difference
in means is only designed to determine whether we have enough evidence to con-
clude that a difference exists somewhere among the groups. We leave to Section 8.2
the question of determining which groups might be different.

We examine summary statistics and a graph to help us compare the groups
numerically and visually.

Example 8.1
Use the data in SandwichAnts or Table 8.1 to find the sample mean and standard
deviation of the number of ants for each sandwich filling. Also, produce a plot to
compare the samples.

Solution The means and standard deviations are shown in Table 8.2. We use side-by-side dot-
plots, as in Figure 8.1, to compare the numbers of ants for each sandwich. The graph
also shows the mean number of ants (vertical bar) for each filling.

Table 8.2 Group means and standard deviations for ant counts

Filling Sample size Mean Standard deviation

Vegemite n1 = 8 x1 = 30.75 s1 = 9.25
Peanut Butter n2 = 8 x2 = 34.0 s2 = 14.63
Ham & Pickles n3 = 8 x3 = 49.25 s3 = 10.79

We see in Table 8.2 that the sample means are different for each sandwich type
and that the mean number of ants for ham & pickles is quite a bit larger than
the means for the other two fillings. But is that difference statistically significant?
Remember, if we want to measure evidence against the null hypothesis, we need
to think about what sort of data we might see if samples were collected when the
null hypothesis is true. In this case the null hypothesis says that all the fillings attract
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Figure 8.1 Dotplots
(with means) comparing
number of ants on three
types of sandwiches
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the same mean number of ants. If the null hypothesis is true, we can combine the
samples to give one big sample of 24 sandwich pieces. The mean of all 24 values in
the sample is x = 38.0 ants. We can also find the standard deviation of all 24 sand-
wich bits, s = 13.95, which summarizes the deviations of all the ant counts from the
overall mean.

In this example, we could also find the overall mean by simply averaging the
three sandwich means. However, this only works when the sample sizes are the
same for each group. In general, the overall mean and standard deviation should
be computed from all the data values in the combined sample.

Why Analyze Variability to Test for a Difference in
Means?
If the null hypothesis is true, the samples are generated from populations with the
same mean. If we select samples of size eight from a population where the mean is
38, how likely is it to see sample means as different as 30.75, 34.0, and 49.25? We
know that variability in sample means depends not only on the sample size but also
on the variability in the population. Furthermore, while we can easily find the differ-
ence between any pair of group means, we want a single measure that reflects how
far apart the means are for all groups. We address both of these issues by measuring
different aspects of the variability in the data.

Example 8.2
Figure 8.2 shows boxplots (with symbols showing the means) for hypothetical data
comparing three groups. The group means in Datasets A and B are the same, but the
boxes show different spread. Datasets A and C have the same spread for the boxes
but different groupmeans. Discuss which of these graphs appear to give strong visual
evidence for a difference in the group means.

Solution The boxplots for Dataset A show the weakest evidence for a difference in means
between the three groups. There is quite a bit of overlap between the boxes and
they could easily be three samples taken from the same population. Datasets B and
C both show strong evidence for a difference in group means, especially since all
the data in the Group 1 sample is less than every data point in Group 2 for both
datasets.

The important point illustrated in Example 8.2 is that an assessment of the dif-
ference in means between several groups depends on two kinds of variability: how
different the means are from each other AND the amount of variability in the sam-
ples. Just knowing the sample means for the groups is not enough. If the values
within each sample are very close to each other, we can detect a small difference in
means as significant (as in Dataset B). If there is more variability in the samples, we
need the group means to be farther apart (as in Dataset C).
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Figure 8.2 Boxplots
comparing samples from
three groups for
Example 8.2
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Partitioning Variability
The basic idea of ANOVA is to split the total variability in data into two (or more)
distinct pieces. When comparing means, one of these pieces reflects the variability
between the groups. If the group means are very different from each other, this por-
tion of the variability will tend to be large. The other piece measures the variability
within the samples themselves. In the sandwich example, this reflects the fact that
the number of ants varies, even for different pieces of the same sandwich filling.
Here is a diagram to illustrate this partition.

TOTAL Variability =
Variability
BETWEEN

Groups
+

Variability
WITHIN
Groups

How do we go about actually measuring each of these pieces of variability? As
with the sample standard deviation in Chapter 2, we use sums of squared deviations.
The calculations to compute these sums of squares (abbreviated SS) are given at the
end of this section, but they are tedious to apply by hand and we generally rely on
technology to perform the calculations.

TOTAL Variability is denoted SSTotal for total sum of squares. It is a measure
of the variability of all the data values from the overall combined mean.

Variability BETWEEN Groups is denoted SSG for sum of squares for groups.
It is a measure of how far apart the group means are. This is the variability we can
explain by the fact that there are different groups.

Variability WITHIN Groups is denoted SSE for sum of squares for error. It is
a measure of how much variability there is within each group. This is the variability
that we can’t explain by the different groups and for that reason is referred to as the
“error” variability.

If all of the group means happen to be exactly the same, the variability between
groups (SSG) would be zero. If the number of ants were always identical on pieces
with the same filling, the variability within the groups (SSE) would be zero. In prac-
tice, we rarely see either of these two extremes.

The ANOVA rule for partitioning variability means that

SSTotal = SSG + SSE
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Example 8.3
Typical computer output for testing whether there is a difference in mean number of
ants for the three types of sandwich fillings is shown. Identify the three measures
of variability and verify that SSTotal = SSG + SSE.

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 781 5.63 0.011
Error 21 2913 139
Total 23 4474

Solution The partition of variability into sums of squares is shown in the column labeled
“SS.” Total variability is SSTotal and we see that it is 4474. Variability within groups
is SSE and we see in the “Error” row that it is 2913. The “groups” in this example
are the three types of fillings, so the variability between groups is SSG and we see
in the row labeled “Filling” that it is 1561. Since 1561 + 2913 = 4474, we see that
SSG + SSE = SSTotal as required.

The computer output in Example 8.3 is called anANOVA table and shows more
information than just the various sums of squares. This additional information allows
us to find the test statistic.

The F-Statistic
Remember that our goal is to test whether the data provide evidence of a difference
in means among the groups. The variability between the groups (SSG) is a good
measure of how much the group means vary, but we need to balance that against the
background variation within the groups (SSE). Those two pieces of the total vari-
ability are not directly comparable, since, in the sandwich ant data, SSG measures
variability between 3 means while SSEmeasures variability using all 24 data values.
To put them on a comparable scale, we use degrees of freedom.

You have already seen the idea of degrees of freedom, for example in
Section 6.2-D where the t-statistic has n − 1 degrees of freedom. In fact, back in
Section 2.3, when we introduce the sample standard deviation, we see an n − 1 term
in the denominator that is this same degrees of freedom. The degrees of freedom
for the total row in an ANOVA table is this same n − 1. What about the degrees
of freedom for groups? If SSG is based on k groups, then it has k − 1 degrees of
freedom. Sum of squared errors (SSE) loses one degree of freedom for each group
mean, so if there are k groups, the degrees of freedom for SSE is n − k. Degrees of
freedom add up in the same way that sums of squares do. In summary, if we have
k groups with a total of n data values, we have

(df for groups) + (df for error) = Total df
(k − 1) + (n − k) = n − 1

To put the sums of squares on a comparable scale, we divide each sum of squares by
its degrees of freedom. We call the result amean square:

Mean Square =
Sum of Squared Deviations

Degrees of Freedom
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We compute the mean square for groups (MSG) by dividing SSG by df for groups,
and we compute mean square for error (MSE) by dividing SSE by df for error:

MSG = SSG
k − 1

(Groups) MSE = SSE
n − k

(Error)

We can now define a statistic for testing for a difference among several means. If the
null hypothesis (no difference) is true, the twomean squares,MSG andMSE, should
be roughly the same size. If the alternative hypothesis is true and the population
means really differ, we expect MSG to be larger relative to MSE (since the sample
means will tend to bemore different relative to internal variation). To compare these
two variability estimates, we look at their ratio in what is known as an F-statistic:

F = MSG
MSE

Example 8.4
Calculate the degrees of freedom, the mean squares, and the F-statistic for the sand-
wich ants data. Verify your results using the computer output in Example 8.3.

Solution In the sandwich ants data, there are three Fillings, so the degrees of freedom for
the groups is 3 − 1 = 2. There are 24 data values, so total degrees of freedom is
24 − 1 = 23. Since degrees of freedom must add up, degrees of freedom for error
is 21. These values match what we see in the output.

To find the mean squares, we divide the sums of squares by degrees of freedom.
From Example 8.3 we see that SSG = 1561 and SSE = 2913. We have

MSG = SSG
df

= 1561
2

= 780.5 and MSE = SSE
df

= 2913
21

= 138.7

Finally, the F-statistic is

F = MSG
MSE

= 780.5
138.7

= 5.63

All these values match what we see in the output in Example 8.3.

From the F-statistic in Example 8.4, we see that the mean square reflecting the
spread of the sample group means (MSG) is more than five times bigger than we
would expect under the null hypothesis, based on the variability within the groups
(as reflected inMSE). How much larger than theMSE doesMSG need to be for us
to conclude that there is some difference in the population means? Although under
certain conditions we can find a theoretical model for the F-statistics, we can always
use the randomization techniques of Chapter 4 to investigate this sort of question.

Randomization Distribution of F-statistics
If the null hypothesis is true (mean ant counts really don’t differ among the

three sandwich fillings), any of the 24 values in the SandwichAnts data could just as
easily be associated with any of the three fillings. To create randomization samples
under this null hypothesis, we randomly scramble the filling labels and assign them
to the 24 ant counts so that each filling is used eight times. This replicates the way
randomization was used to randomly pick which sandwich piece is put out on each
trial of the experiment in the original data collection.
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For each of the randomization samples we compute the F-statistic (good thing
this part is automated!). The ANOVA output for one such randomization sample,
with F = 0.98, is shown:

Level N Mean StDev
Vegemite 8 40.63 14.39
Peanut Butter 8 41.00 14.43
Ham & Pickles 8 32.38 13.02

Source DF SS MS F P
ScrambleFilling 2 380 190 0.98 0.394
Error 21 4094 195
Total 23 4474

To see if the original F-value (5.63) is unusual, we repeat the random realloca-
tion process 1000 times to obtain a randomization distribution of F-statistics (when
H0 is true.) One such distribution is shown in Figure 8.3.

Figure 8.3
Randomization
distribution of
F-statistics for ant counts
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To find a p-value from the randomization distribution we count the proportion
of randomization samples that give F-statistics bigger than 5.63. We use the upper
tail since large values of the F-statistic occur whenMSG is large and the groupmeans
are more different. In the distribution of Figure 8.3, only 16 of the 1000 randomiza-
tion statistics are bigger than 5.63, giving an estimated p-value of 0.016. This is close
to the p-value of 0.011 that appears in the ANOVA output in Example 8.3. With
such a small p-value, we have convincing evidence that there is a difference in mean
ant counts among the three types of sandwich filling.

The F-distribution
We can use an F-distribution to find the p-value when the following two conditions
are met:

Normal distribution: The data from each of the populations should follow a normal
distribution, although this is more critical for small sample sizes. In practice, we
watch out for clear skewness or extreme outliers if the sample size is small. From
Figure 8.1 we don’t see any concerns about normality in the sandwich ants data.

Equal Variance: The variability should be roughly the same in each of the groups.
This can be a problem, since in some situations the variability tends to be larger for
larger means. As a rough rule, we only worry if the sample standard deviation
for one group is more than twice the standard deviation for another group. Look-
ing back at Table 8.2 on page 581 we see that the largest standard deviation for
those fillings (s2 = 14.63 for Peanut Butter) is not more than twice the smallest
standard deviation (s1 = 9.25 for Vegemite).
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When these two conditions are reasonably met, the distribution of the F-statistic
when the null hypothesis is true follows an F-distribution. Since an F-distribution
arises as a ratio of two mean squares, it has two values for degrees of freedom: one
for the numerator and one for the denominator. In the sandwich ants example,
we use an F-distribution with 2 numerator and 21 denominator degrees of free-
dom (denoted F2,21). Figure 8.4 shows a scaled histogram of the randomization
F-statistics along with the graph for an F2,21 distribution.

Figure 8.4
Randomization
F-statistics and
F-distribution with 2 and
21 degrees of freedom
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The p-value for the test of means of sandwich ants is the area in the upper tail of
this F-distribution beyond the F-statistic of F = 5.63. Using technology, we see that
the p-value is 0.011, matching the ANOVA output in Example 8.3. There is evidence
that ants do not prefer sandwich fillings equally.

ANOVA to Compare Means

To test for a difference in means among k groups:
H0 ∶ 𝜇1 = 𝜇2 = · · · = 𝜇k

Ha ∶ At least one 𝜇i ≠ 𝜇j

We partition the variability to construct an ANOVA table:

Source df Sum of Sq. Mean Square F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

Conditions to use an F-distribution:

• Sample sizes are large (each ni ≥ 30) or data are relatively normally
distributed.

• Variability is similar in all groups.

More Examples of ANOVA
Data 8.1 deals with data from an experiment where the sample sizes are equal in
each group. (These are called balanced samples.) In the next example we use data
from an observational study where the sample sizes differ between the groups.
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Example 8.5
Pulse Rates and Award Preference

Data 1.1 on page 4 describes a sample survey collected from students in several
statistics classes. One of the variables records which A𝑤ard students would pre-
fer to win from among an Academy Award, Nobel Prize, and Olympic gold medal.
The students also measured their pulse rates (in beats per minute). Could pulse rates
be related to award preference? Use ANOVA to test whether there is a difference
in mean pulse rate between students in the three award categories. Be sure to check
that the conditions are reasonably satisfied.

Solution The computer output below shows the sample size, mean, and standard deviation
for the pulse rates in each award group and overall. Figure 8.5 shows boxplots com-
paring the distribution of the three samples.

Variable Award Count Mean StDev
Pulse Academy 31 70.52 12.36

Nobel 149 72.21 13.09
Olympic 182 67.253 10.971

Variable Count Mean StDev
Pulse 362 69.575 12.205

The boxplots are relatively symmetric, with a few outliers in both tails for the
Nobel and Olympic groups, but those sample sizes are large (n2 = 149, n3 = 182) so
we don’t need to be concerned with the normality condition. The standard devia-
tions for the groups are similar; none is close to being twice another. The conditions
for applying ANOVA to compare the means look reasonable.

To test H0 ∶ 𝜇1 = 𝜇2 = 𝜇3, where each 𝜇i denotes the mean pulse rate for one
of the award groups, vs Ha ∶ Some 𝜇i ≠ 𝜇j, we obtain the ANOVA output shown
below:

Source DF SS MS F P
Award 2 2047 1024 7.10 0.001
Error 359 51729 144
Total 361 53776

Figure 8.5 Pulse rates
within each A𝒘ard
category
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The F-statistic (7.10) gives a p-value of 0.001 when compared to an F-
distribution with 2 numerator and 359 denominator degrees of freedom. This is a
very small p-value, so we have strong evidence that the average pulse rates differ
depending on the award students prefer.

But which groups are different? For example, is the mean pulse rate for students
who prefer an Olympic gold medal different from the mean for those who prefer an
Academy Award? Remember that a significant result in the ANOVA only signals
that a difference exists—it does not tell us which specific groups differ. We look at
techniques for answering that question in the next section.

The data in StudentSurvey are from an observational study, so we can’t con-
clude that a desire for a particular award tends to cause pulse rates to increase or
decrease. Can you think of a possible confounding variable that might help explain
the association between award preference and pulse rates? (Hint: Try Exercise 8.41.)

Another Look at Variability
The key to using ANOVA to test for a difference in means is the comparison of

the variability between the sample means (SSG and MSG) to the variability within
the samples (SSE and MSE). In Figure 8.2 on page 583 we see boxplots for three
datasets that compare hypothetical data for three groups. Recall that Datasets A and
B have the same group means, while A and C have the same spread in the boxplots.
Some ANOVA output for each of those datasets is shown below. Pay attention to
how the group means and variability affect the values in the ANOVA table and the
conclusions about the significance of the differences in means for each dataset.

Dataset A Df Sum Sq Mean Sq F value Pr(>F)
Group 2 216 108 1.6875 0.2006
Residuals 33 2112 64
Total 35 2328
——————————————————————————————————
Dataset B Df Sum Sq Mean Sq F value Pr(>F)
Group 2 216 108 108 0.000
Residuals 33 33 1
Total 35 249
——————————————————————————————————
Dataset C Df Sum Sq Mean Sq F value Pr(>F)
Group 2 4704 2352 36.75 0.000
Residuals 33 2112 64
Total 35 6816

For Dataset A, we see from the ANOVA table (p-value = 0.2006) that those sample
means are not considered significantly different. It is not unusual to see three sam-
ples of size ni = 12, drawn from the same population, differ by the amounts shown
in the top graph of Figure 8.2.

Dataset B shows the same sample means as Dataset A, but the standard
deviation of each sample has been reduced (as seen in the much narrower boxes
of the boxplots). The sum of squares and mean square for “Group” is identical to
those values in the ANOVA for Dataset A, since the group means are the same in
both datasets. However, the smaller standard deviation within the groups of Dataset
B reduces both SSE and MSE. When we divide to find the F-statistic (F = 108) we
see that it is now very significant (p-value = 0.000). The sample means shown in
the middle dataset of Figure 8.2 are considered significantly different, even
though the means themselves are identical to Dataset A.
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When we get to the ANOVA for Dataset C, we see that the SSE and MSE
values (labeled as “Residuals” in this output) are identical to those in the ANOVA
for Dataset A. This makes sense since the boxplots in Dataset C have the same
spread within the groups as those in Dataset A. In this case, it’s the SSG and MSG
values that change, getting much larger since the means are much farther apart in
Dataset C. With a bigger difference among the sample means, the ANOVA table for
Dataset C has a small p-value (0.000), meaning we are unlikely to see sample means
this far apart if the samples are drawn from the same population. We find strong
evidence for a difference in means in Dataset C.

As we see when comparing theseANOVA tables and the graphs in Example 8.2,
the important point when using ANOVA to test means is that we assess the dif-
ferences between the group means against the background variability within the
groups. The same set of means can give significant results when there is less variabil-
ity in the samples, but not be detected as different when the samples themselves are
widely scattered.

ANOVA Calculations
While we generally rely on technology to do the nitty-gritty calculations for
ANOVA, seeing how the various types of variability are computed can help you
distinguish and keep straight their roles. As the notation “SS” suggests, each
variability is measured as a sum of squared deviations. The deviations used in each
case reflect the type of variability being measured. The mean for all the data values
is often referred to as the grand mean.

TOTAL Variability: (deviations of the data from the grand mean)
Under the null hypothesis of equal means, we use the grand mean (x) to estimate the
common population mean. The total variability is just the sum of squared deviations
of each of the data points from this grand mean:

Total variability = SSTotal =
∑

(x − x )2

Variability BETWEEN Groups: (deviations of the group means from the
grand mean)
To compare the group means, we square the deviations between the group means
and the grand mean. This sum has just one term for each group and we multiply the
squared deviation by the sample size in the group when computing the sum:

Variability Between Groups = SSG =
∑

ni(xi − x )2

= n1(x1 − x)2 + · · · + nk(xk − x )2

Variability WITHIN Groups: (deviations of the data from their group mean)
To measure variability within the groups, we use squared deviations between each
data value and the mean for its group, xi (rather than the grand mean). If we think
of the group mean as predicting values for the group (like the number of ants for a
particular sandwich filling), the deviations from that mean are often called “errors”
or “residuals.” That’s why we use the notation SSE for the sum of the squares of
these errors to measure the variability within the groups:

Variability Within Groups = SSE =
∑

(x − xi)2

Note that the sums for SSTotal and SSE use the individual data values, so they have
n terms in each sum, where n is the overall sample size. The calculation of SSG
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between the groups is quicker since the number of terms in that sum is just k, the
number of groups.

Recall that
SSTotal = SSG + SSE

so if we know any two of the three sums of squares we can easily find the last one.

Example 8.6
Find each of the sums of squares terms for the sandwich ants data in Table 8.1.

Solution The grand mean is x = 38 and we sum the deviations for all 24 ant counts to get

SSTotal = (18 − 38)2 + (29 − 38)2 + · · · + (59 − 38)2 + (53 − 38)2 = 4474

To find the variability between the three sandwich types, we need only three terms
in the sum

SSG = 8(30.75 − 38)2 + 8(34.0 − 38)2 + 8(49.25 − 38)2 = 1561

We could subtract to find SSE = SSTotal − SSG = 4474 − 1561 = 2913 or do the sum
comparing all 24 ant counts to their sandwich mean:

SSE = (18 − 30.75)2 + (29 − 30.75)2 + · · · + (59 − 49.25)2 + (53 − 49.25)2 = 2913

The computer output showing the ANOVA table in Example 8.3 on page 584 con-
firms these sum of square values.

The most tedious parts of the calculations in Example 8.6 are finding SSTotal
and SSE since each is a sum of 24 terms. We can save some time if we know the
standard deviation of the overall sample and the standard deviation of the sample
in each group. Recall the formula for computing a standard deviation is

s =

√∑
(x − x)2

n − 1
=
√

SSTotal
n − 1

With a little algebra, we can turn this into an easy formula for computing the total
sum of squares for ANOVA:

SSTotal = (n − 1)s2

where s is the standard deviation obtained from the combined sample and n is the
overall sample size.

In a similar way, we can find the sum of squared deviations from the group mean
within any group using (ni − 1)s2i where ni is the sample size and si is the standard
deviation from the sample in the ith group. Summing these for each of the groups,
we get a shortcut for finding the sum of squared errors within the groups:

SSE =
∑

(ni − 1)s2i = (n1 − 1)s21 + (n2 − 1)s22 + · · · + (nk − 1)s2k

Adding up the degrees of freedom for each of these terms, (n1 − 1) + (n2 − 1) + · · · +
(nk − 1) = n − k, is another way to see how we get the degrees of freedom for the
error in ANOVA.
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We can relatively easily find each of the sum of squared variability terms for an
ANOVA using basic summary statistics (sample size, mean, and standard deviation)
from the groups and overall sample:

Calculating Sum of Squares from Summary Statistics

Between Groups = SSG =
∑

ni(xi − x)2= n1(x1 − x)2+ · · · + nk(xk − x)2

Within Groups = SSE =
∑

(ni − 1)s2i = (n1 − 1)s21 + · · · + (nk − 1)s2k
Total = SSTotal = (n − 1)s2

If we have any two of these quantities, we can always find the third
using

SSTotal = SSG + SSE

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use ANOVA to test for a difference in means among several groups

• Explain how variation between groups and variation within groups are
relevant for testing a difference in means between multiple groups

Exercises for Section 8.1

SKILL BUILDER 1
In Exercises 8.1 to 8.6, two sets of sample data, A
and B, are given. Without doing any calculations,
indicate in which set of sample data, A or B, there is
likely to be stronger evidence of a difference in the
two population means. Give a brief reason, compar-
ing means and variability, for your answer.

8.1 Dataset A Dataset B
Group 1 Group 2 Group 1 Group 2

12 25 15 20
20 18 14 21
8 15 16 19

21 28 15 19
14 14 15 21

x1 = 15 x2 = 20 x1 = 15 x2 = 20

8.2 Dataset A Dataset B
Group 1 Group 2 Group 1 Group 2

13 18 13 48
14 19 14 49
15 20 15 50
16 21 16 51
17 22 17 52

x1 = 15 x2 = 20 x1 = 15 x2 = 50

8.3

5 10

Group 2

Group 1

15
Dataset A

20 25

5 10

Group 2

Group 1

15
Dataset B

20 25
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8.4
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Dataset A
2520 30 0 5 10
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Dataset B
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0
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Group 1

6 12 18

Dataset A

24 30 36 0

Group 1

Group 2
6 12 18

Dataset B

24 30 36

8.6

8
Group 2

Group 1

16

Dataset A
24 32 40 48 56 64 8 16 24 32 40 48 56 64

Dataset B

Group 2

Group 1

SKILL BUILDER 2
In Exercises 8.7 to 8.10, we give sample sizes for
the groups in a dataset and an outline of an anal-
ysis of variance table with some information on the
sums of squares. Fill in the missing parts of the table.
What is the value of the F-test statistic?

8.7 Three groups with n1 = 5, n2 = 5, and n3 = 5.
ANOVA table includes:

Source df SS MS F-statistic
Groups 120
Error 282

Total 402
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8.8 Four groups with n1 = 10, n2 = 10, n3 = 10,
and n4 = 10. ANOVA table includes:

Source df SS MS F-statistic

Groups 960
Error 5760

Total 6720

8.9 Three groups with n1 = 10, n2 = 8, and n3 =
11. ANOVA table includes:

Source df SS MS F-statistic

Groups 80
Error

Total 1380

8.10 Four groups with n1 = 5, n2 = 8, n3 = 7, and
n4 = 5. ANOVA table includes:

Source df SS MS F-statistic

Groups
Error 800

Total 1400

SKILL BUILDER 3
In Exercises 8.11 to 8.14, some computer output for
an analysis of variance test to compare means is
given.

(a) How many groups are there?

(b) State the null and alternative hypotheses.

(c) What is the p-value?

(d) Give the conclusion of the test, using a 5% sig-
nificance level.

8.11 Source DF SS MS F
Groups 3 360.0 120.0 1.60
Error 16 1200.0 75.0
Total 19 1560.0

8.12 Source DF SS MS F
Groups 4 1200.0 300.0 5.71
Error 35 1837.5 52.5
Total 39 3037.5

8.13 Source DF SS MS F
Groups 2 540.0 270.0 8.60
Error 27 847.8 31.4
Total 29 1387.8

8.14 Source DF SS MS F
Groups 3 450.0 150.0 0.75
Error 16 3200.0 200.0
Total 19 3650.0

8.15 Stress Levels and a Mother’s Voice A recent
study2 examines the impact of a mother’s voice on
stress levels in young girls. The study included 68
girls ages 7 to 12 who reported good relationships
with their mothers. Each girl gave a speech and
then solved mental arithmetic problems in front of
strangers. Cortisol levels in saliva were measured
for all girls and were high, indicating that the girls
felt a high level of stress from these activities. (Cor-
tisol is a stress hormone and higher levels indicate
greater stress.) After the stress-inducing activities,
the girls were randomly divided into four equal-
sized groups: one group talked to their mothers in
person, one group talked to their mothers on the
phone, one group sent and received text messages
with their mothers, and one group had no contact
with their mothers. Cortisol levels were measured
before and after the interaction with mothers and
the change in the cortisol level was recorded for
each girl.

(a) What are the two main variables in this study?
Identify each as categorical or quantitative.

(b) Is this an experiment or an observational study?

(c) The researchers are testing to see if there is
a difference in the change in cortisol level
depending on the type of interaction with mom.
What are the null and alternative hypotheses?
Define any parameters used.

(d) What are the total degrees of freedom? The df
for groups? The df for error?

(e) The results of the study show that hearing
mother’s voice was important in reducing stress
levels. Girls who talk to their mother in per-
son or on the phone show decreases in corti-
sol significantly greater, at the 5% level, than
girls who text with their mothers or have no
contact with their mothers. There was not a dif-
ference between in person and on the phone
and there was not a difference between texting
and no contact. Was the p-value of the original
ANOVA test above or below 0.05?

8.16 Wine and Antibacterial Properties A study3

examined survival of gastrointestinal pathogens
(such as salmonella and E. coli) in seven different
beverages. The beverages tested were cola, lemon-
lime mixer, diet cola, beer, wine, milk, and water.

2Seltzer, L., Prososki, A., Ziegler, T., and Pollak, S., “Instant mes-
sages vs. speech: Hormones and why we still need to hear each
other,” Evolution and Human Behavior, 2012; 33(1): 42–45.
3Sheth NK, Wisniewski TR, Franson TR, “Survival of Enteric
Pathogens in CommonBeverages: An in Vitro Study,”The Amer-
ican Journal of Gastroenterology, 1988, 83(6).
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Bacteria were placed in the different beverages,
over multiple trials, and the change in the number
of bacteria was recorded after four hours. The mean
number of bacteria had increased slightly in milk
and water (not good for stomach health!) and had
decreased slightly in all three soft drinks and beer,
but none of these changes were significantly differ-
ent from the others. The only significant difference
was a dramatic decrease in bacteria in the wine, with
a mean change significantly different (and better)
than all the others. The researchers were testing, at
a 5% significance level, to see if there was a differ-
ence in mean change between the seven beverages.

(a) What are the two main variables in this study?
Identify each as categorical or quantitative.

(b) What are the degrees of freedom for groups in
the analysis of variance test?

(c) In the ANOVA test, is the p-value above 0.05,
below 0.05, or is it impossible to tell from the
information given?

(d) State the generic conclusion and the conclusion
in context, or state that it is impossible to tell.

8.17 Is Pressure at School Related to Time with
Friends? Exercise 1.24 introduces a survey given
to a sample of high school seniors in Pennsylvania.
Two of the variables in the survey are HangHours,
the number of hours per week spent hanging out
with friends, and SchoolPressure, the amount of
pressure felt due to schoolwork (None, Very lit-
tle, Some, or A lot). We wish to test whether the
amount of school pressure felt by students is related
to the mean time hanging out with friends. The
data are stored in PASeniors and output for an
ANOVA test is shown below, along with some sum-
mary statistics.

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Pressure 3 1563 521.2 4.75 0.003
Error 443 48557 109.6
Total 446 50121

Pressure N Mean StDev
None 16 12.19 8.50
Very little 55 15.91 11.33
Some 197 10.977 11.601
A lot 179 9.866 8.919

(a) What is the explanatory variable? Is it categor-
ical or quantitative? What is the response vari-
able? Is it categorical or quantitative?

(b) Which SchoolPressure group reports the high-
est mean time hanging out with friends? Which
group reports the lowest mean time?

(c) How many students were included in the
analysis?

(d) What is the F-statistic? What is the p-value?

(e) What is the generic conclusion of the test?

(f) State the conclusion of the test in context.

8.18 Does Synchronized Dancing Boost Feelings
of Closeness? Exercise 3.104 introduces a study
designed to examine the effect of doing synchro-
nizedmovements (such as marching in step or doing
synchronized dance steps) and the effect of exer-
tion on many different variables, including how
close participants feel to others in their group. In
the study, high school students in Brazil were ran-
domly assigned to an exercise with either high syn-
chronization (HS) or low synchronization (LS) and
also either to high exertion (HE) or low exertion
(LE). Thus, there are four groups: HS+HE, HS+LE,
LS+HE, and LS+LE. Closeness is measured on a
7-point Likert scale (1 = least close to 7 = most
close), and the response variable is the change in
how close participants feel to those in their group
using the rating after the exercise minus the rat-
ing before the exercise. The data are stored in Syn-
chronizedMovement and output for an ANOVA
test is shown below, along with some summary
statistics.

Analysis of Variance
Source DF SS MS F-Value P-Value
Group 3 27.04 9.012 2.77 0.042
Error 256 831.52 3.248
Total 259 858.55

Group N Mean StDev
HS+HE 72 0.319 1.852
HS+LE 64 0.328 1.861
LS+HE 66 0.379 1.838
LS+LE 58 −0.431 1.623

(a) In both groups with high synchronization (HS),
does mean closeness rating go up or down after
the synchronized exercise?

(b) In the groups with low synchronization (LS),
does mean closeness rating go up or down if the
group engages in high exertion (HE) exercise?
How about if the group engages in low exertion
(LE) exercise?

(c) How many students were included in the
analysis?

(d) At a 5% level, what is the conclusion of the test?
If there is a difference in means, indicate where
the difference is likely to be.

(e) At a 1% level, what is the conclusion of the test?
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8.19 The Color Red and Performance Color affects
us in many ways. For example, Exercise C.102 on
page 536 describes an experiment showing that the
color red appears to enhance men’s attraction to
women. Previous studies have also shown that ath-
letes competing against an opponent wearing red
perform worse, and students exposed to red before
a test perform worse.4 Another study5 states that
“red is hypothesized to impair performance on
achievement tasks, because red is associated with
the danger of failure.” In the study, US college
students were asked to solve 15 moderately diffi-
cult, five-letter, single-solution anagrams during a
5-minute period. Information about the study was
given to participants in either red, green, or black
ink just before they were given the anagrams. Par-
ticipants were randomly assigned to a color group
and did not know the purpose of the experiment,
and all those coming in contact with the participants
were blind to color group. The red group contained
19 participants and they correctly solved an average
of 4.4 anagrams. The 27 participants in the green
group correctly solved an average of 5.7 anagrams
and the 25 participants in the black group correctly
solved an average of 5.9 anagrams. Work through
the details below to test if performance is different
based on prior exposure to different colors.

(a) State the hypotheses.

(b) Use the fact that sum of squares for color
groups is 27.7 and the total sum of squares is
84.7 to complete an ANOVA table and find the
F-statistic.

(c) Use the F-distribution to find the p-value.

(d) Clearly state the conclusion of the test.

8.20 Laptop Computers and Sperm Count Stud-
ies have shown that heating the scrotum by just
1∘C can reduce sperm count and sperm quality,
with long-term consequences. Exercise 2.131 on
page 100 introduces a study indicating that males
sitting with a laptop on their laps have increased
scrotal temperatures. Does a lap pad help reduce
the temperature increase? Does sitting with legs
apart help? The study investigated all three of these
conditions: legs together and a laptop computer on

4“Color Red Increases the Speed and Strength of Reactions,”
Science Daily, sciencedaily.com, June 2, 2011.
5Elliot, A., et al., “Color and Psychological Functioning: The
Effect of Red on Performance Attainment,” Journal of Experi-
mental Psychology: General, 2007; 136(1): 154–168. Data approx-
imated from summary statistics.

the lap, legs apart and a laptop computer on the
lap, and legs together with a lap pad under the lap-
top computer. Scrotal temperature increase over a
60-minute session was measured in ∘C, and the sum-
mary statistics are given in Table 8.3.

Table 8.3 Scrotal temperature
increase in ∘C with a laptop
computer on lap

Condition n Mean Std.Dev.

Legs together 29 2.31 0.96
Lap pad 29 2.18 0.69
Legs apart 29 1.41 0.66

(a) Which condition has the largest mean tempera-
ture increase? Which has the smallest?

(b) Do the data appear to satisfy the condition that
the standard deviations are roughly the same?
(The data satisfy the normality condition.)

(c) Use the fact that sum of squares for groups is
13.7 and error sum of squares is 53.2 to test
whether there is a difference in mean temper-
ature increase between the three conditions.
Show all details of the test, including an analysis
of variance table.

EXERCISE AND STRESS
Exercise 6.243 on page 499 introduces a study show-
ing that exercise appears to offer some resiliency
against stress. In the study, mice were randomly
assigned to live in an enriched environment (EE),
a standard environment (SE), or an impoverished
environment (IE) for several weeks. Only the
enriched environment provided opportunities for
exercise. Half the mice then remained in their home
cage (HC) as control groups while half were sub-
jected to stress (SD) by being placed repeatedly
with a very aggressive mouse. All the mice in SD
exhibited acute signs of stress during these brief
exposures to “mouse bullies.” The researchers were
interested in how resilient the mice were in recover-
ing from the stress after themouse bullying stopped.
Exercises 8.21 to 8.23 discuss the results of their
work.6 There were eight mice in each of the six
groups, andconditions for theANOVAtests aremet.

6Lehmann, M. and Herkenham, M., “Environmental Enrich-
ment Confers Stress Resiliency to Social Defeat through an
Infralimbic Cortex-Dependent Neuroanatomical Pathway,”
Journal of Neuroscience, 2011; 31(16): 6159–6173. Data approxi-
mated from summary statistics.
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8.21 Time Hiding in Darkness One measure of
mouse anxiety is amount of time hiding in a dark
compartment, with mice that are more anxious
spending more time in darkness. The amount of
time (in seconds) spent in darkness during one trial
is recorded for all the mice and the mean results are
shown in Table 8.4.

(a) In this sample, do the control groups (HC)
spend less time in darkness on average than
the stressed groups (SD)?Which of the stressed
groups spends the least amount of time, on aver-
age, in darkness?

(b) The sum of squares for groups is SSG = 481, 776
and for error is SSE = 177, 835. Complete a test
to determine if there is a difference in mean
time spent in darkness between the six groups.

Table 8.4 Mean time (sec) in darkness

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
192 196 205 392 438 231

8.22 Time Immobile One measure of mouse anxi-
ety is amount of time spent immobile; mice tend
to freeze when they are scared. The amount of
time (in seconds) spent immobile during one trial
is recorded for all the mice and the mean results are
shown in Table 8.5.

(a) In this sample, do the control groups (HC)
spend less time immobile on average than the
stressed groups (SD)? Which of the stressed
groups spends the least amount of time, on aver-
age, immobile?

(b) The sum of squares for groups is SSG = 188,464
and for error is SSE = 197,562. Complete a test
to determine if there is a difference in mean
time immobile between the six groups.

Table 8.5 Mean time (sec) immobile

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
50 47 52 191 188 96

8.23 Immunological Effects In addition to the
behavioral effects of stress, the researchers stud-
ied several immunological effects of stress. One
measure studied is stress-induced decline in FosB-
positive cells in the FosB/ΔFosA expression. This
portion of the study only included seven mice in
each of the six groups, and lower levels indicate
more stress. The mean levels of FosB+ cells for each
combination of environment and stress are shown in
Table 8.6.

(a) In each of the three environments (IE, SE, and
EE), which sample group (HC or SD) has a
lower average level of FosB+ cells? Does this
match what we would expect? Within each of
the no-stress and stress groups (HC and SD)
separately, which environment has the highest
average level of FosB+ cells?

(b) The sum of squares for groups is SSG = 118,286
and for error is SSE = 75,074. Complete a test
to determine if there is a difference in mean
FosB+ levels between the groups.

Table 8.6 FosB+ cells

IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
86 129 178 21 68 152

8.24 Incentives to Exercise Exercise 5.29 on
page 415 describes a study designed to see what
type of incentive might be most effective in encour-
aging people to exercise. In the study, 281 over-
weight or obese people were assigned the goal to
walk 7000 steps a day, and their activity was tracked
for 100 days. The response variable is the number
of days (out of 100) that each participant met the
goal. The participants were randomly assigned to
one of four different incentive groups: for each day
they met the goal, participants in the first group got
only praise, participants in the second group got
entered into a lottery, and participants in the third
group received cash (about $1.50 per day). In the
fourth group, participants received all the money up
front and lost money (about $1.50 per day) if they
didn’t meet the goal. (The overall financial effect
for participants in the third and fourth conditions is
identical, but the psychological effect between win-
ning money and losing money is potentially quite
different.) The summary statistics7 for the four con-
ditions and overall are shown in Table 8.7.

(a) In the sample, which incentive had the most
success in helping participants meet the goal?
Which incentive had the least success?

(b) Do the conditions for using the F-distribution
appear to be met?

(c) Test to see if the data provide evidence of a
difference in mean success rates depending on
the incentive used. Show all details of the test,
including showing the ANOVA table.

7Summary statistics are estimated from information given in the
paper.
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Table 8.7 Number of days meeting an
exercise goal

Condition n Mean St.Dev.

Praise 70 30.0 32.0
Lottery 70 35.0 29.9
Get money 70 36.0 29.4
Lose money 71 45.0 30.1

Overall 281 36.5 30.6865

8.25 Posture and Pain Research shows that peo-
ple adopting a dominant pose have reduced levels
of stress and feel more powerful than those adopt-
ing a submissive pose. Furthermore, it is known
that if people feel more control over a situation,
they have a higher tolerance for pain. Putting these
ideas together, a study,8 introduced in Exercise C.20
on page 522, investigates how posture might influ-
ence the perception of pain. In the experiment,
participants were told that they were participating
in a study to examine the health benefits of doing
yoga poses at work. All participants had their pain
threshold measured both before and after holding a
yoga pose for 20 seconds. The pain threshold was
measured by inflating a blood pressure cuff until
participants said stop: the threshold was mea-
sured in mmHg and the difference in before and
after thresholds was recorded for each participant.
The participants were randomly divided into three
groups: one group was randomly assigned to strike a
dominant pose (moving limbs away from the body),
another group was assigned to strike a submissive
pose (curling the torso inward), and a control group
struck a neutral pose. Summary statistics are shown
in Table 8.8. Do the data provide evidence of a dif-
ference in mean pain tolerance based on the type of
pose? Show all details of the test.

Table 8.8 Difference in pain threshold
(mmHg)

Pose Sample Size Mean Std.Dev.

Dominant 30 14.3 34.8
Neutral 29 −4.4 31.9
Submissive 30 −6.1 35.4

Overall 89 1.33 35.0

8Bohns, V. and Wiltermuth, S., “It hurts when I do this (or you
do that): Posture and pain tolerance,” Journal of Experimental
Social Psychology, available online May 26, 2011. Data approxi-
mated from information in the article.

8.26 Sandwich Ants and Bread Data 8.1 on page
580 describes an experiment to study how differ-
ent sandwich fillings might affect the mean number
of ants attracted to pieces of a sandwich. The stu-
dents running this experiment also varied the type
of bread for the sandwiches, randomizing between
four types: Multigrain, Rye, Wholemeal, and White.
The ant counts in 6 trials and summary statistics for
each type of bread and the 24 trials as a whole are
given in Table 8.9 and stored in SandwichAnts.

(a) Show how to use the summary information
to compute the three sums of squares needed
for using ANOVA to test for a difference in
mean number of ants among these four types
of bread.

(b) Use the sums of squares from part (a) to con-
struct the ANOVA table and complete the
details for this test. Be sure to give a conclusion
in the context of this data situation.

Table 8.9 Number of ants by type of bread

Bread Ants Mean Std.Dev.

Multigrain 42 22 36 38 19 59 36.00 14.52
Rye 18 43 44 31 36 54 37.67 12.40
Wholemeal 29 59 34 21 47 65 42.50 17.41
White 42 25 49 25 21 53 35.83 13.86

Total 38.00 13.95

DOES DRAWING AN IMAGE HELP
MEMORY?
Exercises 8.27 to 8.29 describe three different
experiments9 investigating the effect of drawing on
memory. In each experiment, participants were ran-
domly divided into three groups and shown a list
of 10 words to memorize. The response variable is
the number of words participants are able to recall.
For each experiment, construct an ANOVA table to
assess the difference in mean word recall between
the three groups and answer the following ques-
tions.

(a) Which method had the highest mean recall in
the sample? Which had the lowest?

(b) What is the F-statistic?

(c) What is the p-value?

9Wammes, J.D., Meade, M.E., and Fernandes, M.A., “The draw-
ing effect: Evidence for reliable and robust memory benefits in
free recall,” The Quarterly Journal of Experimental Psychology,
69:9, 1752-1776, DOI: 10.1080/17470218.2015.1094494a, February
16, 2016. Summary statistics are approximated from information
in the article.
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(d) At a 5% level, what is the conclusion of the test?

(e) According to this experiment, does it matter
what you do if you want to memorize a list of
words, and, if it matters, what should you do?

8.27 Participants were instructed to either draw an
image for each word, write a list of attributes for
each word, or write the word. The summary statis-
tics for number of words recalled (out of 10) are
shown in Table 8.10.

Table 8.10 What helps memory recall?
Experiment 1

Group n Mean St.Dev.

Draw 16 4.8 1.3
List attributes 16 3.4 1.6
Write 16 3.2 1.2

Overall 48 3.8 1.527

8.28 Participants were instructed to either draw an
image for each word, visualize an image for each
word, or write the word. The summary statistics for
number of words recalled (out of 10) are shown in
Table 8.11.

Table 8.11 What helps memory
recall? Experiment 2

Group n Mean St.Dev.

Draw 9 5.1 1.1
Visualize 9 3.7 1.7
Write 9 3.2 1.3

Overall 27 4.0 1.566

8.29 Participants were instructed to either draw an
image for each word, view an image provided for
each word, or write the word. The summary statis-
tics for number of words recalled (out of 10) are
shown in Table 8.12.

Table 8.12 What helps memory
recall? Experiment 3

Group n Mean St.Dev.

Draw 12 4.4 1.2
View 12 3.4 1.5
Write 12 3.0 1.1

Overall 36 3.6 1.377

LIGHT AT NIGHT MAKES FAT MICE
Studies have shown that exposure to light at night
is harmful to human health. Data 4.1 on page 280
introduces a study in mice showing that dim light
at night has an effect on weight gain after just
three weeks. In the full study, mice were ran-
domly assigned to live in one of three light condi-
tions: LD had a standard light/dark cycle, LL had
bright light all the time, and DM had dim light
when there normally would have been darkness.
Exercises 8.30 to 8.36 analyze additional results of
this study, examining results after 4 weeks.

8.30 Checking Conditions for Body Mass Gain The
mice in the study had body mass measured through-
out the study. Computer output showing body mass
gain (in grams) after 4 weeks for each of the three
light conditions is shown, and a dotplot of the data
is given in Figure 8.6.

Level N Mean StDev
DM 10 7.859 3.009
LD 8 5.926 1.899
LL 9 11.010 2.624

(a) In the sample, which group of mice gained the
most, on average, over the four weeks? Which
gained the least?

(b) Do the data appear to meet the requirement of
having standard deviations that are not dramat-
ically different?

(c) The sample sizes are small, so we check that the
data are relatively normally distributed. We see
in Figure 8.6 that we have no concerns about the
DM and LD samples. However, there is an out-
lier for the LL sample, at 17.4 grams.We proceed
as long as the z-score for this value is within ±3.
Find the z-score. Is it appropriate to proceed
with ANOVA?

(d) What are the cases in this analysis? What are
the relevant variables? Are the variables cate-
gorical or quantitative?

4
LL

LD
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g

ht

BM Gain
6 8 10 12 14 16 18

Figure 8.6 Body mass gain under three light conditions
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8.31 Body Mass Gain The mice in the study had
body mass measured throughout the study. Com-
puter output showing an analysis of variance table
to test for a difference in mean body mass gain
(in grams) after four weeks between mice in the
three different light conditions is shown. We see in
Exercise 8.30 that the conditions for ANOVA are
met, and we also find the summary statistics for each
experimental group there.

One-way ANOVA: BM Gain versus Light
Source DF SS MS F P
Light 2 113.08 56.54 8.38 0.002
Error 24 161.84 6.74
Total 26 274.92

(a) State the null and alternative hypotheses.

(b) What is the F-statistic? What is the p-value?
What is the conclusion of the test?

(c) Does there appear to be an association between
the two variables (body mass gain and light con-
dition)? If so, discuss the nature of that relation-
ship. Under what light condition domice appear
to gain the most weight?

(d) Can we conclude that there is a cause-and-effect
relationship between the variables?Why or why
not?

8.32 Activity Levels Perhaps the mice with light
at night in Exercise 8.30 gain more weight because
they are exercising less. The conditions for an
ANOVA test are met and computer output is shown
for testing the average activity level for each of
the three light conditions. Is there a significant dif-
ference in mean activity level? State the null and
alternative hypotheses, give the F-statistic and the
p-value, and clearly state the conclusion of the test.

Level N Mean StDev
DM 10 2503 1999
LD 8 2433 2266
LL 9 2862 2418

One-way ANOVA: Activity versus Light
Source DF SS MS F P
Light 2 935954 467977 0.09 0.910
Error 24 118718447 4946602
Total 26 119654401

8.33 Food Consumption Perhaps the mice with
light at night in Exercise 8.30 are gaining more
weight because they are eating more. Computer
output is shown for average food consumption (in
grams) during week 4 of the study for each of the
three light conditions.

Level N Mean StDev
DM 10 4.1241 0.6938
LD 8 4.3275 0.4337
LL 9 4.5149 1.3149

(a) Is it appropriate to conduct an ANOVA test
with these data? Why or why not?

(b) A randomization test is conducted using these
data and the randomization distribution is
shown in Figure 8.7. The randomization test
gives a p-value of 0.652. Clearly state the con-
clusion of the test in the context of this data
situation.

0 1 2 3
F

4 5 6

Figure 8.7 Randomization test for consumption by
light condition

8.34 Stress Levels In addition to monitoring weight
gain, food consumed, and activity level, the study
measured stress levels in the mice by measuring
corticosterone levels in the blood (higher levels
indicate more stress). Conditions for ANOVA are
met and computer output for corticosterone levels
for each of the three light conditions is shown.

Level N Mean StDev
DM 10 73.40 67.49
LD 8 70.02 54.15
LL 9 50.83 42.22

One-way ANOVA: Corticosterone versus Light
Source DF SS MS F P
Light 2 2713 1357 0.43 0.656
Error 24 75782 3158
Total 26 78495

(a) What is the conclusion of the analysis of vari-
ance test?

(b) One group of mice in the sample appears to
have very different corticosterone levels than
the other two. Which group is different? What
aspect of the data explains why the ANOVA
test does not find this difference significant?
How is this aspect reflected in both the sum-
mary statistics and the ANOVA table?
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8.35 When Calories Are Consumed Researchers
hypothesized that the increased weight gain seen in
mice with light at night might be caused by when
the mice are eating. (As we have seen in the previ-
ous exercises, it is not caused by changes in amount
of food consumed or activity level.) Perhaps mice
with light at night eat a greater percentage of their
food during the day, when they normally should be
sleeping. Conditions for ANOVA are met and com-
puter output for the percentage of food consumed
during the day for each of the three light conditions
is shown.

Level N Mean StDev
DM 10 55.516 10.881
LD 8 36.028 8.403
LL 9 76.573 9.646

One-way ANOVA: DayPct versus Light
Source DF SS MS F P
Light 2 6987.0 3493.5 36.39 0.000
Error 24 2304.3 96.0
Total 26 9291.2

(a) For mice in this sample on a standard light/dark
cycle, what is the average percent of food con-
sumed during the day? What percent is con-
sumed at night? What about mice that had dim
light at night?

(b) Is there evidence that light at night influences
when food is consumed by mice? Justify your
answer with a p-value. Can we conclude that
there is a cause-and-effect relationship?

8.36 Glucose Tolerance We have seen that light at
night increases weight gain in mice and increases
the percent of calories consumed when mice are
normally sleeping. What effect does light at night
have on glucose tolerance? After four weeks in the
experimental light conditions, mice were given a
glucose tolerance test (GTT). Glucose levels were
measured 15 minutes and 120 minutes after an
injection of glucose. In healthy mice, glucose lev-
els are high at the 15-minute mark and then return
to normal by the 120-minute mark. If a mouse is
glucose intolerant, levels tend to stay high much
longer. Computer output is shown giving the sum-
mary statistics for both measurements under each
of the three light conditions.

Descriptive Statistics: GTT-15
Variable Light N Mean StDev
GTT-15 DM 10 338.8 80.6

LD 8 318.7 106.5
LL 9 373.6 59.1

Descriptive Statistics: GTT-120
Variable Light N Mean StDev
GTT-120 DM 10 258.7 113.0

LD 8 173.5 41.9
LL 9 321.4 109.0

(a) Why is it more appropriate to use a random-
ization test to compare means for the GTT-120
data?

(b) Describe how wemight use the 27 data values in
GTT-120 to create one randomization sample.

(c) Using a randomization test in both cases, we
obtain a p-value of 0.402 for the GTT-15 data
and a p-value of 0.015 for the GTT-120 data.
Clearly state the results of the tests, using a 5%
significance level. Does light at night appear to
affect glucose intolerance?

8.37 Time Spent on Homework and School Pres-
sure Exercise 1.24 introduces a survey given to a
sample of high school seniors in Pennsylvania. Two
of the variables in the survey are HWHours, the
number of hours per week spent doing homework,
and SchoolPressure, the amount of pressure felt due
to schoolwork (None, Very little, Some, or A lot).
The data are stored in PASeniors.

(a) Use technology to find the summary statistics
for each of the four categories. Which group has
the largest mean number of homework hours?
Which group has the smallest?

(b) Use technology to conduct an ANOVA test.
What is the F-statistic? What is the p-value?

(c) What is the conclusion of the test?

8.38 Texts Sent Per Day and Favorite Way to Com-
municate Exercise 1.24 introduces a survey given
to a sample of high school seniors in Pennsylvania.
Two of the variables in the survey are TextsSent, the
number of text messages sent per day, and Commu-
nicate, the student’s favorite way to communicate
with friends (App, In person, Phone, or Text). The
data are stored in PASeniors.

(a) Use technology to find the summary statistics
for each of the four categories. Which group has
the largest mean number of texts sent? Which
group has the smallest?

(b) Use technology to conduct an ANOVA test.
What is the F-statistic? What is the p-value?

(c) What is the conclusion of the test?

8.39 Football and Brain Size Exercise 2.165 on
page 112 describes a study examining a possible
relationship of football playing and concussions on
hippocampus volume, in 𝜇L, in the brain. The study
included three groups: controls who had never
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played football (Control), football players with no
history of concussions (FBNoConcuss), and foot-
ball players with a history of concussions (FBCon-
cuss). The data is available in FootballBrain, and the
side-by-side boxplots shown in Exercise 2.165 indi-
cate that the conditions for using the F-distribution
appear to be met.

(a) Use technology to find the summary statistics
for each of the three groups. Which group has
the largest mean hippocampus volume? Which
group has the smallest?

(b) Use technology to construct an ANOVA table.
What is the F-statistic? What is the p-value?

(c) What is the conclusion of the test?

8.40 Football and Brain Size: Randomization Test
Exercise 8.39 describes a study examining hip-
pocampus volume in the brain between controls
who have never played football, football players
with no history of concussion, and football players
with a history of concussion. The data are avail-
able in FootballBrain. Use StatKey or other
technology to conduct an ANOVA randomization
test to determine whether there is a significant dif-
ference in mean hippocampus volume between the
three categories.

(a) What is the F-statistic for the observed data?

(b) Generate one randomization sample. What is
the F-statistic for that sample?

(c) Generate a full randomization distribution
and find the p-value. (If you have also
completed Exercise 8.39, compare this result
with the p-value obtained using a theoretical
F-distribution.)

(d) What is the conclusion of the test?

8.41 Exercise and Award Preference In Exam-
ple 8.5 on page 588 we see a comparison of mean
pulse rates between students who prefer each of
three different awards (Academy Award, Nobel
Prize, Olympic gold medal). The ANOVA test
shows that there appears to be a difference in mean
pulse rates among those three groups. Can you
guess why award preference might be associated
with pulse rates? One possibility is exercise. Per-
haps students who prefer an Olympic medal are
more likely to be athletes who exercise more fre-
quently, stay in shape, and thus have lower pulse
rates. Use technology and the data in StudentSur-
vey that includes a variable measuring the typical
hours of exercise per week for each student to see

if there is a difference in mean exercise amounts
depending on award preference. Be sure to check
that the conditions for ANOVA are reasonable in
this situation.

8.42 Fish Ventilation Most fish use gills for respi-
ration in water and researchers can observe how
fast a fish’s gill cover beats to study ventilation,
much like we might observe breathing rate for a
person. Professor Brad Baldwin is interested in how
water chemistry might affect gill beat rates. In one
experiment he randomly assigned fish to tanks with
different levels of calcium. One tank was low in cal-
cium (0.71 mg/L), the second tank had a medium
amount (5.24 mg/L), and the third tank had water
with a high calcium level (18.24 mg/L). His research
team counted gill rates (beats per minute) for sam-
ples of 30 fish in each tank. The results10 are stored
in FishGills3. (Note: You may also see a file called
FishGills12 which is a more extensive experiment
with 12 tanks.)

(a) Use technology to check that the conditions
for an ANOVA model are reasonable for these
data. Include a plot that compares the gill rates
for the three calcium conditions.

(b) If the conditions are met, use technology to find
the ANOVA table and complete the test. If the
conditions are not reasonable, use a random-
ization test (scrambling the calcium levels) to
complete the test.

8.43 Drug Resistant Pathogens Drug resistant
pathogens pose one of the major public health
challenges of this century. Conventional wisdom
is that aggressive treatment should be used to kill
pathogens rapidly, before they have a chance to
acquire resistance. However, if drug pathogens are
already present, this strategy may actually back-
fire by intensifying the natural selection placed on
drug-resistant pathogens. A study11 took mice and
infected them with a mixture of drug-resistant and
drug-susceptible malaria parasites, then random-
ized mice to one of four different treatments of
an antimalarial drug (with 18 mice in each group):
untreated (no drug), light (4 mg/kg for 1 day),

10Thanks to Professor Baldwin and his team for supplying the
data.
11Huijben, S., et al., “Aggressive Chemotherapy and the Selec-
tion of Drug Resistant Pathogens,” PLOS Pathogens, 9:9,
e1003578, Sep 2013, doi:10.1371/journal.ppat.1003578.
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moderate (8 mg/kg for 1 day), or aggressive (8
mg/kg for 5 or 7 days).12 Data are available in
DrugResistance.13

(a) For each mouse, response variables included
measures of drug resistance, such as

• Density of drug-resistant parasites (Resis-
tanceDensity per 𝜇l)

• Number of days (out of the 50-day exper-
iment) each mouse had infectious drug-
resistant parasites present (DaysInfectious)

and measures of health such as

• Body mass (Weight in grams)

• Red blood cell density (RBC in million/𝜇l)

12This study includes two different experiments, but the exper-
iments only differ by the initial ratio of resistant to susceptible
parasites (101 ∶ 106 in Experiment 1 and 101 ∶ 109 in Experiment
2 and the duration (5 or 7 days) for the aggressive treatment),
with 18 mice in each group. Here we combine the results from
the two experiments, but if you are interested to see if there is a
difference between the two experiments, the dataset has a vari-
able indicating which experiment each mouse was part of, and
you are welcome to analyze them separately on your own.
13Huijben, S., et al., (2013). Data from: Aggressive chemo-
therapy and the selection of drug resistant pathogens. Dryad
Digital Repository. http://dx.doi.org/10.5061/dryad.09qc0.
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Figure 8.8 Measures of drug resistance (top row) and health outcomes (bottom row)

The different response variables are displayed
in Figure 8.8 by treatment group, with mea-
sures of drug resistance in the top row and
measures of health outcomes in the bottom
row. Higher values correspond to more drug
resistance (which is bad) in the drug-resistance
response variables and to healthier outcomes
(which are good) in the health response vari-
ables. Does there appear to be an association
between treatment level and the response vari-
ables measuring drug resistance? If so, describe
the association. Does there appear to be an
association between treatment level and the
response variables measuring health? If so,
describe the association.

(b) Because we are interested in dose here, exclude
the untreated category, and only compare
the different actual treatments (Light, Mod-
erate, and Aggressive). Conduct the ANOVA
test and give the p-value for each of the
four response variables by treatment level.
Which variables are significantly associated
with treatment level? Which variables are
not significantly associated with treatment
level?
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(c) What have you learned about treatment level
and drug resistance? How does this compare
with the conventional wisdom that aggressive
treatments are more effective at preventing
drug resistance?

(d) For the response variables measuring drug resis-
tance, do the conditions for ANOVA appear
to be satisfied? If not, which condition is
most obviously violated? For the response vari-
ables measuring health, do the conditions for
ANOVA appear to be satisfied? If not, which
condition is most obviously violated? If the con-
ditions do appear to be violated, keep in mind
that the p-values calculated in part (b) will not
be entirely accurate.

8.44 Drug Resistance Outliers Exercise 8.43 intro-
duces a study of drug resistant parasites in mice.
Figure 8.8 shows boxplots of measures of drug resis-
tance and health for mice getting three different
doses of antibacterial drug and one untreated group
getting no drug. The plot (bottom right) showing
red blood cell density (RBC) as the response vari-
able on the vertical axis raises concerns about the
normality condition for ANOVA due to a few very
low outliers. Eliminate those extreme cases from
the data in DrugResistance as well as the untreated
group (as in Exercise 8.43), and rerun the ANOVA
to look for differences in mean red blood cell den-
sity between the three groups that got different
doses of the treatment drug. Do the findings change
much when the outliers are eliminated?

8.2PAIRWISE COMPARISONS AND INFERENCE
AFTER ANOVA

In Section 8.1 we see how to use ANOVA to test for a difference in means
among several groups. However, that test only tells us when differences exist,
not which specific groups differ. The goal of this section is to adapt the inference
procedures of Chapter 6 to use the results of the ANOVA analysis. This allows us
to find a confidence interval for the mean in any group, find a confidence interval
for a difference in means between two groups, and test when that difference is
significant.

Using ANOVA for Inferences about Group Means
In Chapter 6 we use formulas such as those below for doing inference (either confi-
dence intervals or tests) for a single mean and differences in two means:

x ± t∗ ⋅
s√
n

(x1 − x2) ± t∗

√
s21
n1

+
s22
n2

t =
x1 − x2√
s21
n1

+
s22
n2

If we have found an ANOVA table based on samples from several groups, we make
a couple of small adjustments to these computations:

• Estimate any standard deviation with
√
MSE from the ANOVA table.

• Use the error degrees of freedom, n − k, for any t-distributions.

For example, to find a confidence interval for the mean of the ith group, we use

xi ± t∗
√
MSE√
ni

Since one of the conditions for the ANOVA is that the standard deviation is the
same in each group, using

√
MSE gives an estimate that is based on all of the sam-

ples, rather than just one. That is why we use the MSE degrees of freedom, rather
than ni − 1. We often call

√
MSE the pooled standard deviation.
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Example 8.7
Sandwich Ants

The ANOVA table on page 584 for assessing a difference in average ant counts on
three types of sandwiches is reproduced below:

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 780.5 5.63 0.011
Error 21 2913 138.7
Total 23 4474

The mean number of ants for the sample of eight pieces of peanut butter sand-
wiches is 34.0. Use this and the ANOVA results to find a 95% confidence interval
for the mean number of ants attracted to a peanut butter sandwich.

Solution From the ANOVA table we find MSE = 138.7 with 21 degrees of freedom. For a
95% confidence interval we find percentiles from a t-distribution with 21 degrees of
freedom as t∗ = 2.080. The confidence interval is

34.0 ± 2.080

√
138.7√
8

= 34.0 ± 8.66 = (25.34, 42.66)

We are 95% sure that themean number of ants attracted to a peanut butter sandwich
is between 25.3 and 42.7.

The ANOVA output in Minitab includes a crude graphical representation
of the confidence intervals for the means of each of the groups. Check that the
interval shown for the peanut butter filling is consistent with the calculation from
Example 8.7. The value labeled “Pooled StDev” is

√
MSE, the estimate of the

common standard deviation within the groups.

Individual 95% CIs For Mean Based on Pooled StDev
Level N Mean StDev - - - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + -
Ham & Pickles 8 49.25 10.79 (- - - - - - - * - - - - - - - -)
Peanut Butter 8 34.00 14.63 (- - - - - - - - * - - - - - - - -)
Vegemite 8 30.75 9.25 (- - - - - - - - * - - - - - - -)

- - - - - - - - + - - - - - - - - - + - - - - - - - - - + - - - - - - - - - + -
30 40 50 60

Pooled StDev = 11.78

We could have found a confidence interval for the peanut butter mean using
just the mean (x2 = 34.0) and standard deviation (s2 = 14.63) from its sample and a
t-distribution with 7 degrees of freedom:

34.0 ± 2.36514.63√
8

= 34.0 ± 12.23 = (21.77, 46.23)

This gives a wider interval since s2 is larger than
√
MSE and there is more uncer-

tainty in the estimate of the standard deviation based on just eight values, so the t∗

value is larger.

For comparing twomeans, the usual standard error for xi − xj is SE =

√√√√ s2i
ni

+
s2j
nj
.

If we substituteMSE for s2i and s
2
j , this simplifies to

SE (of xi − xj) =

√
MSE

(
1
ni

+ 1
nj

)
(after ANOVA)
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We use this in both a confidence interval for 𝜇i − 𝜇j and a test statistic to compare a
pair of means.

Inference for Means after ANOVA

After doing an ANOVA for a difference in means among k groups,
based on samples of size n1 + n2 + · · · + nk = n:

Confidence interval for 𝛍i: xi ± t∗
√
MSE√
ni

Confidence interval for 𝛍i − 𝛍j: (xi − xj) ± t∗
√
MSE

(
1
ni

+ 1
nj

)

If the ANOVA indicates that there are differences among the means:

Pairwise test of 𝛍i vs 𝛍j: t =
xi − xj√

MSE
(

1
ni

+ 1
nj

)

whereMSE is the mean square error from the ANOVA table and the
t-distributions use n − k degrees of freedom.

Example 8.8
Use the SandwichAnts data and ANOVA to find a 95% confidence interval for the
difference in average ant counts between vegemite and ham & pickles sandwiches.

Solution The sample means are x1 = 30.75 for vegemite and x3 = 49.25 for ham & pick-
les, both based on samples of size 8. Again, we use a t-distribution with 21
degrees of freedom so we have t∗ = 2.080 for a 95% confidence interval (just as in
Example 8.7).
The confidence interval for 𝜇1 − 𝜇3 is

(30.75 − 49.25) ± 2.080

√
138.7

(
1
8
+ 1

8

)
= −18.50 ± 12.25 = (−30.75,−6.25)

We are 95% sure that the mean number of ants for vegemite sandwiches is some-
where between 30.75 and 6.25 less than the mean number of ants for ham & pickle
sandwiches.

Note that the confidence interval for 𝜇1 − 𝜇3 in the previous example includes
only negative differences (and not zero). This implies evidence that the two popu-
lation means differ with vegemite having a smaller mean than ham & pickles. This
result is not so surprising since the ANOVA indicates that at least two of the groups
have different means and the sample means are farthest apart for vegemite and ham
& pickles. What about vegemite versus peanut butter?

Example 8.9
Based on the ANOVA results, test at a 5% level whether the data provide evidence
of a difference in mean number of ants between vegemite and peanut butter sand-
wiches.

Solution The relevant hypotheses are H0 ∶ 𝜇1 = 𝜇2 vs Ha ∶ 𝜇1 ≠ 𝜇2. We compare the sample
means, x1 = 30.75 and x2 = 34.0, and standardize using the SE for a difference after
ANOVA:

t = 30.75 − 34.0√
138.7

(
1
8
+ 1

8

) = −3.25
5.89

= −0.55



8.2 Pairwise Comparisons and Inference after ANOVA 607

We find the p-value using a t-distribution with 21 (error) degrees of freedom, dou-
bling the area below t = −0.55 to get p-value = 2(0.2941) = 0.5882. This is a large
p-value so we do not have evidence of a difference in mean number of ants between
vegemite and peanut butter sandwiches.

We leave it to Exercise 8.57 to compare the ant attractiveness of the peanut but-
ter and ham & pickle fillings. Note that with three different groups we have three
possible pairs of means (vegemite vs peanut butter, vegemite vs ham & pickles, and
peanut butter vs ham & pickles) to compare when the ANOVA indicates there is a
difference in the means. The number of pairwise comparisons can be much larger
when there are more groups. We consider some methods for handling multiple com-
parisons in the next example.

Lots of Pairwise Comparisons
For cases with a larger number of groups, the number of possible pairs to compare
can grow quite quickly (k = 4 =⇒ 6 pairs, k = 5 =⇒ 10 pairs, etc.). This raises two
issues: the need to automate such comparisons and a concern about multiplicity
where the chance of making a Type I error increases as we do more and more tests.

©John Wiley & Sons. Photo by Vincent LaRussa.

How much do these textbooks cost?

D A T A 8 . 2 Textbook Costs
Textbook costs can have a substantial impact on a student’s budget. Do costs
tend to differ depending on academic area? To investigate this question we
selected a random sample of 10 introductory courses at one college within each
of four broad areas (Arts, Humanities, Natural Science, and Social Science). For
each course we used the college bookstore’s website to determine the number
of required books and total cost of the books (assuming students purchase new
copies), rounding to the nearest dollar. The data for these 40 courses are stored
in TextbookCosts. ◼
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Example 8.10
Check that the conditions for running an ANOVA are reasonable to compare mean
textbook costs between courses from different academic fields. Use technology to
compute the ANOVA table and explain what it tells us about whether the differ-
ences in the sample means are significant.

Solution Figure 8.9 shows side-by-side boxplots of the textbook costs for the courses, com-
pared between the academic fields. All four samples are relatively symmetric, have
no outliers, and appear to have about the same variability, so the conditions are
met. We use ANOVA to test for a difference in mean textbook costs among the
four fields. The hypotheses are H0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 vs Ha ∶ At least one𝜇i ≠ 𝜇j,
where we number the fields so that 1 = Arts, 2 = Humanities, 3 = Natural Science,
and 4 = Social Science. Some ANOVA output for comparing costs between these
fields is shown.

Source DF SS MS F P
Field 3 30848 10283 4.05 0.014
Error 36 91294 2536
Total 39 122142

Level N Mean StDev
Arts 10 94.60 44.95
Humanities 10 120.30 58.15
NaturalScience 10 170.80 48.49
SocialScience 10 118.30 48.90

Checking the standard deviations of text costs for each academic area, we see that
they are roughly the same, giving further evidence that the equal-variance condition
is reasonable. The p-value = 0.014 from the ANOVA is fairly small, so we have good
evidence that there is probably some difference in mean textbook costs depending
on the academic field.

Figure 8.9 Textbook
costs between courses in
different academic areas Cost

Fi
el

d

0 50 100 150 200 250

SocialScience

NaturalScience

Humanities

Arts

Since the ANOVA shows there are differences among the means, we again need
to ask the question “Which fields differ from others in their mean textbook costs?”
The way we handle automation of pairwise comparisons depends on the software
we use. Some software has an option to produce confidence intervals for all pairwise
differences. Applied to the ANOVA in Example 8.10 we get the following computer
output:
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Field N Mean Grouping
NaturalScience 10 170.80 A
Humanities 10 120.30 B
SocialScience 10 118.30 B
Arts 10 94.60 B
Means that do not share a letter are significantly different.

CI for Difference Lower Center Upper
Humanities - Arts −19.97 25.70 71.37
NaturalScience - Arts 30.53 76.20 121.87
SocialScience - Arts −21.97 23.70 69.37
NaturalScience - Humanities 4.83 50.50 96.17
SocialScience - Humanities −47.67 −2.00 43.67
SocialScience - NaturalScience −98.17 −52.50 -6.83

Remember that a 95% confidence interval for 𝜇i − 𝜇j contains zero exactly when a
5% test of H0 ∶ 𝜇i = 𝜇j vs Ha ∶ 𝜇i ≠ 𝜇j does not have enough evidence to reject H0.
In the bottom half of the computer output, we see intervals for the six possible com-
parisons of these four fields. Three of the intervals include zero (have one negative
and one positive endpoint) so we do not have evidence of a significant difference in
mean textbook costs between courses in Arts, Humanities, or Social Sciences. The
other three intervals, pairing each of these three fields with Natural Science, fail to
contain zero. In each case, the Natural Science mean is enough larger than the mean
cost for courses in the other field that a zero difference is outside of the plausible
range of values.

Thus the data provide evidence that the mean cost for textbooks in Natural
Science courses at this college is different from (and larger than) the mean costs in
Arts, Humanities, and Social Sciences. We find no evidence of a difference in mean
textbook costs among Arts, Humanities, and Social Science courses. This conclusion
is illustrated near the top of the computer output where the letter “A” sets Natural
Science off by itself and the letter “B” lumps the other three fields together as not
significantly different.

The Problem of Multiplicity
One concern when doing lots of pairwise comparisons after an ANOVA (or any-
time we do multiple significance tests) is the issue of multiplicity. As we saw in
Section 4.4, if each test has a 5% chance of making a Type 1 error (in pairwise
comparisons that is finding the two groups have different means, when really they
are the same), the overall error rate for lots of tests can be quite a bit higher.
Even if the null hypothesis (no difference) is true, we would expect about 1 in
20 tests (at a 5% level) to reject H0. It is important to only conduct the pairwise
comparisons described in this section if an overall analysis of variance test shows
significance.

There are several ways to deal with multiplicity, especially when doing pairwise
comparisons, which are beyond the scope of this book. You may find some of these
options, with names like Tukey’s HSD, Fisher’s LSD (see Exercise 8.66), Student
Newman-Kuels, or Bonferroni’s adjustment, in your statistical software or a later
course in statistics.



610 CHA P T E R 8 ANOVA to Compare Means

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Create confidence intervals for single means and differences of means
after doing an ANOVA for means

• Test specific pairs of means after ANOVA indicates a difference in
means, recognizing the problem of multiplicity

Exercises for Section 8.2

SKILL BUILDER 1
Exercises 8.45 to 8.49 refer to the data with analysis
shown in the following computer output:

Level N Mean StDev
A 5 10.200 2.864
B 5 16.800 2.168
C 5 10.800 2.387

Source DF SS MS F P
Groups 2 133.20 66.60 10.74 0.002
Error 12 74.40 6.20
Total 14 207.60

8.45 Is there sufficient evidence of a difference in
the population means of the three groups? Justify
your answer using specific value(s) from the output.

8.46 What is the pooled standard deviation? What
degrees of freedom are used in doing inferences for
these means and differences in means?

8.47 Find a 95% confidence interval for the mean
of population A.

8.48 Find a 90% confidence interval for the differ-
ence in the means of populations B and C.

8.49 Test for a difference in population means
between groups A and C. Show all details of the
test.

SKILL BUILDER 2
Exercises 8.50 to 8.56 refer to the data with analysis
shown in the following computer output:

Level N Mean StDev
A 6 86.833 5.231
B 6 76.167 6.555
C 6 80.000 9.230
D 6 69.333 6.154

Source DF SS MS F P
Groups 3 962.8 320.9 6.64 0.003
Error 20 967.0 48.3
Total 23 1929.8

8.50 Is there evidence for a difference in the popu-
lationmeans of the four groups? Justify your answer
using specific value(s) from the output.

8.51 What is the pooled standard deviation? What
degrees of freedom are used in doing inferences for
these means and differences in means?

8.52 Find a 99% confidence interval for the mean
of population A. Is 90 a plausible value for the pop-
ulation mean of group A?

8.53 Find a 95% confidence interval for the differ-
ence in the means of populations C and D.

8.54 Test for a difference in population means
between groups A and D. Show all details of the
test.

8.55 Test for a difference in population means
between groups A and B. Show all details of the
test.

8.56 Test for a difference in population means
between groups B and D. Show all details of the
test.

8.57 Peanut Butter vs Ham&Pickles TheANOVA
table in Example 8.3 on page 584 for the Sand-
wichAnts data indicates that there is a difference
in mean number of ants among the three types of
sandwich fillings. In Examples 8.8 and 8.9 we find
that the difference is significant between vegemite
and ham & pickles, but not between vegemite and
peanut butter. What about peanut better vs ham
& pickles? Test whether the difference in mean
ant counts is significant (at a 5% level) between
those two fillings, using the information from the
ANOVA.

8.58 Pulse Rate and Award Preference In
Example 8.5 on page 588 we find evidence from
the ANOVA of a difference in mean pulse rate
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among students depending on their award prefer-
ence. The ANOVA table and summary statistics for
pulse rates in each group are shown below.

Source DF SS MS F P
Award 2 2047 1024 7.10 0.001
Error 359 51729 144
Total 361 53776

Level N Mean StDev
Academy 31 70.52 12.36
Nobel 149 72.21 13.09
Olympic 182 67.25 10.97

Use this information and/or the data in StudentSur-
vey to compare mean pulse rates, based on the
ANOVA, between each of three possible pairs of
groups:

(a) Academy Award vs Nobel Prize.

(b) Academy Award vs Olympic gold medal.

(c) Nobel Prize vs Olympic gold medal.

LIGHT AT NIGHT MAKES FAT MICE,
CONTINUED
Data 4.1 introduces a study in mice showing that
even low-level light at night can interfere with nor-
mal eating and sleeping cycles. In the full study,
mice were randomly assigned to live in one of three
light conditions: LD had a standard light/dark cycle,
LL had bright light all the time, and DM had dim
light when there normally would have been dark-
ness. Exercises 8.30 to 8.36 in Section 8.1 show that
the groups had significantly different weight gain
and time of calorie consumption. In Exercises 8.59
and 8.60, we revisit these significant differences.

8.59 Body Mass Gain Computer output showing
body mass gain (in grams) for the mice after four
weeks in each of the three light conditions is shown,
along with the relevant ANOVA output. Which
light conditions give significantly different mean
body mass gain?

Level N Mean StDev
DM 10 7.859 3.009
LD 9 5.987 1.786
LL 9 11.010 2.624

One-way ANOVA: BM4Gain versus Light
Source DF SS MS F P
Light 2 116.18 58.09 8.96 0.001
Error 25 162.10 6.48
Total 27 278.28

8.60 When Calories Are Consumed Researchers
hypothesized that the increased weight gain seen in
mice with light at night might be caused by when

the mice are eating. Computer output for the per-
centage of food consumed during the day (when
mice would normally be sleeping) for each of the
three light conditions is shown, along with the rel-
evant ANOVA output. Which light conditions give
significantly different mean percentage of calories
consumed during the day?

Level N Mean StDev
DM 10 55.516 10.881
LD 9 36.485 7.978
LL 9 76.573 9.646

One-way ANOVA: Day/night consumption versus Light
Source DF SS MS F P
Light 2 7238.4 3619.2 39.01 0.000
Error 25 2319.3 92.8
Total 27 9557.7

8.61 More on Exercise and StressExercise 6.243 on
page 499 introduces a study showing that exercise
appears to offer some resiliency against stress, and
Exercise 8.21 on page 597 follows up on this intro-
duction. In the study, mice were randomly assigned
to live in an enriched environment (EE), a stan-
dard environment (SE), or an impoverished envi-
ronment (IE) for several weeks. Only the enriched
environment provided opportunities for exercise.
Half the mice then remained in their home cage
(HC) as control groups while half were subjected
to stress (SD). The researchers were interested in
how resilient the mice were in recovering from the
stress. One measure of mouse anxiety is amount of
time hiding in a dark compartment, with mice who
are more anxious spending more time in darkness.
The amount of time (in seconds) spent in darkness
during one trial is recorded for all the mice and
the means and the results of the ANOVA analysis
are shown. There are eight mice in each of the six
groups.

Group: IE:HC SE:HC EE:HC IE:SD SE:SD EE:SD
Mean: 192 196 205 392 438 231

Source DF SS MS F P
Light 5 481776 96355.2 39.0 0.000
Error 42 177835 2469.9
Total 47 659611

(a) Is there a difference between the groups in the
amount of time spent in darkness? Between
which two groups are we most likely to find
a difference in mean time spent in darkness?
Between which two groups are we least likely
to find a difference?

(b) By looking at the six means, where do you think
the differences are likely to lie?
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(c) Test to see if there is a difference in mean time
spent in darkness between the IE:HC group and
the EE:SD group (that is, impoverished but not
stressed vs enriched but stressed).

8.62 More on School Pressure and Time with
Friends Exercise 8.17 on page 595 involves using
ANOVA to compare the mean number of hours
per week hanging out with friends (HangHours)
for groups of high school seniors determined by
the amount of pressure they feel due to school-
work (SchoolPressure = None, Very little, Some, or
A lot). The data come from a survey of Pennsyl-
vania high school seniors stored in PASeniors. The
p-value of the F-test is 0.003, indicating strong evi-
dence for a difference in means among these four
groups. Use technology to discuss which groups dif-
fer and how.

8.63 More on Number of Texts and Communica-
tion Method Exercise 8.38 on page 601 involves
using ANOVA to compare the mean number of text
messages sent per day (TextsSent) for groups of high
school seniors determined by their favorite way to
communicate with friends (Communicate = App,
In person, Phone, or Text). The data come from a
survey of Pennsylvania high school seniors stored
in PASeniors. The p-value of the F-test is 0.00004,
indicating strong evidence for a difference in means
among these four groups. Use technology to discuss
which groups differ and how.

8.64 Drug Resistance and Dosing Exercise 8.43 on
page 602 explores the topic of drug dosing and
drug resistance by randomizing mice to four dif-
ferent drug treatment levels: untreated (no drug),
light (4 mg/kg for 1 day), moderate (8 mg/kg for
1 day), or aggressive (8 mg/kg for 5 or 7 days).
Exercise 8.43 found that, contrary to conventional
wisdom, higher doses can actually promote drug
resistance, rather than prevent it. Here, we further
tease apart two different aspects of drug dosing:
duration (how many days the drug is given for) and
amount per day. Recall that four different response
variables were measured; two measuring drug resis-
tance (density of resistant parasites and number
of days infectious with resistant parasites) and two
measuring health (body mass and red blood cell
density). In Exercise 8.43 we don’t find any signif-
icant differences in the health responses (Weight
and RBC) so we concentrate on the drug resistance
measures (ResistanceDensity andDaysInfectious) in
this exercise. The data are available in DrugResis-
tance and we are not including the untreated group.

(a) Investigate duration by comparing the mod-
erate treatment with the aggressive treatment

(both of which gave the same amount of drug
per day, but for differing number of days).
Which of the two resistance response variables
(ResistanceDensity and DaysInfectious) have
means significantly different between these two
treatment groups? For significant differences,
indicate which group has the higher mean.

(b) Investigate amount per day by comparing the
light treatment with the moderate treatment
(both of which lasted only 1 day, but at differing
amounts). Which of the two resistance response
variables have means significantly different
between these two treatment groups? For sig-
nificant differences, indicate which group has
the higher mean.

(c) Does duration or amount seem to bemore influ-
ential (at least within the context of this study)?
Why?

8.65 Effects of Synchronization and Exertion on
Closeness Exercise 8.18 on page 595 looks at pos-
sible differences in ratings of closeness to a group
after doing a physical activity that involves either
high or low levels of synchronization (HS or LS)
and high or low levels of exertion (HE or LE).
Students were randomly assigned to one of four
groups with different combinations of these vari-
ables, and the change in their ratings of closeness
to their group (on a 1 to 7 scale) were recorded. The
data are stored in SynchronizedMovement and the
means for each treatment group are given below,
along with an ANOVA table that indicates a signif-
icant difference in the means at a 5% level.

Group N Mean StDev
HS+HE 72 0.319 1.852
HS+LE 64 0.328 1.861
LS+HE 66 0.379 1.838
LS+LE 58 −0.431 1.623

Analysis of Variance
Source DF SS MS F-Value P-Value
Group 3 27.04 9.012 2.77 0.042
Error 256 831.52 3.248
Total 259 858.55

The first three means look very similar, but the
LS+LE group looks quite a bit different from the
others. Is that a significant difference? Test this
by comparing the mean difference in change in
closeness ratings between the synchronized, high
exertion activity group (HS+HE) and the non-
synchronized, low exertion activity group (LS+LE).

8.66 Fisher’s LSDOne way to “automate” pairwise
comparisons that works particularly well when the
sample sizes are balanced is to compute a single
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value that can serve as a threshold for when a pair
of sample means are far enough apart to suggest
that the population means differ between those two
groups. One such value is called Fisher’s Least Sig-
nificant Difference or LSD for short.

LSD = t∗
√
MSE

(
1
ni

+ 1
nj

)

You may recognize this as the margin of error for
a confidence interval for a difference in two means
after doing an ANOVA. That is exactly how we
compute it. Recall that the test for a pair of means
will show a significant difference exactly when the
confidence interval fails to include zero. The confi-
dence level should be matched to the significance
level of the test (for example, a 95% confidence
interval corresponds to a 5% significance level).
If the difference in two group means (in absolute
value) is smaller than the LSD margin of error, the
confidence interval will have one positive and one
negative endpoint. Otherwise, the interval will stay
either all positive or all negative and we conclude
the two means differ:

Reject H0 and conclude

the two means differ ⇐⇒ |xi − xj| > LSD

Compute LSD using a 5% significance level for
the ANOVA data comparing textbook costs in
Example 8.10 on page 608. Use the value to deter-
mine which academic fields appear to show evi-
dence of a difference in mean textbook costs.

8.67 LSD for Exercise and StressUse Fisher’s LSD,
as described in Exercise 8.66, to discuss differences
in mean time mice spend in darkness for the six
combinations of environment and stress that pro-
duce the output in Exercise 8.61.

8.68 Fish Ventilation In Exercise 8.42 on page 602
we consider an ANOVA to test for difference in
mean gill beat rates for fish in water with three
different levels of calcium. The data are stored in
FishGills3. If the ANOVA table indicates that the
mean gill rates differ due to the calcium levels,
determine which levels lead to different means. If
the ANOVA shows no significant difference, find
a confidence interval for the mean gill rate at each
level of calcium.
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C H A P T E R 9

Inference for
Regression

“All models are wrong, but some are useful.”

–George E. P. Box∗

∗Box, G. and Draper, N., Empirical Model-Building and Response Surfaces, John Wiley and Sons, New York, 1987, p. 424.
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C H A P T E R O U T L I N E

9 Inference for Regression 614
9.1 Inference for Slope and Correlation 616

9.2 ANOVA for Regression 632
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Here are some of the questions and issues we will discuss in this chapter:

• Is there an association between the number of Facebook friends a person has and the social
perception areas of the brain?

• Does the price of an inkjet printer depend on how fast it prints?

• Does the tip percentage in a restaurant depend on the size of the bill?

• How well do SAT scores predict college grade point averages?

• Does when food is eaten affect weight gain?

• Is offense or defense more important in the NBA?

• Is the percent of a country’s expenditure on health care associated with life expectancy in that
country?

• How do sugar, sodium, and fiber contribute to the number of calories in breakfast cereal?

• What is the relationship between the amount of time a person spends exercising and the amount
of time a person spends watching television?

• How well does a president’s approval rating predict his or her re-election chances?

• What is the average tip left on a restaurant bill of $30?

• How well do first round scores in the Master’s golf tournament do at predicting final scores?

• How well does success in the pre-season predict success in the regular season, in the National
Football League?

• Is the honeybee population shrinking?
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616 CHA P T E R 9 Inference for Regression

9.1 INFERENCE FOR SLOPE AND CORRELATION

In Sections 2.5 and 2.6 we introduce summary statistics for correlation and linear
regression as ways to describe the relationship between two quantitative variables.
In Chapters 3 and 4 we see examples for doing inference for these quantities using
bootstrap distributions and randomization tests. In this chapter we develop methods
similar to those in Chapters 5 and 6 for applying standard distributions to help with
inferences for quantitative vs quantitative relationships.

Simple Linear Model
For a simple linear model we have a quantitative response variable (Y) and a quan-
titative explanatory variable (X). We assume the values of Y tend to increase or
decrease in a regular (linear) way as X increases. This does not mean an exact
relationship with all points falling perfectly on a line. A statistical model generally
consists of two parts: one specifying the main trend of the relationship and the sec-
ond allowing for individual deviations from that trend. For a simple linear model,
a line (specified with a slope and an intercept) shows the general trend of the data,
and individual points tend to be scattered above and below the line.

Recall from Section 2.6, we use the following notation for the least squares line
for a sample:

̂Y = b0 + b1X

We use the following notation to express a simple linear model for a population:

Y = 𝛽0 + 𝛽1X + 𝜖

The linear part of the model (𝛽0 + 𝛽1X) reflects the underlying pattern for how the
average Y behaves depending on X. We use Greek letters for the intercept and
slope1 in the model since they represent parameters for the entire population. The
error term in the model (denoted by 𝜖) allows for individual points to vary above or
below the line.

In practice, just as we rarely know the mean, 𝜇, or proportion, p, for an entire
population, we can only estimate the population slope and intercept using the data
in a sample. Once we have estimated the line, we can also estimate the error term
for any point as the distance away from the fitted line.

pagadesign/Getty Images

What factors influence the price of these
printers?

1We use subscripts for 𝛽0 and 𝛽1 to make it easy to consider additional explanatory terms in a linear
model.
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D A T A 9 . 1 Inkjet Printers
Suppose we are interested in purchasing a multifunction inkjet printer. How are
performance factors related to the price of the printer? To investigate this
question we checked reviews at PCMag.com for a sample of 20 all-in-one
printers.2 The data stored in InkjetPrinters include:

PPM printing rate (pages per minute) for a set of print jobs
PhotoTime average time (in seconds) to print 4 × 6 color photos
CostBW average cost per page (in cents) for printing in black & white
CostColor average cost per page (in cents) for printing in color
Price typical retail price (in dollars) at the time of the review ◼

Table 9.1 Printing rate and price for 20 inkjet printers

PPM 3.9 2.9 2.7 2.9 2.4 4.1 3.4 2.8 3.0 3.2
Price 300 199 79 129 70 348 299 248 150 150

PPM 2.7 2.7 2.2 2.5 2.7 1.7 2.8 1.8 1.8 4.1
Price 87 100 99 189 99 60 199 149 79 199

Example 9.1
Use technology and data in InkjetPrinters (also given in Table 9.1) to estimate and
display the least squares line for predicting Price based on PPM.

Figure 9.1 Plot of Price
vs PPM with least
squares line for 20 inkjet
printers PPM
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Solution Here is some computer output for finding the least squares line using the data on 20
printers in InkjetPrinters:

Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) −94.22 56.40 −1.671 0.112086
PPM 90.88 19.49 4.663 0.000193

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

We see that the intercept is b0 = −94.22 and the slope is b1 = 90.88 to produce
the least squares prediction equation

̂Price = −94.22 + 90.88 ⋅ PPM

2Reviews found at http://www.pcmag.com/reviews/printers, August 2011.
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Figure 9.1 shows a scatterplot of Price vs PPM with this least squares line sum-
marizing the trend in the data. The plot shows a generally increasing trend with
faster printers (higher PPM) tending to cost more.

Inference for Slope
In Example B.4 on page 374 we use a bootstrap distribution to find a confidence
interval for the slope in a regression model to predict Tip based on a restaurant Bill,
using the data in RestaurantTips. In Example B.6 on page 376 we create a random-
ization distribution to test if the slope between the percentage tip (PctTip) and Bill
is different from zero. We can apply these same ideas to construct a bootstrap dis-
tribution of slopes for the inkjet printer model or a randomization distribution to
test if the slope between Price and PPM is positive. Figure 9.2 shows 1000 simulated
slopes in each of these situations.
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(a) Bootstrap slopes (b) Randomization slopes when β1 = 0

Left Tail Two-Tail Right Tail # samples = 1000

mean = 0.321

st.dev. = 27.527

Left Tail Two-Tail Right Tail# samples = 1000

mean = 91.056

st.dev. = 20.405

Figure 9.2 Bootstrap and randomization distributions for Price vs PPM with InkjetPrinters

Once again, we see familiar shapes that are predictable in advance when a
linear model is appropriate for summarizing the relationship between two quantita-
tive variables. The bootstrap slopes for Price vs PPM are bell-shaped, are centered
near 90.88 (the slope in the original sample), and have a standard error of about
SE = 20.4. The randomization slopes are also bell-shaped and centered at zero (as
expected for a null hypothesis that 𝛽1 = 0). We see that none of the randomization
slopes are as extreme as the slope b1 = 90.88 that was observed in the original sam-
ple. This gives very strong evidence for a positive association, indicating that the
slope when using PPM to predict Price for all inkjet printers is greater than zero. As
we saw in Chapters 5 and 6, the key to doing inference with a theoretical distribu-
tion such as the normal or t (rather than a bootstrap or randomization distribution)
is being able to estimate the standard error (SE) of the statistic of interest. Fortu-
nately, most statistical software packages provide an estimate for the standard error
of the slope when estimating a regression model.

Looking back at the computer output for predicting Price based on PPM in
Example 9.1 we see the standard error for the slope (coefficient of PPM) is 19.49,
just a bit smaller than the standard error from the bootstrap slopes in Figure 9.2(a).
While the formula for computing the standard error of the slope is a bit complicated
(see the computational notes at the end of Section 9.2), we can use the standard
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error from the regression output to form a confidence interval or a standardized test
statistic. Given the bell-shape of the bootstrap and randomization distributions for
slope in Figure 9.2, it shouldn’t surprise you to learn that the appropriate reference
distribution is a t-distribution, although in this case we use n − 2 degrees of freedom
since we are estimating two parameters in this model. The general formulas for
confidence intervals and test statistics that we used repeatedly in Chapters 5 and 6
apply here also.

Inference for the Slope in a Simple Linear Model

When the conditions for a simple linear model are reasonably met, we
find:

(a) A confidence interval for the population slope using

Sample statistic ± t∗ ⋅ SE = b1 ± t∗ ⋅ SE

(b) A test statistic for H0 ∶ 𝛽1 = 0 using

t =
Sample statistic −Null parameter

SE
=
b1 − 0
SE

=
b1
SE

where b1 is the slope for the least squares line for the sample and SE
is the standard error of the slope (both obtained with technology).

The appropriate reference distribution is a t-distribution with
n − 2 degrees of freedom.

Example 9.2
Use information in the computer output to find a 95% confidence interval for the
population slope to predict Price based on PPM. Also test (at a 5% level) whether
we have evidence that the printing speed (PPM) is an effective linear predictor of
the price of such printers.

Solution Here, again, is the output for fitting a least squares line to predict Price using PPM
for the 20 printers in InkjetPrinters:

Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) −94.22 56.40 −1.671 0.112086
PPM 90.88 19.49 4.663 0.000193

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

The estimated slope is b1 = 90.88 and the standard error is SE = 19.49. For 95%
confidence we use a t-distribution with 20 − 2 = 18 degrees of freedom to find
t∗ = 2.10. The confidence interval for the slope is

b1 ± t∗ ⋅ SE

90.88 ± 2.10(19.49)
90.88 ± 40.93

49.95 to 131.81
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Based on these data we are 95% sure that the slope (increase in price for every extra
page per minute in printing speed) is somewhere between $49.95 and $131.81.

We know that PPM has some relationship as a predictor of Price if the popu-
lation slope 𝛽1 is not zero. To test H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0 using the sample data,
we compute a standardized test statistic with

t = Statistic −Null value
SE

=
b1 − 0
SE

= 90.88
19.49

= 4.66

The p-value is twice the area above 4.66 in a t-distribution with 18 degrees of free-
dom, but this is a large t-statistic so we see that p-value ≈ 0. This gives strong evi-
dence that the printing speed (PPM) is an effective predictor of the price for inkjet
printers. Note that the values of the test statistic (4.663) and the p-value (0.000193)
can also be found directly in the computer output for this model.

Example 9.3
Predicting Tips Based on Restaurant Bills

Some computer output for fitting a least squares line to predict the size of a restau-
rant tip using the amount of the bill as a predictor is given below. The data, a sample
of n = 157 restaurant bills at the First Crush bistro, are stored in RestaurantTips.

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) −0.292267 0.166160 −1.759 0.0806
Bill 0.182215 0.006451 28.247 <2e-16

Use information from the computer output to find and interpret a 90% confidence
interval for the slope of this regression model.

Solution From the computer output, the sample slope is b1 = 0.182 with a standard error
given as SE = 0.00645. For a sample size of n = 157 bills, we use a t-distribution
with 157 − 2 = 155 degrees of freedom. For 90% confidence, we find t∗ = 1.655. The
confidence interval for the slope is

b1 ± t∗ ⋅ SE = 0.182 ± 1.655(0.00645) = 0.182 ± 0.011 = (0.171, 0.193)
Based on these data we are 90% sure that the increase in the tip for each extra dollar
of a bill is somewhere between $0.171 and $0.193.

Example 9.4
Predicting Percent Tip Based on Restaurant Bills

Use the data in RestaurantTips to test whether the amount of the bill is an effective
predictor of the size of the tip as a percentage of the bill (PctTip) for customers at
the First Crush bistro.

Solution We are testing H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0, where 𝛽1 is the slope for predicting the
percentage tip based on the amount of the bill for all First Crush customers. Here
is some computer output for fitting this model:

Coefficients: Estimate Std. Error t value Pr(> |t|)
(Intercept) 15.50965 0.73956 20.97 <2e-16
Bill 0.04881 0.02871 1.70 0.0911

We see that the sample slope is b1 = 0.0488 with standard error SE = 0.0287.
We see in the output that the t-statistic for testing the slope is t = 1.70, which gives a
(two-tail) p-value of 0.0911. This gives some (significant at just a 10% level) but not
very convincing evidence that the percent tip is related to the size of the bill.
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Note that the computer output for a regression model also gives a standard
error and t-test for the intercept in the model, but we rarely need to worry about
inference for the intercept. We are generally more concerned with the effectiveness
of the predictor and, in many cases, the intercept is not directly interpretable (such
as the cost for a printer that prints zero pages per minute!)

t-Test for Correlation
In some situations we may be interested in testing a linear association between two
quantitative variables when we don’t have a specific predictor/response relationship.
In Section 2.5 we introduce the correlation as a measure of the strength of a linear
association between two quantitative variables. Recall that a correlation of zero indi-
cates no linear relationship while a positive or negative correlation indicates some
linear relationship. We can use the correlation in a sample as a way to test whether
the population correlation 𝜌 differs from zero. The standard error for correlation r
using a sample of size n is SE =

√
(1 − r2)∕(n − 2).

t-Test for correlation

To test H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 ≠ 0 (or a one-tailed alternative) we use a
standardized test statistic

t =
Sample statistic −Null parameter

SE
= r − 0√

1−r2
n−2

= r
√
n − 2√
1 − r2

where r is the correlation for a sample of size n. To find a p-value we
use a t-distribution with n − 2 degrees of freedom.

Example 9.5
The correlation between printing rate (PPM) and cost per page for printing in black
& white (CostBW) for the 20 inkjet printers in InkjetPrinters is r = −0.636. Does
this provide sufficient evidence to conclude there is a negative association between
printing speed and cost?

Solution We test H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 < 0, where 𝜌 is the correlation between CostBW and
PPM for all inkjet printers on the market. The relevant test statistic is

t = r
√
n − 2√
1 − r2

= −0.636
√
20 − 2√

1 − (−0.636)2
= −3.50

We find the p-value using the lower tail (below −3.50) of a t-distribution with 18
degrees of freedom. This gives p-value = 0.0013, which is quite small. There is strong
evidence of a negative association between printing speed and ink costs per page.
Faster printers actually tend to cost less for the ink on each page.

Note that the strength of evidence when testing a correlation depends on the sample
size as well as the magnitude of the sample correlation. The same value of r might
be quite insignificant for a small sample but strong evidence of an association for a
much larger sample.

Example 9.6
Find the correlation between Bill and PctTip for the RestaurantTips data and use it
to test (at a 5% level) whether the correlation for the population differs from zero.
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Solution Using technology we find that the correlation between the size of the bill and per-
centage tip for the sample of 157 restaurant tips is r = 0.135. To test H0 ∶ 𝜌 = 0 vs
Ha ∶ 𝜌 ≠ 0 we use the t-statistic

t = 0.135
√
157 − 2√

1 − 0.1352
= 1.70

which gives a two-tailed p-value of 0.0911 (based on a t-distribution with 155 degrees
of freedom). This p-value is not less than 5% so we do not have strong evidence of
a linear association between the size of the bill and percent of the tip.

If you look back at the test for the slope of the model to predict PctTip using
Bill in Example 9.4 on page 620 you should notice an interesting fact. The t-statistic
(t = 1.70) and p-value (0.0911) for that test are exactly the same as in the test for
correlation in Example 9.6. This is not an accident! It turns out that the formula
for computing the t-statistic for a slope always gives an identical result to the
t-test for correlation.

This means we can use these two tests (for a slope and for a correlation) inter-
changeably. The t-test for a slope is commonly found in regression output when the
slope and intercept are estimated. The t-test for correlation requires only knowing r
and n and is often easy to compute when summary statistics are given in an article
or report.

Coefficient of Determination: R-squared
Another common connection between a sample correlation and a regression line
comes from computing r2, which is known as the coefficient of determination. Since
−1 ≤ r ≤ 1 is always true for a correlation r, we know that r2 is always between
zero and one. Amazingly, it turns out that this value gives us the proportion of the
total variability in the response variable (Y) that is explained by the explanatory
variable (X). When we interpret it this way, we usually denote it as R2 and state it
as a percentage.

Example 9.7
Find and interpret the value ofR2 for the relationship between inkjet Price and print
speed PPM.

Solution Using technology we find the correlation between PPM and Price is r = 0.7397,
which givesR2 = (0.7397)2 = 0.547. This means that 54.7% of the variability in prices
of the inkjet printers in this sample is explained by their print speed.

We see “R-Sq=54.7%” in the computer output for this model in Example 9.1
on page 617. This is a common value to find in regression output and is more often
referred to as “R-squared” rather than the more cumbersome “coefficient of deter-
mination.” The exact notion of a percentage of variability explained by a model
is a bit vague at this point, but we examine this in more detail when we consider
ANOVA for regression in Section 9.2.

Checking Conditions for a Simple Linear Model
Recall that a t-test for a mean is only valid if certain conditions on the underlying
distribution (such as normality) are met. Similarly, when doing inference for a simple
linear model, there are conditions on the model that help ensure that a t-distribution
is reasonable to use when doing inference for the slope.
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Simple Linear Model

A simple linear model for a response variable Y based on a predictor
X has the form

Y = 𝛽0 + 𝛽1X + 𝜖

where the random errors are independent values from a N(0, 𝜎
𝜖
)

distribution.

We can think of this as a distribution of Y values for each different value of
the predictor X, where the means increase (or decrease) in a regular way along the
line and the errors cause individual points to scatter above and below the line with
some fixed variability (denoted in the model by 𝜎

𝜖
). This is illustrated in Figure 9.3.

Remember that this is a model for the population. A sample from this population is
drawn from these normal distributions to give the data we see in a scatterplot.

Figure 9.3 Simple linear
model with normal
distributions for every
predictor value Predictor (X )
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How do we use the data in a sample to check if the conditions for a simple lin-
ear model are reasonable? Visual checks with graphs are generally the most useful
tools. For now, we assess the appropriateness of the simple linear model for a partic-
ular dataset relatively informally by looking at a scatterplot with the regression line
drawn on it.3 Ideally, we like to see a consistent band of data stretching relatively
symmetrically on either side of the line as in Figure 9.4. Try to visualize how data in

Figure 9.4 Scatterplot of
data from a simple linear
model X

Y
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3We consider additional plots for assessing the conditions of the regression model in Section 10.2.
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the scatterplot in Figure 9.4 could arise by sampling from a population as described
in the model of Figure 9.3.

What Can Go Wrong?
As when we assess normality for doing a t-test for a mean, be on the lookout

for signs of obvious departures from the ideal scatterplot for a regression model.
Several of these are illustrated in Figure 9.5. Try not to be too picky; don’t worry
about small departures from an ideal pattern. Pay attention (and view the results of
inference with some skepticism) only when we see a consistent departure from the
expected pattern.

Watch out for:

• Departures from linearity. Figure 9.5(a) shows some obvious curvature with a
trend that is clearly increasing, but not in a linear way.

• Consistently changing variability. Figure 9.5(b) shows data where the variability
above and below the line clearly increases in a “fanning” pattern as the values get
larger. We would prefer to see roughly parallel bands above and below the line.

• Outliers and influential points. Figure 9.5(c) shows four points that clearly depart
from the pattern exhibited by the rest of the data. These large discrepancies pro-
duce outliers in the distribution of errors that indicate a lack of normality. Also,
the two very large predictor values (x = 100 and x = 150) could strongly influence
the location of the least squares line.

60

70

80

90

100

110

120

X

Y

(a) Curved

10 12 14 16 18 20

60

80

100

120

140

X

Y

(b) Increasing variability

10 12 14 16 18 20

50

100

150

200

X

Y

(c) Outliers

20 40 8060 100 120 140

Figure 9.5 Scatterplots for least squares fits with problems

Example 9.8
Check Conditions for the Inkjet Printer Model

Using the scatterplot with regression line in Figure 9.1 on page 617, comment on
the appropriateness of the simple linear model to predict inkjet printer prices using
PPM printing rates with the data in InkjetPrinters.

Solution The plot in Figure 9.1 shows a general increasing trend, no obvious curvature or big
outliers, and a relatively equal scatter of points above and below the line. Nothing in
this plot raises serious concerns about the simple linear model conditions. While it is
hard to make definitive assessments of the simple linear model conditions based on
just 20 data points, we don’t see any reason for strong concerns about the conditions
for these data.
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Example 9.9
Check Conditions for the Restaurant Tip Models

Produce graphs and comment on the appropriateness of the regression models to
predict Tip and PctTip using the amount of the Bill for the data in RestaurantTips.

Solution The scatterplots with regression lines for the two models are shown in Figure 9.6.
Other than a few somewhat unusually large tips, the pattern in the scatter-

plot for Tip vs Bill looks pretty good. There is no sign of curvature and the points
are fairly equally distributed on either side of the line with a consistent (and rela-
tively small) amount of variability. Given the large sample size (n = 157), we have
no serious concerns about using a t-distribution for inference for the slope in this
model. The plot for PctTip vs Bill shows more variability around the line, but still
a relatively linear pattern with reasonably consistent variability. The only mild con-
cern would be the three large outliers where generous customers tipped more than
30%. Note that even a relatively poor fit, such as PctTip vs Bill, can still follow a
simple linear model, just one with a slope near zero and fairly large variability in
the errors.

Figure 9.6 Regressions
to predict Tip and PctTip
based on restaurant Bill
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use computer output to make predictions and interpret coefficients
using a fitted simple linear model

• Construct a confidence interval for the slope in a regression model

• Test a hypothesis about the slope of a regression model

• Test for evidence of a linear association between two quantitative vari-
ables using a sample correlation

• Find and interpret the value of R2 for a regression model

• Check a scatterplot for obvious departures from a simple linear model
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Exercises for Section 9.1

SKILL BUILDER 1
In Exercises 9.1 to 9.4, use the computer output
(from different computer packages) to estimate the
intercept 𝛽0, the slope 𝛽1, and to give the equation
for the least squares line for the sample. Assume the
response variable is Y in each case.

9.1 The regression equation is Y = 29.3 + 4.30 X
Predictor Coef SE Coef T P
Constant 29.266 6.324 4.63 0.000
X 4.2969 0.6473 6.64 0.000

9.2 The regression equation is Y = 808 − 3.66 A
Predictor Coef SE Coef T P
Constant 807.79 87.78 9.20 0.000
A −3.659 1.199 −3.05 0.006

9.3 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 77.44 14.43 5.37 0.000
Score −15.904 5.721 −2.78 0.012

9.4 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 7.277 1.167 6.24 0.000
Dose −0.3560 0.2007 −1.77 0.087

SKILL BUILDER 2
Exercises 9.5 to 9.8 show some computer output for
fitting simple linear models. State the value of the
sample slope for each model and give the null and
alternative hypotheses for testing if the slope in
the population is different from zero. Identify the
p-value and use it (and a 5% significance level) to
make a clear conclusion about the effectiveness of
the model.

9.5 The regression equation is Y = 89.4 - 8.20 X
Predictor Coef SE Coef T P
Constant 89.406 4.535 19.71 0.000
X −8.1952 0.9563 −8.57 0.000

9.6 The regression equation is Y = 82.3 - 0.0241 X
Predictor Coef SE Coef T P
Constant 82.29 11.80 6.97 0.000
X −0.02413 0.02018 −1.20 0.245

9.7 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 7.277 1.167 6.24 0.000
Dose −0.3560 0.2007 −1.77 0.087

9.8 Coefficients: Estimate Std.Error t value Pr(> |t|)
(Intercept) 807.79 87.78 9.30 0.000
A −3.659 1.199 −3.05 0.006

SKILL BUILDER 3
In Exercises 9.9 and 9.10, find and interpret a 95%
confidence interval for the slope of the model indi-
cated.

9.9 The model given by the output in Exercise 9.5,
with n = 24.

9.10 The model given by the output in Exercise 9.7,
with n = 30.

SKILL BUILDER 4
In Exercises 9.11 to 9.14, test the correlation, as
indicated. Show all details of the test.

9.11 Test for a positive correlation; r = 0.35; n = 30.

9.12 Test for evidence of a linear association;
r = 0.28; n = 10.

9.13 Test for evidence of a linear association;
r = 0.28; n = 100.

9.14 Test for a negative correlation; r = −0.41;
n = 18.

9.15 Student Survey: Correlation Matrix A corre-
lation matrix allows us to see lots of correlations
at once, between many pairs of variables. A cor-
relation matrix for several variables (Exercise, TV,
Height, Weight, and GPA) in the StudentSurvey
dataset is given. For any pair of variables (indi-
cated by the row and the column), we are given two
values: the correlation as the top number and the
p-value for a two-tail test of the correlation right
beneath it.
Correlations: Exercise, TV, Height, Weight, GPA

Exercise TV Height Weight
TV 0.010

0.852

Height 0.118 0.181
0.026 0.001

Weight 0.118 0.165 0.619
0.026 0.002 0.000

GPA −0.159 −0.129 −0.116 −0.217
0.003 0.017 0.033 0.000

Cell Contents: Pearson correlation
P-Value

(a) Which two variables are most strongly posi-
tively correlated?What is the correlation?What
is the p-value? What does a positive correlation
mean in this situation?

(b) Which two variables are most strongly nega-
tively correlated?What is the correlation?What
is the p-value?What does a negative correlation
mean in this situation?

(c) At a 5% significance level, list any pairs of vari-
ables for which there is not convincing evidence
of a linear association.

9.16 NBA Players: Correlation Matrix The dataset
NBAPlayers2019 is introduced on page 100 and
contains information on many variables for play-
ers in the NBA (National Basketball Association)
during the 2018–2019 season. The dataset includes
information for all players who averaged more than
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24 minutes per game (n = 193) and 25 variables,
including Age, Points (number of points for the
season per game), FTPct (free throw shooting
percentage), Rebounds (number of rebounds for
the season), and Steals (number of steals for the
season). A correlation matrix for these five vari-
ables is shown. A correlation matrix allows us to see
lots of correlations at once, between many pairs of
variables. For any pair of variables (indicated by the
row and the column), we are given two values: the
correlation as the top number and the p-value for a
two-tail test of the correlation right beneath it.

Correlations: Age, Points, FTPct, Rebounds, Steals

Age Points FTPct Rebounds
Points −0.072

0.319

FTPct 0.165 0.310
0.022 0.000

Rebounds −0.102 0.533 −0.136
0.157 0.000 0.060

Steals 0.008 0.527 0.042 0.371
0.912 0.000 0.564 0.000

Cell Contents: Pearson correlation
P-Value

(a) Which two variables are most strongly posi-
tively correlated?What is the correlation?What
is the p-value? What does a positive correlation
mean in this situation?

(b) Which two variables are most strongly nega-
tively correlated?What is the correlation?What
is the p-value?What does a negative correlation
mean in this situation?

(c) At a 5% significance level, list any pairs of vari-
ables for which there is not convincing evidence
of a linear association.

9.17 Healthy Lifestyle Helps Healthy Aging A
large study4 investigated the association between
an overall healthy lifestyle and an increased num-
ber of disease-free life-years. Participants in the
study were rated on lifestyle factors (such as smok-
ing, body mass index, physical activity, and alcohol
consumption) and given an aggregated lifestyle
score ranging from 0 (worst) to 8 (best). The article
states that “There was a linear association between

4Nyberg ST, et al., “Association of Healthy Lifestyle With
Years Loved Without Major Chronic Diseases,” JAMA Internal
Medicine, April 6, 2020.

overall healthy lifestyle score and the number of
disease-free years, such that a 1-point improvement
in the score was associated with an increase of 0.93
disease-free years.”

(a) What is the explanatory X-variable in this
description? What is the response Y-variable?

(b) The second half of the sentence quoted from the
article refers to which of the following:
i. R2

ii. The correlation r
iii. The intercept of the regression line
iv. The slope of the regression line
v. The t-statistic for testing the correlation
vi. The t-statistic for testing the slope

(c) The article indicates that there is a positive lin-
ear association between the two variables. Can
we conclude that adopting a healthier lifestyle
will increase a person’s disease-free years?

(d) How many more disease-free years are pre-
dicted for those with the best lifestyle score of
8 compared to the worst score of 0?

9.18 Predicting One Depression Score from
Another Example 1.28 introduces a study exam-
ining the impact of diet on depression. The study
used two different ways to measure depression: the
DASS, which uses self-reported symptoms, and the
CESD, a more clinical assessment. On both scales,
higher numbers indicate greater depression symp-
toms. Exercise 2.244 includes a scatterplot with
regression line to predict CESD score from DASS
score at the beginning of the study, and we see that
the conditions appear to be met for using a lin-
ear model with these data. Computer output of the
regression analysis is shown.

Regression Equation
CESD = 4.97 + 0.7923 DASS

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 4.97 2.21 2.25 0.028
DASS 0.7923 0.0951 8.33 0.000

Model Summary
S R-sq R-sq(adj)

10.3768 48.75% 48.05%

(a) One of the people in the study has a CESD
score of 27 and a DASS score of 20. Find the
predicted CESD score for this person. Find the
residual.

(b) What is the estimated slope in this regression
model? Interpret the slope in context.
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(c) What is the test statistic for a test of the slope?
What is the p-value? What is the conclusion of
the test, in context?

(d) What is R2? Interpret it in context.

9.19 Verbal SAT as a Predictor of GPA A scat-
terplot with regression line is shown in Figure 9.7
for a regression model using Verbal SAT score,
VerbalSAT, to predict grade point average in col-
lege, GPA, using the data in StudentSurvey. We
also show computer output below of the regression
analysis.

The regression equation is GPA = 2.03 + 0.00189 VerbalSAT

Predictor Coef SE Coef T P
Constant 2.0336 0.1621 12.54 0.000
VerbalSAT 0.0018929 0.0002709 6.99 0.000

S = 0.373214 R-Sq = 12.5% R-Sq(adj) = 12.2%
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Figure 9.7 Using Verbal SAT score to predict grade
point average

(a) Use the scatterplot to determine whether we
should have any significant concerns about the
conditions being met for using a linear model
with these data.

(b) Use the fitted model to predict the GPA of a
person with a score on the Verbal SAT exam
of 650.

(c) What is the estimated slope in this regression
model? Interpret the slope in context.

(d) What is the test statistic for a test of the slope?
What is the p-value? What is the conclusion of
the test, in context?

(e) What is R2? Interpret it in context.

9.20 Does When Food Is Eaten Affect Weight
Gain? Data 4.1 on page 280 introduces a study that
examines the effect of light at night on weight gain
in mice. In the full study of 27 mice over a four-
week period, the mice who had a light on at night
gained significantly more weight than the mice with
darkness at night, despite eating the same num-
ber of calories and exercising the same amount.
Researchers noticed that the mice with light at night
ate a greater percentage of their calories during
the day (when mice are supposed to be sleeping).
The computer output shown below allows us to
examine the relationship between percent of calo-
ries eaten during the day, DayPct, and body mass
gain in grams, BMGain. A scatterplot with regres-
sion line is shown in Figure 9.8.

Pearson correlation of BMGain and DayPct = 0.740
P-Value = 0.000
————————————————–
The regression equation is
BMGain = 1.11 + 0.127 DayPct

Predictor Coef SE Coef T P
Constant 1.113 1.382 0.81 0.428
DayPct 0.12727 0.02315 5.50 0.000

S = 2.23097 R-Sq = 54.7% R-Sq(adj) = 52.9%
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Figure 9.8 Does when food is eaten affect weight gain?

(a) Use the scatterplot to determine whether we
should have any strong concerns about the con-
ditions being met for using a linear model with
these data.

(b) What is the correlation between these two vari-
ables? What is the p-value from a test of the
correlation? What is the conclusion of the test,
in context?
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(c) What is the least squares line to predict body
mass gain from percent daytime consump-
tion? What gain is predicted for a mouse
that eats 50% of its calories during the day
(DayPct = 50)?

(d) What is the estimated slope for this regression
model? Interpret the slope in context.

(e) What is the p-value for a test of the slope?What
is the conclusion of the test, in context?

(f) What is the relationship between the p-value of
the correlation test and the p-value of the slope
test?

(g) What is R2 for this linear model? Interpret it in
context.

(h) Verify that the correlation squared gives the
coefficient of determination R2.

9.21 Social Networks and Brain Structure A
study in Great Britain5 examines the relationship
between the number of friends an individual has
on Facebook and grey matter density in the areas
of the brain associated with social perception and
associative memory. The data are available in the
dataset FacebookFriends and the relevant variables
are GMdensity (normalized z-scores of grey mat-
ter density in the relevant regions) and FBfriends
(the number of friends on Facebook). The study
included 40 students at City University London. A
scatterplot of the data is shown in Figure 9.9 and
computer output for both correlation and regres-
sion is shown below.
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Figure 9.9 Does brain density influence number of
Facebook friends?

5Kanai, R., Bahrami, B., Roylance, R., and Rees, G., “Online
social network size is reflected in human brain structure,” Pro-
ceedings of the Royal Society, 2012; 279(1732): 1327–1334. Data
approximated from information in the article.

Pearson correlation of GMdensity and FBfriends = 0.436
P-Value = 0.005
———————–
The regression equation is FBfriends = 367 + 82.4 GMdensity

Predictor Coef SE Coef T P
Constant 366.64 26.35 13.92 0.000
GMdensity 82.45 27.58 2.99 0.005

S = 165.716 R-Sq = 19.0% R-Sq(adj) = 16.9%

(a) Use the scatterplot to determine whether any
of the study participants had grey matter den-
sity scores more than two standard deviations
from the mean. (Hint: The grey matter density
scores used in the scatterplot are z-scores!) If
so, in each case, indicate if the grey matter den-
sity score is above or below the mean and esti-
mate the number of Facebook friends for the
individual.

(b) Use the scatterplot to determine whether we
should have any significant concerns about the
conditions being met for using a linear model
with these data.

(c) What is the correlation between these two vari-
ables? What is the p-value from a test of the
correlation? What is the conclusion of the test,
in context?

(d) What is the least squares line to predict the
number of Facebook friends based on the
normalized grey matter density score? What
number of Facebook friends is predicted for a
person whose normalized score is 0? Whose
normalized score is +1? Whose normalized
score is −1?

(e) What is the p-value for a test of the slope? Com-
pare it to the p-value for the test of correlation.

(f) What is R2 for this linear model? Interpret it in
context.

9.22 Inference on the Slope of Facebook Friends
and the Brain In Exercise 9.21, we give computer
output for a regression line to predict the number
of Facebook friends a student will have, based on
a normalized score of the grey matter density in
the areas of the brain associated with social percep-
tion and associative memory. Data for the sample of
n = 40 students are stored in FacebookFriends.

(a) What is the slope in this regression analysis?
What is the standard error for the slope?

(b) Use the information from part (a) to calculate
the test statistic to test the slope to determine
whether GMdensity is an effective predictor of
FBfriends. Give the hypotheses for the test,
find the p-value, and make a conclusion. Show
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your work. Verify the values of the test statis-
tic and the p-value using the computer output
in Exercise 9.21.

(c) Use the information from part (a) to find and
interpret a 95% confidence interval for the
slope.

9.23 Using pH in Lakes as a Predictor of Mer-
cury in Fish The FloridaLakes dataset, introduced
in Data 2.4, includes data on 53 lakes in Florida.
Two of the variables recorded are pH (acidity of
the lake water) and A𝑣gMercury (average mercury
level for a sample of fish from each lake). We wish
to use the pH of the lake water (which is easy to
measure) to predict average mercury levels in fish,
which is harder tomeasure. A scatterplot of the data
is shown in Figure 2.51(a) on page 120 and we see
that the conditions for fitting a linear model are rea-
sonably met. Computer output for the regression
analysis is shown below.

The regression equation is AvgMercury = 1.53 - 0.152 pH

Predictor Coef SE Coef T P
Constant 1.5309 0.2035 7.52 0.000
pH −0.15230 0.03031 −5.02 0.000

S = 0.281645 R-Sq = 33.1% R-Sq(adj) = 31.8%

(a) Use the fitted model to predict the average mer-
cury level in fish for a lake with a pH of 6.0.

(b) What is the slope in the model? Interpret the
slope in context.

(c) What is the test statistic for a test of the slope?
What is the p-value? What is the conclusion of
the test, in context?

(d) Compute and interpret a 95% confidence inter-
val for the slope.

(e) What is R2? Interpret it in context.

9.24 Alkalinity in Lakes as a Predictor of Mer-
cury in Fish The FloridaLakes dataset, introduced
in Data 2.4, includes data on 53 lakes in Florida.
Figure 9.10 shows a scatterplot of Alkalinity (con-
centration of calcium carbonate in mg/L) and
A𝑣gMercury (average mercury level for a sample of
fish from each lake). Explain using the conditions
for a linear model why we might hesitate to fit a lin-
ear model to these data to use Alkalinity to predict
average mercury levels in fish.

9.25 Rain and Hantavirus in Mice Hantavirus is
carried by wild rodents and causes severe lung dis-
ease in humans. A study6 on the California Channel
Islands found that increased prevalence of the virus

6“More Rain, More Virus,” Nature, April 28, 2011, p. 392.
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Figure 9.10 Are the conditions met for fitting a linear
model?

was linked with greater precipitation. The study
adds “Precipitation accounted for 79% of the varia-
tion in prevalence.”

(a) What notation or terminology do we use for the
value 79% in this context?

(b) What is the response variable? What is the
explanatory variable?

(c) What is the correlation between the two vari-
ables?

9.26 NFL Pre-Season Teams in the National Foot-
ball League (NFL) in the US play four pre-season
games each year before the regular season starts.
Do teams that do well in the pre-season tend to
also do well in the regular season? We are inter-
ested in whether there is a positive linear associa-
tion between the number of wins in the pre-season
and the number of wins in the regular season for
teams in the NFL.

(a) What are the null and alternative hypotheses
for this test?

(b) The correlation between these two variables for
the 32 NFL teams over the 15 year period from
2005 to 2019 was 0.118. Use this sample (with
n = 480) to calculate the appropriate test statis-
tic and determine the p-value for the test.

(c) State the conclusion in context, using a 5%
significance level.

9.27 Is the Honeybee Population Shrinking? The
Honeybee dataset introduced in Exercise 2.260 on
page 150 shows an estimated number of honeybee
colonies in the United States for the years 1995
through 2012 (18 years). The correlation between
year and number of colonies from these data is
r = −0.41.
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(a) Treating these as a sample of years, do we have
significant evidence that the number of honey-
bee colonies is linearly related to year? Give the
t-statistic and the p-value, as well as a conclu-
sion in context.

(b) What percent of the variability in number of
honeybee colonies can be explained by year in
these data?

9.28 Homes for Sale The dataset HomesFor-
SaleCA contains a random sample of 30 houses
for sale in California. We are interested in whether
there is a positive association between the num-
ber of bathrooms and number of bedrooms in each
house.

(a) What are the null and alternative hypotheses
for testing the correlation?

(b) Find the correlation in the sample.

(c) Calculate (or use technology to find) the appro-
priate test statistic, and determine the p-value.

(d) State the conclusion in context.

9.29 Life Expectancy A random sample of 50
countries is stored in the dataset SampCountries.
Two variables in the dataset are life expectancy
(LifeExpectancy) and percentage of government
expenditure spent on health care (Health) for each
country. We are interested in whether or not the
percent spent on health care can be used to effec-
tively predict life expectancy.

(a) What are the cases in this model?

(b) Create a scatterplot with regression line and use
it to determine whether we should have any
serious concerns about the conditions beingmet
for using a linear model with these data.

(c) Run the simple linear regression, and report and
interpret the slope.

(d) Find and interpret a 95% confidence interval for
the slope.

Table 9.2 Scorecard for a round of golf

Hole 1 2 3 4 5 6 7 8 9
Distance 455 160 363 343 144 407 460 315 356

Par 5 3 4 4 3 4 5 4 4
Score 7 5 5 7 3 6 5 4 6
Hole 10 11 12 13 14 15 16 17 18

Distance 465 175 380 353 189 407 476 335 356 Total
Par 5 3 4 4 3 4 5 4 4 72

Score 6 3 6 6 3 5 4 5 4 90

(e) Is the percentage of government expenditure
on health care a significant predictor of life
expectancy?

(f) The population slope (for all countries) is 0.760.
Is this captured in your 95% CI from part (d)?

(g) Find and interpret R2 for this linear model.

9.30 Fluoride and IQ Exercise 2.250 introduces a
study examining the association between fluoride
exposure in pregnant women and subsequent IQ
scores of their children. Fluoride is often added to
drinking water to prevent tooth decay, but the study
found that higher maternal fluoride levels were
associated with lower IQ scores in children. The
regression analysis was done separately for boys
and girls, and in each case, the article reports both
the 95% confidence interval for the slope and the
p-value for testing the slope. The two p-values are
0.33 and 0.02. Match the p-values with the confi-
dence intervals:

(a) 95% CI for slope for boys: −8.38 to −0.60
(b) 95% CI for slope for girls: −2.51 to 7.36

9.31 Golf Scores Table 9.2 shows the scores for
18 holes of golf played by one of the authors. For
each hole we see the Distance of the hole in yards
and the Par (a measure of how many strokes a
good golfer should reasonably use to complete the
hole). The Score is the number of strokes that were
actually used in this round. The data are stored in
GolfRound.

(a) Fit a model to predict the Score using Par. What
is the slope? Is Par an effective predictor of
Score? Justify your answer.

(b) Fit a model to predict the Score using Distance.
What is the slope? Is Distance an effective pre-
dictor of Score? Justify your answer.

(c) Which predictor, Par or Distance, has a larger
slope in its fitted model?

(d) Which predictor, Par or Distance, explains a
larger percentage of the variability in Score?
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9.32 NBA: Offense or Defense? A common
(and hotly debated) saying among sports fans is
“Defense wins championships.” Is offensive scor-
ing ability or defensive stinginess a better indica-
tor of a team’s success? To investigate this question
we’ll use data from the 2018–2019 National Basket-
ball Association (NBA) regular season. The data7

stored in NBAStandings2019 include each team’s
record (wins, losses, and winning percentage) along
with the average number of points the team scored
per game (PtsFor) and average number of points
scored against them (PtsAgainst).

(a) Examine scatterplots for predicting WinPct
using PtsFor and predicting WinPct using
PtsAgainst. In each case, discuss whether con-
ditions for fitting a linear model appear to be
met.

(b) Fit a model to predict winning percentage
(WinPct) using offensive ability (PtsFor). Write
down the prediction equation and comment on
whether PtsFor is an effective predictor.

(c) Repeat the process of part (b) using PtsAgainst
as the predictor.

(d) Compare and interpret R2 for both models.

(e) The eventual NBA playoff champion Toronto
Raptors won 58 games in the regular season

7Data downloaded from http://www.basketball-reference.com
/leagues/NBA_2019_standings.html.

while losing only 24 games (WinPct = 0.707).
They scored an average of 114.4 points per
game while giving up an average of 108.4 points
against. Find the predicted winning percentage
for the Raptors using each of the models in (b)
and (c).

(f) Overall, does one of the predictors, PtsFor
or PtsAgainst, appear to be more effective
at explaining winning percentages for NBA
teams? Give some justification for your answer.

9.33 Birth Rate and Life Expectancy Use the
dataset AllCountries to examine the correlation
between birth rate and life expectancy across coun-
tries of the world.

(a) Plot the data. Do birth rate and life expectancy
appear to be linearly associated?

(b) From this dataset, can we conclude that the pop-
ulation correlation between birth rate and life
expectancy is different from zero?

(c) Explain why inference is not necessary to
answer part (b).

(d) For every percent increase in birth rate, how
much does the predicted life expectancy of a
country change?

(e) From this dataset, can we conclude that lower-
ing the birth rate of a country will increase its
life expectancy? Why or why not?

9.2ANOVA FOR REGRESSION

In the previous section we see that the square of the correlation between two quan-
titative variables, R2, can be interpreted as the amount of variability in one of the
variables that is “explained” by the other variable. How do we go about actually
measuring the amount of explained variability? The approach we use falls under
the general heading of analysis of variance, or ANOVA. If you’ve already looked at
Chapter 8, you have seen how the variability in one variable can be broken down to
test for a difference in means among several groups. The approach in this section for
regression is similar, with some changes in the computational details.

Partitioning Variability
The general form of a simple linear model for a single quantitative predictor is

Y = 𝛽0 + 𝛽1X + 𝜖

or

Response = Regression line + Error

To assess how well the model does at explaining the response, we split the total vari-
ability in the response into two pieces: one that represents the variability explained
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by the model (the least squares line) and another that measures the variability that
is left unexplained in the errors.

= +

TOTAL Variability
in the Response

Variability Explained
by the MODEL

Unexplained Variability
in the ERROR

Each of these portions of variability is measured with a sum of squared deviations:

SSTotal = SSModel + SSE

where

Sum of squares explained by the model = SSModel =
∑

(ŷ − y)2

Sum of squared errors = SSE =
∑

(y − ŷ)2

Total sum of squares = SSTotal =
∑

(y − y)2

You might recognize SSE as the sum of squared residuals that is minimized when
estimating the least squares line. This represents the errors that still occur when
predicting with the fitted model. The SSTotal is the sum of squared deviations from
the mean of the responses that is used in computing the standard deviation of the
sample responses. Think of y as a very crude model that uses a single value to predict
all cases with no information from the predictor. The difference between these
two, SSModel = SSTotal − SSE, is the amount of the original variability in Y that is
successfully explained by the model.

Fortunately, statistical software usually displays the three sums of squares as
part of the standard regression output, as we see in the next example.

lostinyonkers/Getty Images

What’s in your cereal?

D A T A 9 . 2 Breakfast Cereals
Labels on many food products contain a wealth of nutritional information. The
data in Cereal include the number of calories as well as the grams of fat,
carbohydrates, fiber, sugars, and protein and milligrams of sodium in each cup
of a sample of 30 breakfast cereals from three different manufacturers (General
Mills, Kellogg’s, and Quaker).8 ◼

8Based onCereal data obtained from nutrition labels at http://www.nutritionresource.com/foodcomp2.cfm?
id=0800.
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Example 9.10
Some regression output for a model to predict Calories in cereals based on the
amount of Sugars is shown below. In the output, find the sum of squared deviations,
“SS,” explained by the regression model and the SS due to the error, and verify that
they add up to the total sum of squares.

Predictor Coef SE Coef T P
Constant 88.92 10.81 8.22 0.000
Sugars 4.3103 0.9269 4.65 0.000

S = 26.6147 R-Sq = 43.6% R-Sq(adj) = 41.6%

Analysis of Variance
Source DF SS MS F P
Regression 1 15317 15317 21.62 0.000
Residual Error 28 19834 708
Total 29 35150

Solution The sums of squares are found in the section of the output labeled “Analysis of
Variance.” This shows that

Sum of squares explained by the regression model is SSModel = 15,317

Sum of squared errors is SSE = 19,834

Total sum of squares is SSTotal = 35,150

and we verify that (up to round-off)

SSModel + SSE = 15,317 + 19,834 = 35,150 = SSTotal

The analysis of variance portion of the regression output also has a value labeled
“P” which, as you might suspect, is the p-value for a test. If SSModel is large relative
to SSE, the model has done a good job of explaining the variability in the response.
In fact, if all of the data lie exactly on the least squares line, we would have SSE =
0 and all of the variability would be explained by the model. On the other hand,
if SSModel = 0, every prediction is the same as the mean response and we get no
useful information from the predictor. Of course, in practice, we rarely see either
of these two extremes. The key question then becomes: Is the amount of variability
explained by the model more than we would expect to see by random chance alone,
when compared to the variability in the error term? That is the question that we test
with ANOVA.

F-Statistic
To compare the variability explained by the model to the unexplained variability of
the error we first need to adjust each by an appropriate degrees of freedom. These
are shown in the ANOVA section of the output of Example 9.10 as 1 degree of
freedom for the model and 28 degrees of freedom for the error. For the simple linear
model the degrees of freedom for themodel is always 1 (just one predictor) and n − 2
for the error, adding up to n − 1 degrees of freedom for the total.

We divide each sum of squares by its degrees of freedom to get a mean square
for each source of variability:

Mean square for the model = MSModel = SSModel
1

Mean square error = MSE = SSE
n − 2

When the predictor is ineffective, these mean squares should be roughly the same
magnitude. However, when the predictor is useful, the mean square model will tend
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to be large relative to the mean square error. To compare the two mean squares, we
use their ratio to obtain the F-statistic:

F = MSModel
MSE

The formal hypotheses being tested are:

H0 : The model is ineffective (or, equivalently, 𝛽1 = 0)

Ha : The model is effective (or, equivalently, 𝛽1 ≠ 0)

How do we know when the F-statistic is large enough to provide evidence of some-
thing effective in the model? The appropriate reference distribution9 for finding a
p-value is the upper tail of an F-distribution with 1 degree of freedom for the numer-
ator and n − 2 degrees of freedom for the denominator.

Example 9.11
Verify the calculations for the F-statistic and p-value for the ANOVA output in
Example 9.10 on page 634.

Solution From the ANOVA portion of the regression output we see

MSModel = 15,317
1

= 15,317 MSE = 19,834
28

= 708.4

and the F-statistic is then found as

F = MSModel
MSE

= 15,317
708.4

= 21.62

Using technology we find the area beyond F = 21.62 for an F-distribution with 1 and
28 degrees of freedom gives a p-value = 0.00007. This provides very strong evidence
that there is some relationship between amount of sugar and calories in cereals and
that Sugars is an effective predictor for Calories.

We summarize the details for using ANOVA to assess the effectiveness of a
simple linear model in the box below.

ANOVA to Test a Simple Linear Model

To test for the effectiveness of a regression model, Y = 𝛽0 + 𝛽1X + 𝜖:

H0 : The model is ineffective Equivalently, H0 ∶ 𝛽1 = 0
Ha : The model is effective Ha ∶ 𝛽1 ≠ 0

We partition the variability to construct an ANOVA table for regres-
sion:

Source df Sum of Sq. Mean Square F-statistic p-value

Model 1 SSModel
SSModel

1 F = MSModel
MSE

F1,n−2

Error n − 2 SSE
SSE
n − 2

Total n − 1 SSTotal

9See more details about the F-distribution in Section 8.1 and Exercise 10.37.
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Figure 9.11 Regression
output for predicting
Calories based on
Sodium

20%

Response attribute (numeric): Calories

Regression Equation:

Sodium

Source DF SS MS F P

Residual

Calories

Sequential Contributions

Predictor

Constant 103.7587 18.8678 5.499 0.0000
Sodium 0.1366

Regression 1
Residual 28
Total 29

3241.28 2.844 0.1028 0.0922

1139.60

3241.28
31908.9
35150.2

0.0810 1.686 0.1028 0.0922

t P ΔR2

ΔR2

40% 60%

= 103.8 + 0.1366 Sodium

80% 100%

Std ErrorCoefficient

Example 9.12
Some output for using the amount of Sodium to predict Calories for the data in
Cereal is shown in Figure 9.11. Use it to test the effectiveness of the Sodium
predictor two ways:

(a) Using a t-test for the slope

(b) Using an F-test based on the ANOVA

Solution (a) The information for a t-test of H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0 is given in the line
near the top of the output labeled Sodium. We see that the t-statistic is given
as t = 1.686 and the p-value = 0.1028. Since this p-value is not small (even at a
10% significance level), we do not have sufficient evidence to conclude that the
amount of sodium is an effective predictor of the number of calories in breakfast
cereals.

(b) Using the ANOVA table to test whether the model is effective, we see that
the F-statistic is F = 2.844 and the corresponding p-value (using 1 and 28 df)
is 0.1028. The conclusion is the same as the t-test: We lack convincing evidence
to show that Sodium is an effective predictor of Calories in breakfast cereals.

You have probably noticed that the p-values for both tests in Example 9.12 are
identical. As with the t-tests for slope and correlation, this is no accident. For a
single predictor model, a two-tail t-test for the slope and the ANOVA F-test will
always give equivalent results10 and identical p-values. Why do we need yet another
test? One reason, shown in Section 10.1, is that the ANOVA generalizes nicely to
test models with more than one predictor. Also, as the following examples illustrate,
we can obtain additional information for assessing the regression model from the
output shown in an ANOVA table.

Coefficient of Determination: R-squared
We started this section with a question about how to interpret R2 as the amount

of variability in the response variable that is explained by the model. We can now
answer that question using values from the ANOVA table for the regression model.

10In fact, you can check that the ANOVA F-statistic is always (up to round-off) the square of the
t-statistic!
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Coefficient of Determination, R2

For any regression model, the coefficient of determination is

R2 = SSModel
SSTotal

and is interpreted as the percent of variability in the sample response
values that is explained by the regression model.

Example 9.13
Use the information in the regression ANOVA output in Example 9.10 and
Figure 9.11 to compute (and interpret) the R2 values for using Sugars and Sodium,
respectively, as predictors of Calories in breakfast cereals.

Solution Using the output for the model using Sugars in Example 9.10 on page 634, we see
that “R-Sq = 43.6%.” We can also use SS values from the ANOVA table to compute
R2 ourselves:

R2 = SSModel
SSTotal

= 15,317
35,150

= 0.436

The amount of sugars explains 43.6% of the variability in calories for these 30 break-
fast cereals.

Using the output for the model using Sodium in Figure 9.11 on page 636, we see
that “R2 ∶ 0.0922124,” or we can use the SS values in the ANOVA table to compute
it ourselves:

R2 = SSModel
SSTotal

= 3241
35,150

= 0.092

The amount of sodium explains 9.2% of the variability in calories for these 30 break-
fast cereals.

Note that the denominator for computing R2 is the same for both models in
Example 9.13. The total amount of variability in the Calories response variable
(SSTotal = 35,150) is the same regardless of what model we use to try to explain
it. We also see that Sugars (R2 = 43.6%) is much more effective at explaining that
variability than is Sodium (R2 = 9.2%). We often use R2 in this way to quickly
compare the effectiveness of competing models.

Computational Details
In the rest of this section we consider some additional quantities that appear in
typical computer output for a regression model. In many situations we only need
to know where to find the information in the output and how to interpret or use it.
We include some extra computational details below for those who want to see a bit
more about where the numbers come from.

Standard Deviation of the Error Term
For a simple linear model Y = 𝛽0 + 𝛽1X + 𝜖, we assume that the errors are dis-

tributed as 𝜖 ∼ N(0, 𝜎
𝜖
). The standard deviation of the errors, denoted by 𝜎

𝜖
, is an

important quantity to estimate because it measures howmuch individual data points
tend to deviate above and below the regression line. A small 𝜎

𝜖
indicates that the
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points hug the line closely and we should expect fairly accurate predictions, while
a large 𝜎

𝜖
suggests that, even if we estimate the line perfectly, we can expect indi-

vidual values to deviate from it by substantial amounts. Fortunately, most regression
computer output includes an estimate for the standard deviation of the error term,
which we denote by s

𝜖
.

Example 9.14
The standard deviation of the error term is given as S=26.6 in the computer output
of the model to predict cereal calories based on sugars in Example 9.10 on page 634.
Use the fact that about 95% of values from a normal distribution fall within two
standard deviations of the center to interpret what the value s

𝜖
= 26.6 says about

calories for cereals.

Solution For any particular amount of sugar, the calories should be distributed above and
below the regression line with standard deviation estimated to be s

𝜖
= 26.6. Since

2s
𝜖
= 2(26.6) = 53.2, we expect most (about 95%) of the calorie counts for cereals to

be within about 53 calories of the regression line.

We can compute the estimate of the standard deviation of the error term for a
least squares line more directly using the sum of squared errors from the ANOVA
table.

Standard Deviation of the Error, s𝝐
For a simple linear model, we estimate the standard deviation of the
error term with

s
𝜖
=

√∑
(y − ŷ)2

n − 2
=
√

SSE
n − 2

=
√
MSE

where SSE andMSE are obtained from the ANOVA table.

The computation of s
𝜖
might remind you of the standard deviation of a sample

defined on page 88. Note that in the simple linear model setting we divide by n − 2
(rather than n − 1) since we lose one degree of freedom for each of the two estimated
parameters (intercept and slope). In most situations we use technology to handle the
details of this computation.

Example 9.15
Use the information in the ANOVA table in Figure 9.11 (predicting Calories based
on Sodium) to compute the estimate of the standard deviation of the error term for
that model. Confirm your calculation by finding the estimate in the output.

Solution From the ANOVA table in Figure 9.11 we see that SSE = 31,908.9 and the df for
the error is 30 − 2 = 28. The estimated standard deviation for the error term is

s
𝜖
=
√

SSE
n − 2

=
√

31908.9
28

=
√
1139.6 = 33.76

This value is labeled in the output as Std dev error: 33.758. Note also that
the ANOVA table shows MSE = 1139.6, which is s2

𝜖
or the variance of the error

term.
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Standard Error of the Slope
Although we generally rely on technology to find the standard error for the

slope, we can also find this quantity directly from other summary statistics. Here is
one such formula:

SE =
s
𝜖

sx
√
n − 1

where s
𝜖
is the standard deviation of the error term (as found in the regression out-

put or computed above) and sx is the standard deviation for the sample values of the
predictor.

Example 9.16
Use the formula for SE of the slope to verify the standard error value for the coeffi-
cient of Sodium in the computer output of Figure 9.11. Some summary statistics for
the two variables (Calories and Sodium) are given below. Check that the computed
standard error matches (up to round-off) the SE for the slope given in the output.

Variable N Mean StDev
Sodium 30 220.2 77.4
Calories 30 133.8 34.8

Solution In the computer output (or Example 9.15) we see that the standard deviation of the
error term in this model is estimated to be s

𝜖
= 33.76 and the summary statistics

show that the standard deviation of the predictor (Sodium) is 77.4. Putting these
together with the sample size (n = 30) gives the following calculation:

SE =
s
𝜖

sx
√
n − 1

= 33.76

77.4
√
30 − 1

= 0.081

This matches the value of the standard error for the coefficient of Sodium shown in
the output for this model in Figure 9.11.

It is very easy to confuse the various types of standard deviation that occur in the
regression setting. We have the standard error of the slope (SE), standard deviation
of the error (s

𝜖
), standard deviation of the predictor (sx), and standard deviation of

the response (sy). Take care to pay attention to which type of standard deviation is
called for in a particular setting.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use ANOVA to test the effectiveness of a simple linear model

• Find and interpret the value of R2 for a simple linear model using values
in the ANOVA table

• Find the standard deviation of the error term for a simple linear
model

• Find the standard error of the slope for a simple linear model



640 CHA P T E R 9 Inference for Regression

Exercises for Section 9.2

SKILL BUILDER 1
In Exercises 9.34 to 9.37, we show anANOVA table
for regression. State the hypotheses of the test, give
the F-statistic and the p-value, and state the conclu-
sion of the test.

9.34 Analysis of Variance
Source DF SS MS F P
Regression 1 303.7 303.7 1.75 0.187
Residual Error 174 30146.8 173.3
Total 175 30450.5

9.35 Analysis of Variance
Source DF SS MS F P
Regression 1 3396.8 3396.8 21.85 0.000
Residual Error 174 27053.7 155.5
Total 175 30450.5

9.36 Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

ModelA 1 352.97 352.97 11.01 0.001**
Residuals 359 11511.22 32.06
Total 360 11864.20

9.37 Response: Y
Df Sum Sq Mean Sq F value Pr(>F)

ModelB 1 10.380 10.380 2.18 0.141
Residuals 342 1630.570 4.768
Total 343 1640.951

SKILL BUILDER 2
In Exercises 9.38 to 9.41, we refer back to the
ANOVA tables for regression given in Exer-
cises 9.34 to 9.37. Use the information in the table
to give the sample size and to calculate R2.

9.38 The ANOVA table in Exercise 9.34.

9.39 The ANOVA table in Exercise 9.35.

9.40 The ANOVA table in Exercise 9.36.

9.41 The ANOVA table in Exercise 9.37.

SKILL BUILDER 3
In Exercises 9.42 to 9.45, we give some information
about sums of squares and sample size for a linear
model. Use this information to fill in all values in an
analysis of variance for regression table as shown.

Source df SS MS F-statistic p-value
Model
Error
Total

9.42 SSModel = 250 with SSTotal = 3000 and a
sample size of n = 100.

9.43 SSModel = 800 with SSTotal = 5820 and a
sample size of n = 40.

9.44 SSModel = 8.5 with SSError = 247.2 and a
sample size of n = 25.

9.45 SSError = 15,571 with SSTotal = 23,693 and a
sample size of n = 500.

9.46 Social Networks and Brain Structure Exer-
cise 9.21 on page 629 introduces a study examin-
ing the relationship between the number of friends
an individual has on Facebook and grey matter
density in the areas of the brain associated with
social perception and associative memory. The data
are available in the dataset FacebookFriends and
the relevant variables are GMdensity (normalized
z-scores of grey matter density in the brain) and
FBfriends (the number of friends on Facebook).
The study included 40 students at City University
London. Computer output for ANOVA for regres-
sion to predict the number of Facebook friends from
the normalized brain density score is shown below.

The regression equation is FBfriends = 367 + 82.4 GMdensity
Analysis of Variance
Source DF SS MS F P
Regression 1 245400 245400 8.94 0.005
Residual Error 38 1043545 27462
Total 39 1288946

Is the linear model effective at predicting the num-
ber of Facebook friends? Give the F-statistic from
the ANOVA table, the p-value, and state the con-
clusion in context. (We see in Exercise 9.21 that the
conditions are met for fitting a linear model in this
situation.)

9.47 Fiber in Cereal In Data 9.2 on page 633, we
introduce the dataset Cereal, which has nutrition
information on 30 breakfast cereals. Computer out-
put is shown for a linear model to predict Calories
in one cup of cereal based on the number of grams
of Fiber. Is the linear model effective at predicting
the number of calories in a cup of cereal? Give the
F-statistic from the ANOVA table, the p-value, and
state the conclusion in context.

The regression equation is Calories = 119 + 8.48 Fiber
Analysis of Variance
Source DF SS MS F P
Regression 1 7376.1 7376.1 7.44 0.011
Residual Error 28 27774.1 991.9
Total 29 35150.2

9.48 Predicting Prices of Printers Data 9.1 on
page 617 introduces the dataset InkjetPrinters,
which includes information on all-in-one printers.
Two of the variables are Price (the price of the
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printer in dollars) and CostColor (average cost per
page in cents for printing in color). Computer out-
put for predicting the price from the cost of printing
in color is shown:

The regression equation is Price = 378 - 18.6 CostColor
Analysis of Variance
Source DF SS MS F P
Regression 1 57604 57604 13.19 0.002
Residual Error 18 78633 4369
Total 19 136237

(a) What is the predicted price of a printer that
costs 10 cents a page for color printing?

(b) According to the model, does it tend to cost
more or less (per page) to do color printing on
a cheaper printer?

(c) Use the information in the ANOVA table to
determine the number of printers included in
the dataset.

(d) Use the information in the ANOVA table to
compute and interpret R2.

(e) Is the linear model effective at predicting the
price of a printer? Use information from the
computer output and state the conclusion in
context.

9.49 ANOVA for Verbal SAT as a Predictor of
GPA How well does a student’s Verbal SAT score
(on an 800-point scale) predict future college grade
point average (on a four-point scale)? Computer
output for this regression analysis is shown, using
the data in StudentSurvey:

The regression equation is GPA = 2.03 + 0.00189 VerbalSAT
Analysis of Variance
Source DF SS MS F P
Regression 1 6.8029 6.8029 48.84 0.000
Residual Error 343 47.7760 0.1393
Total 344 54.5788

(a) What is the predicted grade point average of a
student who receives a 550 on the Verbal SAT
exam?

(b) Use the information in the ANOVA table to
determine the number of students included in
the dataset.

(c) Use the information in the ANOVA table to
compute and interpret R2.

(d) Is the linear model effective at predicting grade
point average? Use information from the com-
puter output and state the conclusion in con-
text.

9.50 Football and Cognition Exercise 2.165 on
page 112 introduces a study examining years play-
ing football, brain size, and percentile score on

a cognitive skills test. We show computer output
below for a model to predict Cognition score based
on Years playing football. (The scatterplot given in
Exercise 2.165 allows us to proceed without serious
concerns about the conditions.)

——————————————
Pearson correlation of Years and Cognition = −0.366
P-Value = 0.015
——————————————
Regression Equation
Cognition = 102.3 −3.34 Years

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 102.3 15.6 6.56 0.000
Years −3.34 1.31 −2.55 0.015

S R-sq R-sq(adj) R-sq(pred)
25.4993 13.39% 11.33% 5.75%

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 1 4223 4223.2 6.50 0.015
Error 42 27309 650.2
Total 43 31532
—————————————

(a) What is the correlation between these two vari-
ables? What is the p-value for testing the corre-
lation?

(b) What is the slope of the regression line to pre-
dict cognition score based on years playing foot-
ball? What is the t-statistic for testing the slope?
What is the p-value for the test?

(c) The ANOVA table is given for testing the effec-
tiveness of this model. What is the F-statistic for
the test? What is the p-value?

(d) What do you notice about the three p-values for
the three tests in parts (a), (b), and (c)?

(e) In every case, at a 5% level, what is the conclu-
sion of the test in terms of football and cogni-
tion?

9.51 Mating Activity of Water Striders In
Exercise A.101 on page 207, we introduce a study
about mating activity of water striders. The dataset
is available as WaterStriders and includes the vari-
ables FemalesHiding, which gives the proportion of
time the female water striders were in hiding, and
MatingActi𝑣ity, which is a measure of mean mating
activity with higher numbers meaning more mat-
ing. The study included 10 groups of water strid-
ers. (The study also included an examination of the
effect of hyper-aggressive males and concludes that
if a male wants mating success, he should not hang
out with hyper-aggressive males.) Computer output
for a model to predict mating activity based on the
proportion of time females are in hiding is shown
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below, and a scatterplot of the data with the least
squares line is shown in Figure 9.12.

The regression equation is
MatingActivity = 0.480 - 0.323 FemalesHiding

Predictor Coef SE Coef T P
Constant 0.48014 0.04213 11.40 0.000
FemalesHiding −0.3232 0.1260 −2.56 0.033

S = 0.101312 R-Sq = 45.1% R-Sq(adj) = 38.3%

Analysis of Variance
Source DF SS MS F P
Regression 1 0.06749 0.06749 6.58 0.033
Residual Error 8 0.08211 0.01026
Total 9 0.14960
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Figure 9.12 When females hide, mating is hard

(a) While it is hard to tell with only n = 10 data
points, determine whether we should have any
serious concerns about the conditions for fitting
a linear model to these data.

(b) Write down the equation of the least squares
line and use it to predict the mating activity of
water striders in a group in which females spend
50% of the time in hiding (FemalesHiding =
0.50).

(c) Give the hypotheses, t-statistic, p-value, and
conclusion of the t-test of the slope to deter-
mine whether time in hiding is an effective pre-
dictor of mating activity.

(d) Give the hypotheses, F-statistic, p-value, and
conclusion of the ANOVA test to determine
whether the regression model is effective at pre-
dicting mating activity.

(e) How do the two p-values from parts (c) and (d)
compare?

(f) Interpret R2 for this model.

9.52 Predicting One Depression Score from
Another Example 1.28 introduces a study exam-
ining the impact of diet on depression. The study

used two different ways to measure depression: the
DASS, which uses self-reported symptoms, and the
CESD, a more clinical assessment. On both scales,
higher numbers indicate greater depression symp-
toms. Exercise 2.244 includes a scatterplot with
regression line to predict CESD score from DASS
score at the beginning of the study, and we see that
the conditions appear to be met for using a lin-
ear model with these data. Computer output of the
regression analysis is shown.

Regression Equation
CESD = 4.97 + 0.7923 DASS

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 1 7478 7478.2 69.45 0.000
Error 73 7861 107.7
Total 74 15339

(a) What is the ANOVA F-statistic? What is the
ANOVA p-value?

(b) Give the conclusion of the analysis of variance
test, in context.

(c) How many people were included in the study?

9.53 How Big Is an Arm Span? The PASeniors
dataset contains several body measurements for a
sample of Pennsylvania high school seniors. The
Armspan variable records the distance between
middle finger tips (in cm) when arms are out-
stretched. We might use either Height or Foot
length (both measured in cm) as predictors of
Armspan. A t-test or ANOVA to assess either of
those predictors gives a p-value of essentially zero.
Here are some other ways we might compare the
models.

(a) Find the slope for each model. Which predictor
has a larger slope?

(b) Find the standard deviation of the error term
for each model. Which predictor has a smaller
standard deviation of the error term?

(c) Find the percentage of variability in arm span
explained by each predictor. Which predictor
explains more variability?

(d) Based on parts (a)–(c), which variable is more
effective for predicting arm span?

9.54 Points and Penalty Minutes in Hockey The
dataset OttawaSenators2019 contains information
on the number of points and the number of penalty
minutes for 26 Ottawa Senators NHL hockey
players. Computer output is shown for predicting
the number of points from the number of penalty
minutes:
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The regression equation is Points = 22.33 + 0.104 PenMin

Predictor Coef SE Coef T P
Constant 22.33 5.26 4.25 0.000
PenMins 0.104 0.152 0.69 0.499

S = 18.938 R-Sq = 1.93% R-Sq(adj) = 0.00%

Analysis of Variance
Source DF SS MS F P
Regression 1 169.0 169.0 0.47 0.499
Residual Error 24 8607.7 358.7
Total 25 8776.7

(a) Write down the equation of the least squares
line and use it to predict the number of points
for a player with 20 penalty minutes and for a
player with 150 penalty minutes.

(b) Interpret the slope of the regression equation in
context.

(c) Give the hypotheses, t-statistic, p-value, and
conclusion of the t-test of the slope to deter-
mine whether penalty minutes is an effective
predictor of number of points.

(d) Give the hypotheses, F-statistic, p-value, and
conclusion of the ANOVA test to determine
whether the regression model is effective at pre-
dicting number of points.

(e) How do the two p-values from parts (c) and (d)
compare?

(f) Interpret R2 for this model.

9.55 More Computation on Points and Penalty
Minutes in Hockey Exercise 9.54 gives output for a
regression model to predict number of points for a
hockey player based on the number of penalty min-
utes for the hockey player. Use this output, together
with any helpful summary statistics from Table 9.3,
to show how to calculate the regression quantities
given in parts (a) and (b) below. Verify your results
by finding the equivalent results in the output.

(a) The standard deviation of the error term, s
𝜖
.

(b) The standard error of the slope, SE.

Table 9.3 Points and penalty minutes for
hockey players

Sample Size Mean Std.Dev.

Points 26 24.88 18.74
PenMin 26 24.46 24.92

9.56 Computations Based on ANOVA for Predict-
ing Mercury in Fish In Exercise 9.23, we see that
the conditions are met for using the pH of a lake
in Florida to predict the mercury level of fish in the

lake. The data are given in FloridaLakes. Computer
output is shown for the linear model with several
values missing:

The regression equation is AvgMercury = 1.53 − 0.152 pH

Predictor Coef SE Coef T P
Constant 1.5309 0.2035 7.52 0.000
pH −0.15230 **(c)** −5.02 0.000

S = **(b)** R-Sq = **(a)**

Analysis of Variance
Source DF SS MS F P
Regression 1 2.0024 2.0024 25.24 0.000
Residual Error 51 4.0455 0.0793
Total 52 6.0479

(a) Use the information in the ANOVA table to
compute and interpret the value of R2.

(b) Show how to estimate the standard deviation of
the error term, s

𝜖
.

(c) Use the result from part (b) and the summary
statistics below to compute the standard error
of the slope, SE, for this model:

Variable N Mean StDev Minimum Maximum
pH 53 6.591 1.288 3.600 9.100
AvgMercury 53 0.5272 0.3410 0.0400 1.3300

9.57 More Computation on Fiber in Cereal
Exercise 9.47 gives output for a regression model
to predict calories in a serving of breakfast cereal
based on the number of grams of fiber in the serv-
ing. Use this output, together with any helpful
summary statistics from Table 9.4, to show how to
calculate the following regression quantities.

(a) The standard deviation of the error term, s
𝜖
.

(b) The standard error of the slope, SE.

Table 9.4 Calories and fiber in cereal

Sample Size Mean Std.Dev.

Calories 30 133.83 34.812
Fiber 30 1.797 1.880

9.58 More Computation on Predicting GPA
Exercise 9.49 gives output for a regression model
to predict grade point average in college based on
the score on the Verbal SAT exam. Use this out-
put, together with any helpful summary statistics
from Table 9.5, to calculate the following regression
quantities:

(a) The standard deviation of the error term, s
𝜖
.

(b) The standard error of the slope, SE.
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Table 9.5 Grade point average and Verbal
SAT score

Sample Size Mean Std.Dev.

GPA 345 3.1579 0.3983
VerbalSAT 345 594.0 74.29

9.59 Time Spent Exercising or Watching TV? Con-
sider a simple linear model for the number of hours
of exercise students get (per week) based on the
number of hours spent watching TV. Use the data
in ExerciseHours to fit this model. Test the effec-
tiveness of the TV predictor three different ways
as requested below, giving hypotheses, test statistic,
p-value, and a conclusion for each test.

(a) Use a t-test for the coefficient of TV.

(b) Use an ANOVA to test the effectiveness of the
model.

(c) Use a t-test for the correlation between TV and
Exercise.

(d) Compare the results for these three tests.

9.60 Life Expectancy and Health Expenditures In
Exercise 9.29 we see that the conditions are met
for fitting a linear model to predict life expectancy
(LifeExpectancy) from the percentage of govern-
ment expenditure spent on health care (Health)
using the data in SampCountries. Use technology
to examine this relationship further, as requested
below.

(a) Find the correlation between the two variables
and give the p-value for a test of the correlation.

(b) Find the regression line and give the t-statistic
and p-value for testing the slope of the regres-
sion line.

(c) Find the F-statistic and the p-value from an
ANOVA test for the effectiveness of the model.

(d) Comment on the effectiveness of this model.

9.61 Homes for Sale in California The dataset
HomesForSaleCA contains a random sample of 30
houses for sale in California. We are interested in
whether we can use number of bathrooms Baths
to predict number of bedrooms Beds in houses in
California. Use technology to answer the following
questions:

(a) What is the fitted regression equation? Use the
regression equation to predict the number of
bedrooms in a house with three bathrooms.

(b) Give the t-statistic and the p-value for the t-test
for slope in the regression equation. State the
conclusion of the test.

(c) Give the F-statistic and the p-value from an
ANOVA for regression for this model. State the
conclusion of the test.

(d) Give and interpret R2 for this model.

9.62 Which Variable Is Best in Homes for Sale
in California? Consider the data described in
Exercise 9.61 on homes for sale in California and
suppose that we are interested in predicting the Size
(in square feet) for such homes.

(a) What is the total variability in the sizes of the 30
homes in this sample? (Hint: Try a regression
ANOVA with any of the other variables as a
predictor.)

(b) Which other variable in the HomesForSaleCA
dataset explains the greatest amount of the
total variability in home sizes? Explain how you
decide on the variable.

(c) How much of the total variability in home sizes
is explained by the “best” variable identified in
part (b)? Give the answer both as a raw number
and as a percentage.

(d) Which of the variables in the dataset is the
weakest predictor of home sizes? How much of
the variability does it explain?

(e) Is the weakest predictor identified in part (d)
still an effective predictor of home sizes?
Include some justification for your answer.

9.63 Explore a Relationship between Two Quan-
titative Variables Select any two quantitative
variables in any dataset used thus far in the text,
avoiding those analyzed so far in Chapter 9.

(a) Identify the dataset and variables you are using.
Indicate which variable you will use as the
response variable and which as the explanatory
variable.

(b) Create a scatterplot and describe it. Are the
conditions for fitting a linear model reasonably
met?

(c) Find the correlation between the two variables
and give the p-value for a test of the correlation.

(d) Find the regression line and give the t-statistic
and p-value for testing the slope of the regres-
sion line.

(e) Find the F-statistic and the p-value from an
ANOVA test for the effectiveness of the model.

(f) Find and interpret R2.

(g) Comment on the effectiveness of this model.
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9.3CONFIDENCE AND PREDICTION INTERVALS

One of the common purposes for fitting a simple linear model is to make predic-
tions about the value of the response variable for a given value of the explanatory
variable. For example:

• What size tip should a waitress at the First Crush bistro expect when she hands a
table a bill for $30?

• How much should we expect to pay for an inkjet printer that prints about 3.0
pages per minute?

• If a cereal has 10 grams of sugar, how many calories should we expect?

Interpreting Confidence and Prediction Intervals
Once we fit the linear model, we can easily use the least squares line to make a pre-
diction given a specific value of the explanatory variable, but how accurate is that
prediction? We know that there is some uncertainty in the estimated coefficient of
the model and we can also expect additional random error when trying to predict
an individual point. As with estimates for other population parameters, we often
want to produce an interval estimate that has some predetermined chance of cap-
turing the quantity of interest. In a regression setting we have two common types of
intervals for the response variable.

Regression Intervals for a Response Variable

For a specific value, x∗, of the explanatory variable:

A confidence interval for the mean response is an interval which has
a given chance of capturing the mean response for all elements of the
population where the predictor value is x∗.

A prediction interval for an individual response is an interval which
has a given chance of capturing the response value for a specific case
in the population where the predictor value is x∗.

The conditions for these intervals are the same as we use for the simple
linear model.

Although the predicted value, ŷ = b0 + b1 ⋅ x
∗, is the same for both types of

intervals, they have quite different purposes and interpretations. The confidence
interval for a mean response is much like other confidence intervals we have encoun-
tered for parameters such as the mean or proportion in a population. The only
difference is that we are limiting the “population” to only cases that have the specific
value of the predictor.

On the other hand, the prediction interval is trying to capture most of the
response values in the population for that particular value of the predictor. This
usually requires a much wider interval, since it’s trying to contain most of the
population, rather than just the mean.
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Example 9.17
Using the data in RestaurantTips we find a least squares line for predicting the size
of the tip based on the amount of the bill to be

̂Tip = −0.292 + 0.182 ⋅ Bill

For a bill of $30, the predicted tip iŝTip = −0.292 + 0.182 ⋅ 30 = 5.17. Using software
we obtain the two intervals below using this model, 95% confidence, and a bill of
$30. Write a sentence interpreting each interval in the context of this problem.

(a) Confidence interval for mean tip = (4.99, 5.35)

(b) Prediction interval for tip = (3.23, 7.12)

Solution (a) From the confidence interval, we are 95% sure that the mean tip amount for all
bills of $30 at this restaurant is somewhere between $4.99 and $5.35.

(b) From the prediction interval, we are 95% sure that the tip for a specific bill of $30
at this restaurant will be between $3.23 and $7.12. This is the more appropriate
interval for answering the question posed at the start of this section.

Note that the predicted tip, ̂Tip = 5.17 when the bill is $30, lies at the center of
both of the intervals in Example 9.17. The confidence interval for the mean tip has a
much smaller margin of error ($0.18) than the prediction interval for individual tips
(margin of error = $1.95).

In practice, we generally rely on statistical software to handle the details of com-
puting either type of interval in a regression setting. However, we need to take care
that we choose the proper type of interval to answer a specific question.

Example 9.18
Suppose we find an inkjet printer with a printing speed of 3.0 pages per minute for
sale at a price of $129. Is this an unusually good deal? Use a regression model and
the data in InkjetPrinters to address this question.

Solution Using technology we fit this model and obtain both types of regression intervals for
the printer prices when PPM = 3.0.

The regression equation is Price = −94.2 + 90.9 PPM

Predictor Coef SE Coef T P
Constant −94.22 56.40 −1.67 0.112
PPM 90.88 19.49 4.66 0.000

S = 58.5457 R-Sq = 54.7% R-Sq(adj) = 52.2%

Predicted Values for New Observations
New Obs Fit SE Fit 95% CI 95% PI PPM

1 178.4 13.6 (149.9, 206.9) (52.1, 304.7) 3.00

The question asks about the price for a specific printer, so we should use the
prediction interval (labeled 95% PI). This shows that roughly 95% of printers that
print 3.0 pages per minute are priced somewhere between $52 and $305. The $129
price in the example is on the low side of this interval but well within these bounds,
so is not an unusually low price for a printer with this printing speed. (The sale price
of $129 is, however, below the mean price for a printer with this printing rate, based
on the 95% confidence interval for the mean of $149.9 to $206.9.)
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Figure 9.13 Confidence
and prediction intervals
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Figure 9.13 shows a scatterplot of Price vs PPM with the least squares line and
bounds for both the confidence interval for the mean price and prediction interval
for individual prices computed for every value of the predictor. For example, you
can roughly locate the intervals given in Example 9.18 above PPM = 3.0 in the plot.

Note that most of the data values lie outside of the 95% CI bounds. That is not
unusual. The 95% confidence intervals for the mean responses are trying to capture
the “true” line for the population, not the individual cases. The 95%PI bounds easily
capture all 20 of these printer prices. While this is not always the case, we should not
expect to see many (perhaps about 5%) of the data cases outside of the prediction
bounds.

We also see that the confidence bands (and to a lesser extent the prediction
intervals) are narrower near the middle of the plot and wider at the extremes. This
is also typical of regression intervals since we havemore uncertainty when predicting
the response for more unusual predictor values. Visualize a small change in the slope
of the line that still goes through the middle of the plot. This gives more substantial
changes to the predictions at either extreme.

Computational Details
Although we usually rely on technology to compute confidence and prediction inter-
vals for a regression response, the formulas for the margin of error can be instructive
and are given in the box that follows.

Note that the formulas for computing both types of intervals are very similar.
The only difference is an extra addition of “1” within the square root for the predic-
tion interval. After multiplying by t∗ and s

𝜖
, this accounts for the extra variability in

individual cases caused by the application of the error term, 𝜖, in the simple linear
model. Even if we could estimate the regression line perfectly, we would still have
uncertainty in predicting individual values due to variability in the error term.

We also see in the (x∗ − x)2 term how the margin of error increases (and the
intervals become wider) as the predicted value moves farther from the center. This
phenomenon is visible in the confidence bands of Figure 9.13.

Formulas for Confidence and Prediction Intervals in Regression

For a specific value, x∗, of a predictor, the predicted response using a
least squares line is

ŷ = b0 + b1 ⋅ x
∗
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A confidence interval for the mean response when the predictor
is x∗ is

ŷ ± t∗s
𝜖

√
1
n
+ (x∗ − x)2

(n − 1)s2x
and the prediction interval for an individual response when the pre-
dictor is x∗ is

ŷ ± t∗s
𝜖

√
1 + 1

n
+ (x∗ − x)2

(n − 1)s2x
where x and sx are the mean and standard deviation, respectively, of
the predictor values in the sample. The value s

𝜖
is the standard devi-

ation of the error term and t∗ comes from a t-distribution with n − 2
degrees of freedom.

Example 9.19
Use the formulas and data in InkjetPrinters to verify the confidence interval for
mean price and prediction interval for individual price that are shown forPPM = 3.0
in the computer output of Example 9.18.

Solution From the computer output we find the fitted least squares line and substitute
PPM = 3.0 to get a predicted price:

̂Price = −94.22 + 90.88 ⋅ 3.0 = 178.42

We also need themean of the printer PPM values, x = 2.815, and standard deviation,
sx = 0.689, which we find from the original data. The regression output shows that
the standard deviation of the error term is s

𝜖
= 58.55. Finally, for a t-distribution

with 20 − 2 = 18 degrees of freedom and 95% confidence, we have t∗ = 2.101.
To compute the confidence interval for mean price when PPM = 3.0, we use

178.42 ± 2.101 ⋅ 58.55

√
1
20

+ (3.0 − 2.815)2
(20 − 1)0.6892

= 178.42 ± 28.53 = (149.89, 206.95)

To compute the prediction interval for individual price when PPM = 3.0, we use

178.42± 2.101 ⋅ 58.55

√
1+ 1

20
+ (3.0 − 2.815)2
(20 − 1)0.6892

= 178.42 ± 126.28 = (52.14, 304.70)

The predicted price and both intervals match the computer output.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Find and interpret a confidence interval for the mean response for a
specific value of the predictor in a regression model

• Find and interpret a prediction interval for the individual responses for
a specific value of the predictor in a regression model
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Exercises for Section 9.3

SKILL BUILDER 1
In Exercises 9.64 to 9.67, two intervals are given, A
and B, for the same value of the explanatory vari-
able. In each case:
(a) Which interval is the confidence interval for the

mean response?Which interval is the prediction
interval for the response?

(b) What is the predicted value of the response vari-
able for this value of the explanatory variable?

9.64 A: 10 to 14; B: 4 to 20.

9.65 A: 94 to 106; B: 75 to 125.

9.66 A: 2.9 to 7.1; B: 4.7 to 5.3.

9.67 A: 16.8 to 23.2; B: 19.2 to 20.8.

WHEN CALORIES ARE CONSUMED AND
WEIGHT GAIN IN MICE In Exercise 9.20 on
page 628, we look at a model to predict weight gain
(in grams) in mice based on the percent of calo-
ries the mice eat during the day (when mice should
be sleeping instead of eating). In Exercises 9.68
and 9.69, we give computer output with two regres-
sion intervals and information about the percent of
calories eaten during the day. Interpret each of the
intervals in the context of this data situation.

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response

9.68 The intervals given are for mice that eat 50%
of their calories during the day:

DayPct Fit SE Fit 95% CI 95% PI
50.0 7.476 0.457 (6.535, 8.417) (2.786, 12.166)

9.69 The intervals given are for mice that eat 10%
of their calories during the day:

DayPct Fit SE Fit 95% CI 95% PI
10.0 2.385 1.164 (−0.013, 4.783) (−2.797, 7.568)

FIBER IN CEREALS AS A PREDICTOR OF
CALORIES In Example 9.10 on page 634, we look
at a model to predict the number of calories in a cup
of breakfast cereal using the number of grams of
sugars. In Exercises 9.70 and 9.71, we give computer
output with two regression intervals and informa-
tion about a specific amount of sugar. Interpret each
of the intervals in the context of this data situation.

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response

9.70 The intervals given are for cereals with 10
grams of sugars:

Sugars Fit SE Fit 95% CI 95% PI
10 132.02 4.87 (122.04, 142.01) (76.60, 187.45)

9.71 The intervals given are for cereals with 16
grams of sugars:

Sugars Fit SE Fit 95% CI 95% PI
16 157.88 7.10 (143.35, 172.42) (101.46, 214.31)

FOOTBALL AND COGNITION
Exercises 9.72 and 9.73 refer to the regression line
(given in Exercise 9.50):

̂Cognition = 102.3 − 3.34 ⋅ Years

using years playing football to predict the score on
a cognition test. In each exercise,

(a) Find the predicted cognition score for that case.

(b) Two intervals are shown: one is a 95% con-
fidence interval for the mean response and
the other is a 95% prediction interval for the
response. Which is which?

9.72 A person who has played football for 8 years.
Interval I: (22.7, 128.5) Interval II: (63.4, 87.8)
9.73 A person who has played football for 12 years.
Interval I: (10.2, 114.3) Interval II: (54.4, 70.1)
9.74 Housing Prices People in real estate are inter-
ested in predicting the price of a house by the
square footage, and predictions will vary based on
geographic area. We look at predicting prices (in
$1000s) of houses in California based on the size
(in square feet). A random sample of 30 houses for
sale in California is given in the dataset HomesFor-
SaleCA. Use technology and this dataset to answer
the following questions:

(a) Is square footage an effective predictor of price
for houses in California?

(b) Find a point estimate for the price of a 2000-
square-foot California home.

(c) Find and interpret a 90% confidence interval
for the average price of all 2000-square-foot
California homes.

(d) Find and interpret a 90% prediction interval
for the price of a specific 2000-square-foot
California home.

9.75 Life Expectancy In Exercise 9.29 on page 649,
we consider a regression equation to predict
life expectancy from percent of government
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expenditure on health care, using data for a sample
of 50 countries in SampCountries. Using technology
and this dataset, find and interpret a 95% prediction
interval for each of the following situations:

(a) A country which puts only 3% of its expendi-
ture into health care.

(b) A country which puts 10% of its expenditure
into health care.

(c) A country which puts 50% of its expenditure
into health care.

(d) Calculate the widths of the intervals from (a),
(b), and (c). What do you notice about these
widths? (Note that for this sample, government
expenditures on health care go from aminimum
of 0.0% to a maximum of 22.6%, with a mean of
10.14%.)

9.76 Predicting GPA from Verbal SAT score In
Exercise 9.19 on page 628, we use the information
in StudentSurvey to fit a linear model to use Verbal
SAT score to predict a student’s grade point aver-
age in college. The regression equation is
̂GPA = 2.03 + 0.00189 ⋅ VerbalSAT.

(a) What GPA does the model predict for a stu-
dent who gets a 500 on the Verbal SAT exam?
What GPA is predicted for a student who gets
a 700?

(b) Use technology and the StudentSurvey dataset
to find and interpret:

i. A 95% confidence interval for the mean
GPA of students who get a 500 Verbal SAT
score.

ii. A 95% prediction interval for the GPA of
students who get a 500 Verbal SAT score.

iii. A 95% confidence interval for the mean
GPA of students who get a 700 Verbal SAT
score.

iv. A 95% prediction interval for the GPA of
students who get a 700 Verbal SAT score.

9.77 Predicting Average HwyMPG Based on
CityMPG Exercise 2.266 on page 151 looks at a
regression line to predict the highway mileage
rating (HwyMPG) based on city mileage rating
(CityMPG) using the cars in Cars2020. Use tech-
nology to find a 95% confidence interval for the
mean highway gas mileage for all new cars with a
city mileage of 20 mpg.

9.78 Predicting HwyMPG for a Jeep Renegade
Exercise 2.266 on page 151 looks at a regression line
to predict the highway mileage rating (HwyMPG)
based on city mileage rating (CityMPG) using the
cars in Cars2020. The Jeep Renegade, with a city
rating of 16 mpg is not one of the car models in that
dataset. Find a 95% interval to contain the highway
mpg of a Jeep Renegade.

9.79 Birdie on the 476 yard 16th Hole Table 9.2 on
page 631 shows a scorecard for a round of 18 holes
of golf. In Exercise 9.31 we consider models to pre-
dict the Score for each hole using the Distance or
the Par for the data in GolfRound. Looking at the
scorecard, we see that the golfer did especially well
on the par 5, 476 yard long 16th hole, using only 4
shots to complete the hole (known as a birdie in golf
for using one stroke less than par). Is this a very sur-
prising occurrence?

(a) If we use Distance as a predictor of Score, what
is the predicted score for the 476 yard 16th hole?

(b) Using technology and the fitted model based on
Distance, find (and interpret) a 95% prediction
interval for individual scores on this hole.

(c) Is it very surprising for this golfer to get a birdie
4 on a 476 yard hole?

9.80 Birdie on the Par 5 16th Hole Repeat
Exercise 9.79 using the data inGolfRound to see if a
birdie 4 is unusual on the par 5 16th hole whenwe use
Par as the predictor of Score (rather thanDistance).

(a) If we use Par as a predictor of Score, what is the
predicted score for the par 5 16th hole?

(b) Using technology and the fitted model based on
Par, find (and interpret) a 95% prediction inter-
val for individual scores on this hole.

(c) Is it very surprising for this golfer to get a birdie
4 on a par 5 hole?

9.81 Predicting Re-Election Margin Data 2.9 on
page 117 introduces data on the approval rating of
an incumbent US president and the margin of vic-
tory or defeat in the subsequent election (where
negative numbers indicate the margin by which the
incumbent president lost the re-election campaign).
The data are reproduced in Table 9.6 and are avail-
able in ElectionMargin.

Computer output for summary statistics for the
two variables and for a regression model to predict
the margin of victory or defeat from the approval
rating is shown:
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Table 9.6 Presidential approval rating and margin of victory or defeat

Approval 62 50 70 67 57 48 31 57 39 55 49 50
Margin 10.0 4.5 15.4 22.6 23.2 −2.1 −9.7 18.2 −5.5 8.5 2.4 3.9

Variable N Mean StDev
Approval 12 52.92 11.04
Margin 12 7.62 10.72

————————————————————–

The regression equation is Margin = −36.76 + 0.839 Approval

Term Coef SE Coef T-Value P-Value
Constant −36.76 8.34 −4.41 0.001
Approval 0.839 0.155 5.43 0.000

S = 5.66054 R-Sq = 74.64% R-Sq(adj) = 72.10%

Analysis of Variance
Source DF SS MS F P
Regression 1 943.0 943.04 29.43 0.000
Residual Error 10 320.4 32.04
Total 11 1263.5

Use values from this output to calculate and inter-
pret the following. Show your work.

(a) A 95% confidence interval for the mean mar-
gin of victory for all presidents with an approval
rating of 50%.

(b) A 95% prediction interval for the margin of vic-
tory for a president with an approval rating of
50%.

(c) A 95% confidence interval for the mean mar-
gin of victory if we have no information about
the approval rating. (Hint: This is just an ordi-
nary confidence interval for a mean based only
on the single sample ofMargin values.)

9.82 Golf Scores In a professional golf tournament
the players participate in four rounds of golf and the
player with the lowest score after all four rounds is
thechampion.Howwell doesaplayer’sperformance

Table 9.7 Golf scores after the first and final rounds of the Masters

First −4 −4 −1 −5 −4 −4 0 −1 −3 −1 0 1 −1 0 −1 4 3 4 −1 7
Final −12 −8 −7 −7 −5 −5 −3 −2 −2 −1 −1 −1 0 3 4 4 6 6 8 10

in the first round of the tournament predict the final
score? Table 9.7 shows the first round score and final
score for a random sample of 20 golfers who made
the cut in a recentMasters tournament. The data are
also stored inMastersGolf.

Computer output for a regressionmodel to pre-
dict the final score from the first-round score is
shown. Use values from this output to calculate and
interpret the following. Show your work.

(a) Find a 95% interval to predict the average final
scoreofall golferswhoshoota0onthefirst round
at the Masters.

(b) Find a 95% interval to predict the final score of
a golfer who shoots a −5 in the first round at the
Masters.

(c) Find a 95% interval to predict the average final
score of all golfers who shoot a +3 in the first
round at the Masters.

Variable N Mean StDev
First 20 −0.550 3.154
Final 20 −0.65 5.82

—————————–

The regression equation is Final = 0.162 + 1.48 First

Predictor Coef SE Coef T P
Constant 0.1617 0.8173 0.20 0.845
First 1.4758 0.2618 5.64 0.000

S = 3.59805 R-Sq = 63.8% R-Sq(adj) = 61.8%

Analysis of Variance
Source DF SS MS F P
Regression 1 411.52 411.52 31.79 0.000
Residual Error 18 233.03 12.95
Total 19 644.55
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“Here’s a sector of the economy that’s growing: data mining. Businesses accumulate much

information about you and the world around you…More companies are trying to use that

information, and that is fueling demand for people who can make sense of the data…
[There is a] recruitment war for math talent.… Everybody’s looking for these people.”

–Steve Inskeep, Yuki Noguchi, and D.J. Patil∗

∗“The Search for Analysts to Make Sense of Big Data,” NPR’s Morning Edition, November 30, 2011.
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Questions and Issues

C H A P T E R O U T L I N E

10 Multiple Regression 652
10.1 Multiple Predictors 654

10.2 Checking Conditions for a Regression
Model 670

10.3 Using Multiple Regression 679

Here are some of the questions and issues we will discuss in this chapter:

• How effective is it to use a person’s body measurements to predict the percent of body fat?

• Which variables are most important in predicting the price of a house: square footage, number of
bedrooms, or number of bathrooms?

• What variables factor into the life expectancy of a country?

• Is age or miles driven more important in the price of a used car?

• Is there gender discrimination in salaries for college professors?

• How well do hourly exam grades in statistics predict the grade on the final exam?

• What variables are best at predicting profitability of movies?

• What variables are most important in predicting the length of time a baseball game lasts?

• Are carbon or steel bikes faster?

• What information can help us predict the spread of a forest fire?

• How many hours a week do high school seniors spend on homework, sports, video games, com-
puter, TV, work, or hanging out with friends?

653



654 CHA P T E R 10 Multiple Regression

10.1MULTIPLE PREDICTORS

A simple linear model allows us to predict values for a quantitative variable based on
a single quantitative predictor. In many data situations we may have lots of variables
that could serve as potential predictors. For example:

• Response: Printer Price (InkjetPrinters)
Potential predictors: print speed (PPM), photo print time (PhotoTime), black &
white ink cost (CostBW), color ink cost (CostColor)

• Response: Tip amount (RestaurantTips)
Potential predictors: size of bill (Bill), number in the party (Guests), pay with a
credit card? (Credit = 1 for yes, Credit = 0 for no)

• Response: Breakfast cereal Calories (Cereal)
Potential predictors: amounts of Fiber, Fat, Sodium, Sugars, Carbs, Protein

• Response: NBA team winning percentage,WinPct (NBAStandings2019)
Potential predictors: points scored per game (PtsFor), points allowed per game
(PtsAgainst)

• Response: Home Price (HomesForSale)
Potential predictors: square feet (Size), number of bedrooms (Beds), number of
bathrooms (Baths)

• Response: Average household income for statesHouseholdIncome (USStates)
Potential predictors: Percentage of residents who have a college degree (College),
smoke (Smokers), drink heavily (Hea𝑣yDrinkers), are non-white (NonWhite), are
obese (Obese)

Multiple Regression Model
Why should we be limited to just one predictor at a time? Might we get a better
model if we include information from several explanatory variables in the same
model? For this reason, we extend the simple linear model from Section 9.1 to a
multiple regressionmodel that allows more than one predictor.

Multiple Regression Model

Given a response variable Y and k explanatory variables X1,
X2,…Xk, amultiple regression model has the form

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + · · · + 𝛽kXk + 𝜖

where 𝜖 is normally distributed N(0, 𝜎
𝜖
) and independent.

This model allows more than one predictor to contribute to the linear part of
the model and has the same conditions about the random errors as the simple linear
model. With multiple predictors we lose the nice graphical representation of the
model as a line on a scatterplot, but statistical software makes it easy to estimate the
coefficients from sample data.

The prediction equation has the form

̂Y = b0 + b1X1 + b2X2 + · · · + bkXk
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where the coefficients are chosen to minimize the sum of squared residuals between
the predicted ̂Y values and the actual Y responses in the sample.

Example 10.1
Consider a multiple regression model to predict the prices of inkjet printers based
on the printing speed (PPM) and cost for black & white printing (CostBW). Use
technology and the data in InkjetPrinters to estimate the coefficients of the model
and write down the prediction equation. What price does this fitted model predict
for a printer that prints at 3.0 pages per minute and costs 3.7 cents per page for black
& white printing?

Solution Here is computer output for fitting the model Price = 𝛽0 + 𝛽1PPM + 𝛽2CostBW + 𝜖:

The regression equation is
Price = 89.2 + 58.1 PPM - 21.1 CostBW

Predictor Coef SE Coef T P
Constant 89.20 95.74 0.93 0.365
PPM 58.10 22.79 2.55 0.021
CostBW −21.125 9.341 −2.26 0.037

S = 52.8190 R-Sq = 65.2% R-Sq(adj) = 61.1%

The prediction equation is ̂Price = 89.20 + 58.10 ⋅ PPM − 21.125 ⋅ CostBW. For
a printer that prints 3.0 pages per minute with a black & white cost of 3.7 cents per
page, we have

̂Price = 89.20 + 58.10(3.0) − 21.125(3.7) = 185.34

The predicted price for this printer is $185.34.

The Kodak ESP Office 2170 All-in-One Printer is a case in the InkjetPrinters
file that has PPM = 3.0, CostBW = 3.7, and its actual price is $150. The residual
for this printer is 150 − 185.34 = −35.34. In the fitted model using just PPM (see
Example 9.1 on page 617) we have ̂Price = −94.22 + 90.88 ⋅ PPM and the predicted
price when PPM = 3.0 is $178.42 with a residual of −28.42. Notice that the intercept
and coefficient of PPM both change when CostBW is added to the model. Also, the
prediction for this printer is better when CostBW is not included in the model. Does
this mean the simpler model is better?

When comparing models we should consider the residuals for all of the data
cases. One way to do this is to look at the estimated standard deviation of the error
term. In the output for the multiple regression model in Example 10.1 we see s

𝜖
=

52.82, while the output for the simple linear model on page 617 shows s
𝜖
= 58.55.

The size of the typical error in predicting these inkjet prices is smaller when we
include both PPM and CostBW as predictors in the model.

Testing Individual Terms in a Model
Once we have more than one predictor in a multiple regression model, the question
naturally arises as to which predictors are actually useful to include in the model.
We can test the individual variables in a multiple regression model by seeing if their
coefficients are significantly different from zero. This is analogous to the t-test for the
slope that we have already seen for a simple linear model. However, the presence of
additional predictors can make the tests more challenging to interpret.
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T-tests for Coefficients in a Multiple Regression Model

To test the effectiveness of any predictor, say Xi, in a multiple regres-
sion model we consider H0 ∶ 𝛽i = 0 vs Ha ∶ 𝛽i ≠ 0. We usually use
computer software to find the t-statistic and p-value.

Alternately, use the test statistic

t =
bi
SEbi

where the estimated coefficient, bi, and its standard error, SEbi
, are

given in the computer output. We find a p-value using a t-distribution
with n − k − 1 degrees of freedom, where n is the sample size and k is
the number of predictors in the model.

If we reject the null hypothesis, finding evidence that the coeffi-
cient is different from zero, we see that the predictor is an effective
contributor to this model.

Example 10.2
Use the output in the solution of Example 10.1 to judge the effectiveness of each of
the predictors (PPM andCostBW) in the multiple regression model to predict inkjet
prices.

Solution To test PPM we use H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0. From the regression output we see
t = 58.10∕22.79 = 2.55, which gives a two-tailed p-value of 0.021 for a t-distribution
with 20 − 2 − 1 = 17 degrees of freedom. This is a fairly small p-value (less than 5%)
which means we have evidence that the coefficient of PPM in the population differs
from zero and it is a useful predictor of Price in this model.

To test CostBW we use H0 ∶ 𝛽2 = 0 vs Ha ∶ 𝛽2 ≠ 0. From the regression output
we see t = −21.125∕9.341 = −2.26 which gives a two-tailed p-value of 0.037. This is
also less than 5%, so it would appear that CostBW is also useful in this model to
predict printer Price.

Note that we can also find the t-statistic (T) and the p-value (P) for both tests
directly from the output.

D A T A 10 . 1 Body Fat
The percentage of a person’s weight that is made up of body fat is often used as
an indicator of health and fitness. However, accurate methods of measuring
percent body fat are difficult to implement. One method involves immersing the
body in water to estimate its density and then applying a formula to estimate
percent body fat. An alternative is to develop a model for percent body fat that
is based on body characteristics such as height and weight that are easy to
measure. The dataset BodyFat contains such measurements for a sample of
100 men.1 For each subject we have the percent body fat (Bodyfat) measured by
the water immersion method, Age,Weight (in pounds), Height (in inches), and
circumference (in cm) measurements for the Neck , Chest, Abdomen, Ankle,
Biceps, andWrist. ◼

1A sample taken from data provided by Johnson, R., “Fitting Percentage of Body Fat to Simple
Body Measurements,” Journal of Statistics Education, 1996, http://www.amstat.org/publications/jse/v4n1/
datasets.johnson.html.
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What percent body fat?

Example 10.3
Fit a model to predictBodyfat usingHeight andWeight. Comment on whether either
of the predictors appears to be important in the model.

Solution Here is some output for fitting Bodyfat = 𝛽0 + 𝛽1Weight + 𝛽2Height + 𝜖:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 71.48247 16.20086 4.412 2.65e-05 ***
Weight 0.23156 0.02382 9.721 5.36e-16 ***
Height −1.33568 0.25891 −5.159 1.32e-06 ***

The prediction equation is

̂Bodyfat = 71.48 + 0.232Weight − 1.336Height

The p-values for the t-tests for the coefficients of Weight and Height are both very
close2 to zero so we have strong evidence that both terms are important in this
model.

Example 10.4
Add Abdomen as a third predictor to the model in Example 10.3 and repeat the
assessment of the effectiveness of each predictor.

Solution Here is some output for fitting
Bodyfat = 𝛽0 + 𝛽1Weight + 𝛽2Height + 𝛽3Abdomen + 𝜖:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −56.1329 18.1372 −3.095 0.002580 **
Weight −0.1756 0.0472 −3.720 0.000335 ***
Height 0.1018 0.2444 0.417 0.677750
Abdomen 1.0747 0.1158 9.279 5.27e-15 ***

The prediction equation is now

̂Bodyfat = −56.13 − 0.1756Weight + 0.1018Height + 1.0747Abdomen

The coefficient ofAbdomen is very significant (t = 9.279, p-value ≈ 0).Weight is also
an effective predictor (t = −3.720, p-value = 0.000335), but the Height coefficient
has a large p-value (0.678), indicating thatHeight is not an effective predictor in this
model.

2The notation 1.32e-06 means 1.32 × 10−6 = 0.00000132.
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You probably find the results of Exercises 10.3 and 10.4 a bit surprising. Why
is Height considered a strong predictor in the first model but not effective at all in
the second? The key lies in understanding that the individual t-tests for a multiple
regression model assess the importance of each predictor after the other predictors
are in the model. When bothWeight and Abdomen are in the model, we really don’t
needHeight anymore—most of its information about Bodyfat is already supplied by
the other two predictors.

Even more surprising, while the coefficient ofWeight is significant in the three-
predictor model, its sign is negative, the opposite of its sign in the two-predictor
model. Does it really make sense that people who weigh more should be predicted
to have less percentage body fat? Just looking at the two variables together, the
correlation between Bodyfat andWeight is positive (r = +0.6) and quite significant.
However, when Abdomen is also in the model the coefficient of Weight is negative
and quite strong. Think for a moment about two men with the same abdomen cir-
cumference, but one weighs much more than the other (possibly because he is taller
or more muscular). Which would you expect to have the higher percentage of body
fat? For a fixed abdomen size, more weight is actually an indicator of less body fat
as a percentage of weight.

In Section 2.6, we interpret the coefficient in a simple linear model as the pre-
dicted change in the response variable given a one unit increase in the predictor.
The same interpretation of coefficients applies here in a multiple regression model,
with the added condition that the values of all other variables stay the same.

Example 10.5
Interpret the coefficient of Abdomen in context for the model in Example 10.4.

Solution The coefficient of Abdomen is 1.0747. If a person’s weight and height stayed exactly
the same and the abdomen circumference increased by 1 cm, we expect the per-
cent body fat to increase by 1.0747. (Alternately, if two people have the same weight
and height and one of them has an abdomen 1 cm larger, the one with the larger
abdomen is predicted to have a percent body fat 1.0747 higher.)

Interpreting the individual t-tests in a multiple regression model can be quite
tricky, especially when the predictors are related to each other. For an introductory
course, you should just be aware that the individual tests are assessing the con-
tribution of a predictor to that particular model and avoid making more general
statements about relationships with the response variable.

ANOVA for a Multiple Regression Model
The individual t-tests tell us something about the effectiveness of individual predic-
tors in a model, but we also need a way to assess how they do as a group. This is not
a big issue for a simple linear model, since the effectiveness of the model depends
only on the effectiveness of the single predictor. For a model with multiple predic-
tors we need to measure how well the linear combination of the predictors does at
explaining the structure of the response variable. This brings us back to partitioning
variability to construct an ANOVA table as we did in Section 9.2.

The general form of a multiple regression model is

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + · · · + 𝛽kXk + 𝜖

or

Response = Linear combination of predictors + Error
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We split the total variability in the response into two pieces: one that represents the
variability explained by the model and another that measures the variability that is
left unexplained in the errors:

TOTAL Variability
in the Response

= Variability Explained
by the MODEL

+ Unexplained Variability
in the ERROR

We generally rely on statistical software tomanage the details of computing the sums
of squared deviations to measure each of these amounts of variability. However, the
formulas are identical to the simple linear case (page 633) and we note that they can
be applied in any situation where we have an estimated model that yields predicted
values (ŷ) for each data case:

SSTotal = SSModel + SSE

where

SSModel =
∑

(ŷ − y)2

SSE =
∑

(y − ŷ)2

SSTotal =
∑

(y − y)2

Example 10.6
Comparing Regression ANOVA Tables

The ANOVA tables for two regression models for printer prices are shown below.
Model A uses just a single predictor (PPM) as in Example 9.1 on page 617. Model B
adds CostBW as a second predictor to the model (as in Example 10.1). Discuss how
the ANOVA table changes as we add the new CostBW predictor.

Model A: Price = 𝛽0 + 𝛽1PPM + 𝜖

Analysis of Variance
Source DF SS MS F P
Regression 1 74540 74540 21.75 0.000
Residual Error 18 61697 3428
Total 19 136237

Model B: Price = 𝛽0 + 𝛽1PPM + 𝛽2CostBW + 𝜖

Analysis of Variance
Source DF SS MS F P
Regression 2 88809 44405 15.92 0.000
Residual Error 17 47427 2790
Total 19 136237

Solution • The sum of squares explained by the regression model (SSModel) increases from
74,540 to 88,809 when we add CostBW. Adding a new predictor will never explain
less variability. The individual t-test (as described in Example 10.2) helps deter-
mine whether the new variability explained is more than we would expect by
random chance alone.

• The sum of squares for the error term (SSE) decreases from 61,697 to 47,427.
Again, this is expected since the total variability (SSTotal = 136, 237) is the same
for any model to predict these printer prices. Adding a new predictor can only
improve the overall accuracy for predicting the data cases that are used to fit the
model.
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• The degrees of freedom for the regression model increase from 1 to 2. In general,
for a multiple regression model, this degrees of freedom will be the number of
predictors in the model.

• The degrees of freedom for the error decrease from 18 to 17. Again, this is not
surprising since the total degrees of freedom remain at 19. In general, we lose one
degree of freedom for each parameter in the model plus the constant term, so
20 − 2 − 1 = 17.

• The rest of the ANOVA table changes as we divide the new sums of squares by
the new df to get the mean squares and then the F-statistic. Although the p-values
look the same, the first is based on an F1,18 distribution and the second uses F2,17.

In general, the ANOVA table for a k-predictor multiple regression uses k
degrees of freedom for the model and n − k − 1 degrees of freedom for the error.
The other important change concerns the hypotheses being tested. The ANOVA
for regression is testing the whole model, all k predictors as a group. The formal
hypotheses are:

H0 ∶ 𝛽1 = 𝛽2 = · · · = 𝛽k = 0
(Model is ineffective and all predictors could be dropped)

Ha ∶ At least one 𝛽i ≠ 0 (At least one predictor in the model is effective)

Note that the constant term, 𝛽0, is not included in the regression ANOVA null
hypothesis. We are only looking for evidence that at least one of the predictors is
more helpful than random chance (and its coefficient is different from zero). When
we see a small p-value (such as both ANOVA tables in Example 10.6) we conclude
that something in the model is effective for predicting the response, but we need to
consider the individual t-tests to judge which predictors are or are not useful.

ANOVA to Test a Regression Model

To test for the overall effectiveness of a regression model,
Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + · · · + 𝛽kXk + 𝜖:

H0 ∶ 𝛽1 = 𝛽2 = · · · = 𝛽k = 0 (The model is ineffective)

Ha ∶ At least one 𝛽i ≠ 0

(At least one predictor in the model is effective)

We partition the variability to construct an ANOVA table for regres-
sion, and usually use computer software to give the ANOVA table.

Source df Sum of Sq. Mean Square F-statistic p-value

Model k SSModel
SSModel

k F = MSModel
MSE

Fk,n−k−1

Error n − k − 1 SSE
SSE

n − k − 1

Total n − 1 SSTotal
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Example 10.7
Suppose that we use the time to print a color picture (PhotoTime) and cost per page
for color ink (CostColor) as two predictors of inkjet printer prices. Use technology
to find and interpret an ANOVA table for testing the effectiveness of this model.

Solution Here is some computer output for fitting
Price = 𝛽0 + 𝛽1PhotoTime + 𝛽2CostColor + 𝜖:

Predictor Coef SE Coef T P
Constant 371.89 66.89 5.56 0.000
PhotoTime 0.1038 0.3663 0.28 0.780
CostColor −18.732 5.282 −3.55 0.002

S = 67.8509 R-Sq = 42.6% R-Sq(adj) = 35.8%

Analysis of Variance
Source DF SS MS F P
Regression 2 57973 28987 6.30 0.009
Residual Error 17 78264 4604
Total 19 136237

The p-value in the ANOVA is 0.009 which is quite small, giving evidence that at least
one term in this model is effective for helping to explain printer prices. Looking at
the individual t-tests it appears that CostColor is an effective predictor in the model
(p-value = 0.002), but PhotoTime is not very helpful (p-value = 0.780).

Coefficient of Determination: R-squared
On page 636 of Section 9.2 we see that the portion of total variability in the

response variable that is successfully explained by the model is known as the coeffi-
cient of determination, or R2. With multiple predictors we cannot get this value by
squaring the correlation (as we did in Section 9.1) with any of the individual predic-
tors, but we can use the information from the ANOVA table to obtain R2 (as we did
in Section 9.2 for simple regression).3

Coefficient of Determination, R 2

For any regression model, the coefficient of determination is

R2 = SSModel
SSTotal

and is interpreted as the percent of variability in the response values
in the sample that is explained by the fitted regression model.

Example 10.8
In Examples 10.6 and 10.7 we see ANOVA tables for testing two-predictor mod-
els for printer prices: one using PPM and CostBW, the other using PhotoTime and
CostColor. Use the information from each ANOVA table to compute and inter-
pret the value of R2 for each model. What do the results tell us about the relative
effectiveness of the two models?

3If we let R be the correlation between actual and predicted response values for the sample, its square is
the percentage of variability explained.
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Solution The total variability, SSTotal = 136,237, is the same for both models, so we find R2

in each case by dividing the sum of squares explained by the model (SSModel) by
this quantity:

R2 = 88,809
136,237

= 0.652 (PPM and CostBW)

R2 = 57,973
136,237

= 0.426 (PhotoTime and CostColor)

We see that PPM and CostBW together explain 65.2% of the variability in the
prices for these 20 printers, while PhotoTime and CostColor together explain only
42.6% of this variability. Although both of these models are judged as “effective”
based on their ANOVA tests, we would tend to prefer the one based on PPM and
CostBW that explains a larger portion of the variability in inkjet printer prices.

Would some other combination of predictors in the InkjetPrinters dataset give
an even more effective model for predicting prices? We consider the question of
choosing an effective set of predictors in Section 10.3. Before doing so, we examine
the conditions for regression models (and how to check them) in more detail in
Section 10.2.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use computer output to make predictions and interpret coefficients
using a multiple regression model

• Test the effectiveness of individual terms in a multiple regression
model

• Use ANOVA to test the overall effectiveness of a multiple regression
model

• Find and interpret the value of R2 for a multiple regression model

Exercises for Section 10.1

SKILL BUILDER 1

Exercises 10.1 to 10.11 refer to the multiple regres-

sion output shown:
The regression equation is
Y = 43.4 - 6.82 X1 + 1.70 X2 + 1.70 X3 + 0.442 X4

Predictor Coef SE Coef T P
Constant 43.43 18.76 2.31 0.060
X1 −6.820 1.059 −6.44 0.001
X2 1.704 1.189 1.43 0.202
X3 1.7009 0.6014 2.83 0.030
X4 0.4417 0.1466 3.01 0.024

S = 2.05347 R-Sq = 99.8% R-Sq(adj) = 99.6%

Analysis of Variance
Source DF SS MS F P
Regression 4 10974.7 2743.7 650.66 0.000
Residual Error 6 25.3 4.2
Total 10 11000.0

10.1 What are the explanatory variables? What is
the response variable?

10.2 One case in the sample has Y = 30, X1 = 8,
X2 = 6,X3 = 4, andX4 = 50. What is the predicted
response for this case? What is the residual?

10.3 One case in the sample has Y = 60, X1 = 5,
X2 = 7,X3 = 5, andX4 = 75. What is the predicted
response for this case? What is the residual?

10.4 What is the coefficient of X2 in the model?
What is the p-value for testing this coefficient?

10.5 What is the coefficient of X1 in the model?
What is the p-value for testing this coefficient?

10.6 Which of the variables are significant at the
5% level?
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10.7 Which of the variables are significant at the
1% level?

10.8 Which variable is most significant in this
model?

10.9 Which variable is least significant in this
model?

10.10 Is the model effective, according to the
ANOVA test? Justify your answer.

10.11 State and interpret R2 for this model.

SKILL BUILDER 2
Exercises 10.12 to 10.22 refer to the multiple regres-
sion output shown:
The regression equation is
Y = - 61 + 4.71 X1 - 0.25 X2 + 6.46 X3 + 1.50 X4 - 1.32 X5

Predictor Coef SE Coef T P
Constant −60.7 105.7 −0.57 0.575
X1 4.715 2.235 2.11 0.053
X2 −0.253 1.178 −0.21 0.833
X3 6.459 2.426 2.66 0.019
X4 1.5011 0.4931 3.04 0.009
X5 −1.3151 0.8933 −1.47 0.163

S = 32.4047 R-Sq = 77.9% R-Sq(adj) = 70.0%

Analysis of Variance
Source DF SS MS F P
Regression 5 51799 10360 9.87 0.000
Residual Error 14 14701 1050
Total 19 66500

10.12 What are the explanatory variables? What is
the response variable?

10.13 One case in the sample has Y = 20, X1 = 15,
X2 = 40, X3 = 10, X4 = 50, and X5 = 95. What is
the predicted response for this case? What is the
residual?

10.14 One case in the sample has Y = 50, X1 = 19,
X2 = 56, X3 = 12, X4 = 85, and X5 = 106. What is
the predicted response for this case? What is the
residual?

10.15 What is the coefficient of X1 in the model?
What is the p-value for testing this coefficient?

10.16 What is the coefficient of X5 in the model?
What is the p-value for testing this coefficient?

10.17 Which of the variables are significant at the
5% level?

10.18 Which of the variables are significant at the
1% level?

10.19 Which variable is most significant in this
model?

10.20 Which variable is least significant in this
model?

10.21 Is the model effective, according to the
ANOVA test? Justify your answer.

10.22 State and interpret R2 for this model.

PREDICTING FOREST FIRE DAMAGE
Exercises 10.23 to 10.27 ask about a model to pre-
dict area burned by a forest fire. One of the things
that makes forest fires so dangerous is that it is often
very difficult to predict what path one will take
and how widespread it might be. The data for this
model come from a study of forest fires in Portugal,
introduced in Exercise 6.99, and available in Forest-
Fires. The multiple regression output below shows
a model to predict the area burned by the fire (in
hectares) using information about atmospheric con-
ditions at the time of the fire: wind speed in km/h,
temperature in degrees Celsius, relative humidity
(RH) in percent, and rainfall in mm/m2.

Regression Equation
Area = −6.4 + 1.28 Wind + 1.010 Temp − 0.110 RH − 2.83 Rain

Coefficients
Term Coef SE Coef T-Value P-Value
Constant −6.4 20.2 −0.32 0.750
Wind 1.28 1.61 0.79 0.428
Temp 1.010 0.589 1.71 0.087
RH −0.110 0.205 −0.54 0.593
Rain −2.83 9.64 −0.29 0.769

Model Summary
S R-sq R-sq(adj)

63.5298 1.17% 0.40%

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 4 24413 6103 1.51 0.197
Error 512 2066452 4036
Total 516 2090865

10.23 Predicting Area Burned by a Forest Fire
Answer the following questions using the com-
puter output given about the model to predict area
burned by a forest fire.

(a) One case in the dataset is a fire that burned
10.73 hectares on a day when the wind speed
was 8.5 km/h, the temperature was 4.6∘C, the
relative humidity was 21%, and the rainfall was
0. Find the predicted area burned under these
atmospheric conditions.

(b) Find the residual for the fire described in
part (a).

10.24 Interpreting Coefficients for Area Burned by
a Forest Fire Using the computer output given
about the model to predict area burned by a forest
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fire, interpret in context the coefficient of each of
the following variables.

(a) Temp

(b) RH

10.25 Examining Variables to Predict Area Burned
Answer the following questions using the com-
puter output given about the model to predict area
burned by a forest fire.

(a) Which variable appears to be the most signifi-
cant in this model?

(b) Which variable appears to be the least signifi-
cant in this model?

(c) How many of the variables are significant at the
5% level? At the 10% level?

10.26 Is the Model Effective at Predicting Area
Burned by a Forest Fire? Answer the following
questions using the computer output given about
the model to predict area burned by a forest fire.

(a) For the ANOVA test, what is the F-statistic?
What is the p-value?

(b) Give the generic conclusion and a conclusion in
context for the ANOVA test.

(c) Is this an effective model for predicting area
burned by a forest fire?

10.27 Analyzing the Model Predicting Area
Burned by a Forest Fire Use the computer output
given about the model to predict area burned by a
forest fire to give the value for R2 and to interpret it
in context.

PREDICTING CLINICAL DEPRESSION
SCORE
Exercises 10.28 to 10.32 ask you to use the com-
puter output below to answer questions about
a model to predict CESD, a clinical depression
score, using a more self-reported depression score
(DASS) and body mass index (BMI). The data
come from a study introduced in Exercise 1.102 that
was designed to examine the impact of diet on
depression. The study used two measures (CESD
and DASS) to quantify depression and also mea-
sured the BMI of the participants. All data used
here are from the beginning of the study (day 1),
before any diet intervention. On both depression
scales, higher numbers indicate greater depression
symptoms. Computer output is given, and the data
are available inDietDepression.

Regression Equation
CESD = 13.81 + 0.7976 DASS − 0.400 BMI

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 13.81 8.71 1.58 0.117
DASS 0.7976 0.0951 8.38 0.000
BMI −0.400 0.382 −1.05 0.298

Model Summary
S R-sq R-sq(adj)

10.3697 49.52% 48.12%

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 2 7596 3798.2 35.32 0.000
Error 72 7742 107.5
Total 74 15339

10.28 Predicting Depression Score Answer the fol-
lowing questions using the computer output given
about the model to predict CESD depression score.

(a) One case in the dataset is a person that had a
CESD score of 18, a DASS score of 23, and a
BMI of 19.0. Find the predicted CESD score for
this person.

(b) Find the residual for the person described in
part (a).

10.29 Interpreting Coefficients for Depression
Score Using the computer output given about the
model to predict CESD depression score, interpret
in context the coefficient of each of the following
variables.

(a) DASS

(b) BMI

10.30 Examining Variables to Predict Depression
Score Answer the following questions using the
computer output given about the model to predict
CESD depression score.

(a) Which variable appears to be the most signifi-
cant in this model?

(b) Which variable appears to be the least signifi-
cant in this model?

(c) How many of the variables are significant at the
5% level? At the 1% level?

10.31 Is the Model Effective at Predicting Depres-
sion Score? Answer the following questions using
the computer output given about the model to pre-
dict CESD depression score.

(a) For the ANOVA test, what is the F-statistic?
What is the p-value?
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(b) Give the generic conclusion and a conclusion in
context for the ANOVA test.

(c) Is this an effective model for predicting CESD
depression score?

10.32 Analyzing the Model Predicting CESD
Depression Score Use the computer output given
about the model to predict CESD depression score
to give the value forR2 and to interpret it in context.

TIME TO HANG OUTWITH FRIENDS
Exercises 10.33 to 10.37 ask you to use the com-
puter output below to answer questions about a
model to predict HangHours, number of hours
per week spent hanging out with friends, using
the number of hours per week spent on other
activities: doing homework, playing sports, play-
ing video games, using a computer, watching TV,
or working at a paying job. The data, introduced
in Exercise 1.24, come from a survey given to
high school seniors in Pennsylvania. Computer out-
put is given below, and the data are available in
PASeniors.

Regression Equation
HangHours = 5.84 − 0.1003 HWHours + 0.3305 SportsHours

+ 0.0775 VideoGameHours + 0.0804 ComputerHours
+ 0.2177 TVHours + 0.0832 WorkHours

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 5.84 1.08 5.40 0.000
HWHours −0.1003 0.0504 −1.99 0.047
SportsHours 0.3305 0.0642 5.15 0.000
VideoGameHours 0.0775 0.0663 1.17 0.244
ComputerHours 0.0804 0.0305 2.63 0.009
TVHours 0.2177 0.0601 3.62 0.000
WorkHours 0.0832 0.0533 1.56 0.119

Model Summary
S R-sq R-sq(adj)

9.95840 13.43% 12.23%

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Regression 6 6646 1107.73 11.17 0.000
Error 432 42841 99.17
Total 438 49488

10.33 Predicting Hours Hanging Out with Friends
Table 10.1 shows values of these variables for the
first two cases. For each case, use the regression
computer output to find the predicted number of
hours hanging out with friends. In addition, in each
case, give the residual.

(a) Case 1

(b) Case 2

Table 10.1 Hours per week spent on different
activities

Case Hang HW Sports Video Computer TV Work
1 12.0 0.25 6.0 0.0 2.0 2.0 8.0
2 2.0 21.0 2.0 0.0 15.0 3.0 0.0

10.34 Interpreting Coefficients for Hours Hanging
Out with Friends Interpret the coefficients in con-
text for each of the following variables, using the
computer output for the regression model to predict
number of hours hanging out with friends.

(a) HWHours

(b) VideoGameHours

10.35 Examining Variables to Predict Hours Hang-
ing Out Answer the following questions using the
computer output given about the model to predict
hours per week spent hanging out with friends.

(a) Which two variables appear to be the most sig-
nificant in this model?

(b) Which variable appears to be the least signifi-
cant in this model?

(c) How many of the variables are significant at the
5% level? At the 1% level?

10.36 Is the Model Effective at Predicting Hours
Hanging Out? Answer the following questions
using the computer output given about the model
to predict hours per week spent hanging out with
friends.

(a) For the ANOVA test, what is the F-statistic?
What is the p-value?

(b) Give the generic conclusion and a conclusion in
context for the ANOVA test.

(c) Is this an effective model for predicting hours
hanging out with friends?

10.37 Analyzing the Model Predicting Hours
Hanging Out with Friends Use the computer out-
put given about the model to predict hours hanging
out with friends to give the value forR2 and to inter-
pret it in context.

10.38 Predicting Prices of HomesHere is some out-
put for theHomesForSale dataset fitting a model to
predict the price of a home (in $1000s) using size
(in square feet), number of bedrooms, and number
of bathrooms.
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The regression equation is
Price = 103.75 + 0.082 Size - 25.81 Beds + 84.96 Baths

Predictor Coef SE Coef T P
Constant 103.75 92.92 1.12 0.267
Size 0.082 0.0426 1.92 0.057
Beds −25.81 32.82 −0.79 0.433
Baths 84.96 34.48 2.46 0.015

S = 228.1 R-Sq = 19.5% R-Sq(adj) = 17.5%

Analysis of Variance
Source DF SS MS F P
Model 3 1464285 488095 9.38 0.00001
Error 116 6033150 52010
Total 119 7497435

(a) What is the predicted price for a 2500 square
foot, four bedroom home with 2.5 baths?

(b) Which predictor has the largest coefficient (in
magnitude)?

(c) Which predictor appears to be the most impor-
tant in this model?

(d) Which predictors are significant at the 5%
level?

(e) Interpret the coefficient of Size in context.

(f) Interpret what the ANOVA output says about
the effectiveness of this model.

(g) Interpret R2 for this model.

10.39 Predicting Calories Consumed Using the
data in NutritionStudy, we show computer output
for a model to predict calories consumed in a day
based on fat grams consumed in a day, cholesterol
consumed in mg per day, and age in years:

The regression equation is
Calories = 513 + 16.3 Fat + 0.421 Cholesterol − 1.42 Age

Predictor Coef SE Coef T P
Constant 512.95 86.51 5.93 0.000
Fat 16.2645 0.7925 20.52 0.000
Cholesterol 0.4208 0.2015 2.09 0.038
Age −1.420 1.304 −1.09 0.277

S = 331.904 R-Sq = 76.4% R-Sq(adj) = 76.2%

Analysis of Variance
Source DF SS MS F P
Regression 3 111082085 37027362 336.12 0.000
Residual Error 311 34259921 110161
Total 314 145342006

(a) What daily calorie consumption does the model
predict for a 35-year-old person who eats 40
grams of fat in a day and 180 mg of cholesterol?

(b) In this model, which variable is least significant?
Which is most significant?

(c) Which predictors are significant at a 5% level?

(d) Interpret the coefficient of Fat in context.

(e) Interpret the coefficient of Age in context.

(f) Interpret what the ANOVA output says about
the effectiveness of this model.

(g) Interpret R2 for this model.

10.40 Predicting Life Expectancy In Exercises 9.29
and 9.75 we attempt to predict a country’s life
expectancy based on the percent of government
expenditure on health care, using a sample of fifty
countries in the dataset SampCountries. We now
add to the model the variables population (in mil-
lions), percentage with Internet, and birth rate
(births per 1000). (Note that the Internet value is
missing for South Sudan, so the model is fit with
the other 49 countries.) Table 10.2 shows some com-
puter output from fitting this model.

(a) Which variables are significant predictors of life
expectancy in this model, at a 5% level? Which
is the most significant?

(b) Predict the life expectancy of a country that
spends 15% of government expenditures on
health care, has a population of 2.5 million, for
which 75% of people have access to the Inter-
net, and the birth rate is 30 births per 1000.

(c) How does predicted life expectancy change if
we find out the Internet rate is actually higher?

Table 10.2 Multiple regression output

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 76.30 3.58 21.31 0.000
Health 0.142 0.110 1.29 0.204

Population −0.00031 0.00239 −0.13 0.899
Internet 0.0711 0.0317 2.25 0.030
BirthRate −0.4445 0.0852 −5.22 0.000

10.41 Binary Categorical Variables: Weight Based
on Height and Sex Categorical variables with only
two categories (such as male/female or yes/no) can
be used in a multiple regression model if we code
the answers with numbers. In Chapter 9, we look
at a simple linear model to predict Weight based
on Height. What role does sex play? If a male and
a female are the same height (say 5’7”), do we
predict the same weight for both of them? Is sex
a significant factor in predicting weight? We can
answer these questions by using a multiple regres-
sion model to predict weight based on height and
sex. We use 1 for females and 0 for males to cre-
ate a new variable called CodedSex in the dataset
StudentSurvey. We obtain the following output:
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The regression equation is
Weight = - 23.9 + 2.86 Height-25.5 CodedSex

Predictor Coef SE Coef T P
Constant −23.92 27.36 −0.87 0.383
Height 2.8589 0.3855 7.42 0.000
CodedSex −25.470 3.138 −8.12 0.000

S = 22.8603 R-Sq = 48.2% R-Sq(adj) = 47.9%

(a) What weight does the model predict for a male
who is 5’7” (67 inches)? For a female who is
5’7”?

(b) Which predictors are significant at a 5% level?

(c) Interpret the coefficient of Height in context.

(d) Interpret the coefficient ofCodedSex in context.
(Pay attention to how the variable is coded.)

(e) What is R2 for this model? Interpret it in
context.

10.42 Binary Categorical Variables: Predicting
Cognitive ScoreCategorical variables with only two
categories (such as male/female or yes/no) can be
used in a multiple regression model if we code the
answers with numbers. Exercise 2.165 on page 112
introduces a study examining years playing football,
brain size, and percentile score on a cognitive skills
test. We show computer output below for a model
to predict Cognition score based on Years playing
football and a categorical variable Concussion. The
variableConcussion is coded 1 if the player has ever
been diagnosed with a concussion and is coded 0 if
he has not been diagnosed with a concussion.

Regression Equation
Cognition = 100.6 − 3.07 Years − 2.70 Concussion

Coefficients
Term Coef SE Coef T-Value P-Value
Constant 100.6 16.9 5.97 0.000
Years −3.07 1.62 −1.90 0.064
Concussion −2.70 9.49 −0.29 0.777

S = 25.7829 R-sq = 13.56% R-sq(adj) = 9.35%

Analysis of Variance
Source DF SS MS F-Value P-Value
Regression 2 4277.3 2138.63 3.22 0.050
Error 41 27255.0 664.76
Total 43 31532.2

(a) One of the participants in the study played foot-
ball for 9 years, had never been diagnosed with
a concussion, and scored a 74 on the cognitive
skills test.What is his predicted cognition score?
What is the residual for this prediction?

(b) Another one of the participants played football
for 7 years, had been diagnosed with a concus-
sion, and scored a 42 on the cognitive skills test.
What is his predicted cognition score? What is
the residual for this prediction?

(c) What is the coefficient of Years in this model?
Interpret it in context.

(d) What is the coefficient of Concussion in this
model? Interpret it in context. (Pay attention to
how the variable is coded.)

(e) At a 10% level, is the overall model effec-
tive at predicting cognition scores? What value
in the computer output are you basing your
answer on?

(f) There are two variables in this model. How
many of them are significant at the 10% level?
How many are significant at the 5% level?

(g) Which of the two variables is most significant in
the model?

(h) Howmany football players were included in the
analysis?

(i) What is R2? Interpret it in context.

PRICE OF RACE HORSES
For Exercises 10.43 to 10.46, use information in the
ANOVA table below, which comes from fitting a
multiple regression model to predict the prices for
horses (in $1000s).

Source DF SS MS F P
Regression 3 4327.7 1442.6 10.94 0.000
Residual Error 43 5671.4 131.9
Total 46 9999.1

10.43 How many predictors are in the model?

10.44 How many horses are in the sample?

10.45 Find and interpret (as best you can with the
given context) the value of R2.

10.46 Is this an effective model for predicting horse
prices? Write down the relevant hypotheses as well
as a conclusion based on the ANOVA table.

10.47 Hantavirus in Mice In Exercise 9.25 on
page 630, we discuss a study4 conducted on the
California Channel Islands investigating the preva-
lence of hantavirus in mice. This virus can cause
severe lung disease in humans. The article states:
“Precipitation accounted for 79% of the variation
in prevalence. Adding in island area upped this to
93%, and including predator richness took the total
to 98%.”

(a) Give the correct notation or terminology for
the quantity the scientists are comparing in the
quotation.

4“More Rain, More Virus,” Nature, April 28, 2011, p. 392.
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(b) Based on the information given, do you expect
the ANOVA p-value for the model with all
three predictors to be relatively large or rela-
tively small? Explain.

10.48 Fast-Food Diet and Depression Exercise
1.102 introduces a study examining the relationship
between eating a diet high in sodium and low in
potassium (such as a diet high in fast foods) and
depression symptoms in middle-schoolers. A multi-
ple regression model to predict depression included
sodium and potassium concentrations, as well as a
variety of other variables to account for possible
confounding variables (such as age, sex, BMI per-
centile, and blood pressure). The article describing
the study states “The model explained 50% of vari-
ance in depression.”5 Give the correct notation or
terminology for the quantity the article is referring
to in this quotation.

10.49 Predicting Golf Scores with Par and Distance
Exercise 9.31 uses data from the golf scorecard in
Table 9.2 on page 631 to predict golf scores based
on either Distance or Par of a hole. With multiple
regression we can use both predictors in the same
model. Use the data in GolfRound to predict Score
based on these two variables.

(a) Write down the fitted prediction equation.

(b) What score does the model predict for this
golfer on the par 5, 476 yard long 16th hole?

10.50 Predicting Memory Score Exercise 1.24
introduces a survey given to a sample of high school
seniors in Pennsylvania. Use technology and the
data in PASeniors to create a multiple regression
model to predict MemoryScore (score on an online
memory game) using ReactionTime (time in sec-
onds to click when a color changes), Sleep1 (typical
hours of sleep on a school night), and Sleep2 (typical
hours of sleep on a non-school night).

(a) Find the predicted value and the residual for the
first case in the dataset.

(b) How many students are included in the analy-
sis?

(c) Which variable is most significant in the model?

(d) Which variable is least significant in the model?

(e) How many of the explanatory X-variables are
significant at the 5% level? At the 10% level?

5Mrug S, et al., “Sodium and potassium excretion pre-
dict increased depression in urban adolescents,” Physiological
Reports, 7(16), August 2019.

(f) According to the ANOVA output, what is the
F-statistic? What is the p-value? Give the con-
clusion of the ANOVA test in context, using a
5% significance level.

(g) Interpret R2 for this model.

10.51 Predicting Texts Sent perWeek Exercise 1.24
introduces a survey given to a sample of high school
seniors in Pennsylvania. Use technology and the
data in PASeniors to create a multiple regression
model to predict TextsSent (number of texts sent
in a day) using HangHours (hours per week spent
hanging out with friends), ComputerHours (hours
per week on a computer), and Occupants (number
of occupants at home).

(a) Which variable is most significant in the model?

(b) Which variable is least significant in the model?

(c) According to the ANOVA output, what is the
F-statistic? What is the p-value? Give the con-
clusion of the ANOVA test in context.

10.52 Predicting HwyMPG Exercise 2.266 on
page 151 looks at a regression line to predict the
highway mileage rating (HwyMPG) based on
city mileage rating (CityMPG) using the cars in
Cars2020.

(a) How much of the variability in HwyMPG is
explained by CityMPG?

(b) How much of the variability in HwyMPG is
explained if we use the Weight of the car (in
pounds) as the predictor?

(c) How much of the variability in HwyMPG is
explained if we include both CityMPG and
Weight in the model?

(d) Do we need both CityMPG and Weight in the
model of part(c) to predict HwyMPG? Give
some specific numerical justification for your
answer.

10.53 Predicting Arm Span In Exercise 9.53 on
page 642 we see that both Height (R2 = 51.5%) and
Foot length (R2 = 46.0%) are effective predictors of
the arm span for a sample of high school students
in PASeniors. How well do they work together in a
multiple regression model to predict Armspan?

(a) What arm span would the fitted model predict
for a student who is 180 cm tall and has a foot
that is 26 cm long?

(b) Are both Height and Foot useful in the two-
predictor model for Armspan? Justify your
answer.

(c) How much of the variability in Armspan do the
two predictors together explain?
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10.54 Housing Prices in New York In Exercise 9.74
we look at predicting the price (in $1000s) of
California homes based on the size (in square feet).
What about houses in New York State? Using the
data in HomesForSaleNY, use technology to cre-
ate a multiple regression model to predict price
based on three variables: size, number of bedrooms,
and number of bathrooms. (In Exercise 10.38, we
investigate a similar model using homes from more
states.)

(a) Which predictors are significant at a 5% level?
Which variable is the most significant?

(b) Interpret the two coefficients for Beds and
Baths. Do they both make sense?

(c) What price does the model predict for a 1500
square foot New York home with 3 bedrooms
and 2 bathrooms?

10.55 Predicting Body Mass Gain in Mice Use
technology and the data in LightatNight4Weeks to
predict body mass gain in mice, BMGain, over a
four-week experiment based on stress levels mea-
sured in Corticosterone, percent of calories eaten
during the day (most mice in the wild eat all calo-
ries at night) DayPct, average daily consumption
of food in grams Consumption, and activity level
Acti𝑣ity.

(a) Interpret the coefficient of DayPct in context.

(b) Interpret the coefficient of Consumption in
context.

(c) Which variable is most significant in this model?

(d) Which variable is least significant in this model?

(e) According to the ANOVA table, is the model
effective at predicting body mass gain of mice
in this situation?

(f) Interpret R2 for this model.

10.56 NBA Winning Percentage In Exercise 9.32
on page 632 we consider simple linear models to
predict winning percentages for NBA teams based
on either their offensive ability (PtsFor = aver-
age points scored per game) or defensive ability
(PtsAgainst = average points allowed per game).
With multiple regression we can include both fac-
tors in the same model. Use the data from the
2018–2019 regular season in NBAStandings2019
to fit a two-predictor model for WinPct based on
PtsFor and PtsAgainst.

(a) Write down the fitted prediction equation.

(b) The eventual NBA playoff champion Toronto
Raptors won 58 games in the regular season
while losing only 24 games (WinPct = 0.707).

They scored an average of 114.4 points per
game while giving up an average of 108.4 points
against. Find the predicted winning percentage
for the Raptors using this model and compute
the residual.

(c) Comment on the effectiveness of each predictor
in this model.

(d) Do we do much better by including both predic-
tors for WinPct? Choose some measure (such
as s

𝜖
, or R2) to compare the effectiveness of a

simple linear model based on either PtsFor or
PtsAgainst to this two-predictor model.

10.57 Prices of Mustang Cars Data 3.4 on page 267
describes a sample of n = 25 Mustang cars being
offered for sale on the Internet. We would like to
predict the Price of used Mustangs (in $1000s) and
the possible explanatory variables in MustangPrice
are the Age in years andMiles driven (in 1000s).

(a) Fit a simple linear model for Price based on
Age. Does Age appear to be an effective pre-
dictor of Price? Justify your answer.

(b) Fit a multiple regression model for Price based
on Age and Miles. Is Age an effective predictor
in this model? Justify your answer.

(c) Can you think of an explanation for the change
from (a) to (b)?

10.58 Comparing Models for NBA Winning Per-
centage In Exercise 9.32 on page 632 we consider
separate simple linear models to predict NBA
winning percentages using PtsFor and PtsAgainst.
In Exercise 10.56 we combine these to form a mul-
tiple regression model. The data is in NBAStand-
ings2019.
(a) Compare the percentages of variability in win-

ning percentages that are explained by these
three models (PtsFor alone, PtsAgainst alone,
and the two together in a multiple regression).

(b) Create a new predictor, Diff = PtsFor −
PtsAgainst, to measure the average margin of
victory (or defeat) for each team. Use it as a
single predictor in a simple linear model for
WinPct. Include a scatterplot with the regres-
sion line and comment on how this model
compares to the three in part (a).

10.59 Randomization Test for a Multiple Regres-
sion Model When deriving the F-statistic we note
that the use of the F-distribution can be simu-
lated with a randomization procedure. That is the
purpose of this exercise. Consider the model in
Example 10.7 that uses PhotoTime and CostColor
to predict inkjet printer prices. The F-statistic in that
ANOVA table is F = 6.30. Suppose that we want
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to estimate how unusual that is, when H0 is true
and there is no relationship between either predic-
tor and Price. To simulate this, randomly scramble
the 20 printer prices in InkjetPrinters and assign
them to the various combinations of PhotoTime and
CostColor. For each such randomization, estimate

the fitted model and compute the F-statistic. (Tech-
nology is a must here!) Repeat many times to obtain
a randomization distribution and see how far the
original F = 6.30 is in the tail. Compare the results
to what you get with the F-distribution with 2 and
17 degrees of freedom.

10.2CHECKING CONDITIONS FOR A REGRESSION MODEL

For a given set of k predictors, the multiple regression model is

Y = 𝛽0 + 𝛽1X1 + 𝛽2X2 + · · · + 𝛽kXk + 𝜖

where 𝜖 is normally distributed N(0, 𝜎
𝜖
) and independent.

As with the simple linear model, when k = 1, most of the conditions for the
model are reflected in the error term. We expect the deviations of actual response
values from the regression model to have:

• A mean of zero

• The same variability at different values of the explanatory variable(s)

• A normal distribution

These conditions are reflected in Figure 9.3 on page 623 which shows the simple
linear model as a string of normal distributions running along the population
regression line. For single predictors we can often check the conditions (as we did,
somewhat informally, in Section 9.1) by looking at a scatterplot of the data with
the least squares line drawn on it. This is often sufficient to reveal problems such
as a curved rather than linear pattern, variability that consistently increases or
decreases, or large outliers that might affect the fit or indicate points that are poorly
predicted.

What about checking conditions for a multiple regression model? Although we
could produce a scatterplot of a response Y versus any single explanatory variable
Xi, we could not easily visualize the multiple regression fit on that plot. We need a
different method for checking the conditions on the error term when we have more
than one predictor.

Residuals vs Fitted Values Plot
The multiple regression model says that the errors from the regression equation
should follow a normal distribution with mean zero and constant standard deviation,
𝜎
𝜖
. We estimate these errors with the residuals, yi − ŷi, which compare the actual

values for the response variable to the predicted values from the fitted model. For-
tunately, the residuals for least squares regression models always have mean zero,
so the main things we need to look for are changing variance, lack of normality, or
departures from the linear pattern. We generally accomplish this with residual plots
that give graphical displays of the residuals to check model conditions. One common
method is to produce a scatterplot of the residuals vs the predicted values.
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Residuals vs Fits Plot

To assess possible departures from the linear model and/or consis-
tently changing variance we use a residuals vs fits plot with the resid-
uals on the vertical axis and the predicted values on the horizontal
axis.

The ideal pattern is a horizontal band of residuals scattered on
either side of a horizontal line at zero.

Watch out for

• Curved patterns or other obvious trends that indicate problems
with the linearity of the model

• Fanning patterns that show the variability consistently increasing or
decreasing

• Outliers that are unusually far above or below the zero line.

Example 10.9
Figure 10.1(a) shows a scatterplot with regression line using data from a simple lin-
ear model in Figure 9.4 on page 623. Figure 10.1(b) shows the residuals vs fits plot
for the same data. Both plots show a random, parallel scatter above and below the
line that we expect to see for a linear model. Although the scales are different, points
that are close to the regression line in Figure 10.1(a) correspond to points near the
zero line in Figure 10.1(b).
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Figure 10.1 Plots from the same simple linear model

Example 10.10
Recognizing Problems

Figure 10.2 shows three scatterplots from Figure 9.5 on page 624 that illustrate prob-
lems with the regression model assumptions. The corresponding residuals vs fits
plots for each dataset are shown below them. Pay attention to how the problems
(curvature, increasing variance, and outliers) translate from the original scatterplot
to the residual plot.
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Figure 10.2 Residual plots for least squares fits with problems

Histogram/Dotplot/Boxplot of Residuals
A dotplot, histogram, or boxplot of the residuals from a model is a good way to
check the normality condition and look for outliers. As with any plot of a single
quantitative variable, we look for reasonable symmetry.

Example 10.11
Figure 10.3 shows three histograms of the same three datasets as in Figure 10.2.
Comment on the appropriateness of a normality condition in each case.
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Figure 10.3 Residual plots for least squares fits with problems
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Solution (a) The histogram of the residuals for the curved data in Figure 10.3(a) shows some
mild skewness with a peak to the left of zero and very little “tail” in that direc-
tion. However, the sample size is fairly large (most of the histogram bars show a
frequency more than 10) so we shouldn’t be too concerned.

(b) The distribution of residuals for the middle model shows no concerns with nor-
mality. The graph is symmetric, bell-shaped, and centered around zero.

(c) The outliers in Figure 10.3(c) make it difficult to tell more about the distribution,
but this is not what we expect to see in a normal distribution.

Note that the normality condition applies to the residuals of the model. There
is no specific restriction on the distribution of either the explanatory or response
variables. For example, we might have values of the predictor in the sample that
are highly skewed with lots of small values that produce a similar skewness in the
responses. As long as the errors are relatively bell-shaped, we can still use inference
based on the t and F distributions in assessing the regression model.

Example 10.12
Checking Conditions for an Inkjet Printer Model

Produce graphs and comment on the appropriateness of the simple linear model
conditions for the regression model to predict inkjet printer prices using PPM print-
ing rates with the data in InkjetPrinters.

Solution We have already seen the scatterplot with regression line in Figure 9.1 on page 617.
It shows a general increasing trend, no obvious curvature or big outliers, and a rel-
atively equal scatter of points above and below the line. Nothing in this plot raises
serious concerns about the simple linear model conditions.

A dotplot of the 20 residuals is shown in Figure 10.4. It looks reasonably sym-
metric and has no huge outliers in either tail so we don’t need to worry about
significant departures from normality of the residuals.

A residuals vs fits plot for this model is displayed in Figure 10.5. It shows a rea-
sonable horizontal band of points on either side of the zero line.

While it is hard to make definitive assessments of the simple linear model condi-
tions based on just 20 data points, we don’t see any reason for strong concerns about
any of the conditions for these data.

Figure 10.4 Residuals
from regression to predict
inkjet printer price based
on PPM

0 25–25
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50–50 75–75



674 CHA P T E R 10 Multiple Regression

Figure 10.5 Residuals vs
Fits for predicting printer
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Checking Conditions for a Multiple Regression Model
The conditions for a multiple regression model are basically the same as for a sim-
ple linear model in that the errors should be normally distributed with zero mean
and a constant variance for any combination of the predictors. We can use most of
the same graphical tools to assess the residuals: A residuals vs fits plot and some
sort of histogram or dotplot of the residuals to assess normality and look for skew-
ness/outliers.

Example 10.13
Checking Conditions for a Bodyfat Model

Since the output in Example 10.4 on page 657 indicates that Height isn’t an espe-
cially effective predictor in that model, run a new model with just Weight and
Abdomen as predictors for Bodyfat. Use residual plots to assess the conditions for
the multiple regression model.

Solution Here is some output for fitting Bodyfat = 𝛽0 + 𝛽1Weight + 𝛽2Abdomen + 𝜖:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −48.77854 4.18098 −11.667 < 2e-16 ***
Weight −0.16082 0.03101 −5.185 1.18e-06 ***
Abdomen 1.04408 0.08918 11.707 < 2e-16 ***

Both predictors have very small p-values and appear to be important in this model.
Figure 10.6 shows a histogram of the residuals and a plot of residuals vs fitted values
for this model. The distribution of the residuals in the histogram is symmetric and
bell-shaped so the normality condition is quite reasonable. The residuals vs fits plot
shows an even scatter on either side of the zero line with no unusual patterns so
constant variability is also reasonable.
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Figure 10.6 Residual
plots for predicting
Bodyfat with Weight and
Abdomen
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Take care to recognize which type of plot is helpful to check the different condi-
tions. A residual vs fit plot can detect lack of linearity or increasing variability, but is
not so helpful at assessing normality. A histogram or dotplot of residuals can detect
departures from normality or show outliers, but won’t tell us if there are nonlinear
patterns in the data.

What about the condition of independence of the residuals? This means that
the fact that one value in the sample tends to lie above or below the regression fit
does not affect where the next point lies. This is tougher to check visually, but we
can generally rely on the method of randomization used in collecting the data (a
random sample for observational data or random assignment of treatments for an
experiment) to satisfy this condition.

What do we do if we have serious concerns about any of the regression
conditions?

• Use a bootstrap or randomization procedure that is not so dependent on specific
conditions to perform the inference.

• Consider deleting one or two particularly troublesome data points—especially if
they might represent errors in the data—but take care not to blindly exclude any
extreme point. Those are often the most interesting parts of an analysis.

• Although it is beyond the scope of this course, many statisticians use transforma-
tions of the data (such as a square, square root, or logarithm) to help meet the
regression conditions.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Use a residual vs fits plot to check for linearity and consistent variability
of a regression model

• Use a histogram, dotplot, or boxplot to check for normality and outliers
in the distribution of residuals for a regression model
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Exercises for Section 10.2
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Figure 10.7 Match Exercises 10.60 to 10.63 with these scatterplots

SKILL BUILDER 1
Exercises 10.60 to 10.63 give scatterplots of residu-
als against predicted values. Match each with one of
the scatterplots shown in Figure 10.7.
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CHECK CONDITIONS
In Exercises 10.64 and 10.65, three graphs are shown for a linear model: the scatterplot with least squares
line, a histogram of the residuals, and a scatterplot of residuals against predicted values. Determine whether
the conditions are met and explain your reasoning.
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10.66 Height and Weight Using the data in Stu-
dentSurvey, we see that the regression line to
predict Weight from Height is ̂Weight = −170 +
4.82Height. Figure 10.8 shows three graphs for this
linear model: the scatterplot with least squares line,
a histogram of the residuals, and a scatterplot of
residuals against predicted values.

(a) One of the students in the dataset has a height
of 63 inches and a weight of 200 pounds. Put an
arrow showing the dot representing this person
on the scatterplot with least squares line (or a
rough sketch of the plot).

(b) Calculate the predicted value and the residual
for the person described in part (a).

(c) Put an arrow showing where the person from
part (a) is represented in the histogram of resid-
uals. Also, put an arrow showing where the
person from part (a) is represented in the scat-
terplot of residuals against predicted values.

(d) Determine whether the conditions are met for
inference on this regression model.

10.67 More on Height and Weight As we see in
Exercise 10.66, or by using the data in StudentSur-
vey, the regression line to predict Weight from
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Figure 10.8 Plots to assess Height predicting Weight

Height is ̂Weight = −170 + 4.82Height. Figure 10.8
shows three graphs for this linear model: the scat-
terplot with least squares line, a histogram of the
residuals, and a scatterplot of residuals against pre-
dicted values.

(a) One of the students in the dataset has a height
of 73 inches and a weight of 120 pounds. Put an
arrow showing the dot representing this person
on the scatterplot with least squares line (or a
rough sketch of the plot).

(b) Calculate the predicted value and the residual
for the person described in part (a).

(c) Put an arrow showing where the person from
part (a) is represented in the histogram of resid-
uals. Also, put an arrow showing where the
person from part (a) is represented in the scat-
terplot of residuals against predicted values.

(d) Use these plots to assess the conditions for
inference on this regression model.

10.68 Exercise and Pulse Rate Use the data in Stu-
dentSurvey to assess the conditions for doing infer-
ence on a regression model to predict a person’s
pulse rate, Pulse, from the number of hours a week
spent exercising, Exercise. Explain your reasoning,
using each of the three relevant graphs.

10.69 Grams of Fat and Number of Calories Use
the data in NutritionStudy to assess the conditions
for doing inference on a regression model to pre-
dict a person’s daily calories,Calories, from the daily
grams of fat, Fat. Explain your reasoning, using each
of the three relevant graphs.

10.70 Grams of Fat and Cholesterol Level Use the
data in NutritionStudy to assess the conditions for
doing inference on a regression model to predict
a person’s cholesterol level, Cholesterol, from the
daily grams of fat, Fat. Explain your reasoning,
using each of the three relevant graphs.

10.71 Restaurant Bill and Tip Use the data in
RestaurantTips to assess the conditions for doing
inference on a regression line to predict the size of

a customer’s tip, Tip, from the size of the bill, Bill.
Explain your reasoning, using each of the three rel-
evant graphs.

10.72 Predicting Atlanta Commute Time The data
in CommuteAtlanta show information on both the
commute distance (in miles) and time (in minutes)
for a sample of 500 Atlanta commuters. Suppose
that we want to build a model for predicting the
commute time based on the distance.

(a) Fit the simple linear model, Time = 𝛽0 +
𝛽1Distance + 𝜖, for the sample of Atlanta com-
muters and write down the prediction equation.

(b) What time (in minutes) does the fitted model
predict for a 20-mile commute?

(c) Produce a scatterplot of the relationship
between Time and Distance and comment on
any interesting patterns in the plot.

(d) Produce a dotplot or histogram to show the
distribution of the residuals for this model.
Comment on whether the normality condition
is reasonable.

(e) Produce a plot of the residuals vs the fitted val-
ues. Comment on what this plot says about the
simple linear model conditions in this situation.

10.73 Predicting St. Louis Commute Time Refer
to Exercise 10.72. The file CommuteStLouis con-
tains similar information for a sample of 500 com-
muters in St. Louis. Answer the same questions
as Exercise 10.72 using the St. Louis data. Are the
results in St. Louis much different from Atlanta?

10.74 HowAccurate Are Our Estimates in Predict-
ing Atlanta Commute Time? In Exercise 10.72 we
consider a simple linear model to predict Time in
minutes for Atlanta commuters based on Distance
in miles using the data in CommuteAtlanta. For a
20-mile commute the predicted time is 31.34 min-
utes. Here is some output containing intervals for
this prediction.

NewObs Fit SE Fit 95% CI 95% PI
1 31.343 0.553 (30.257, 32.430) (7.235, 55.452)
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(a) Interpret the “95% CI” in the context of this
data situation.

(b) In Exercise 10.72 we find that the residuals for
this model are skewed to the right with some
large positive outliers. This might cause some
problems with a prediction interval that tries to
capture this variability. Explain why the 95%
prediction interval in the output is not very real-
istic. (Hint: The speed limit on most Atlanta
freeways is 55 mph.)

10.75 Using CityMPG and Weight to Predict
HwyMPG Consider the multiple regression model
from Exercise 10.52 on page 668 using CityMPG
and Weight to predict HwyMPG for the data in
Cars2020. Create plots to examine the conditions
of linearity, equal variance, and normality for this
model. Based on the plots, rank the three conditions
from least to most problematic.

10.76 Conditions for Armspan Model In
Exercise 10.53 on page 668 we consider a multi-
ple regression model to predict the Armspan for a
sample of high school seniors in PASeniors using
their Height and Foot length. Use appropriate plots
of residuals to see if there are any concerns with
each of the three conditions shown below.

(a) Linearity

(b) Equal variance

(c) Normality

10.77 Checking Conditions for Predicting Hous-
ing Prices In Exercise 10.54 on page 669, we use
the data in HomesForSaleNY to predict prices
for houses based on size, number of bedrooms,
and number of bathrooms. Use technology to find

the residuals for fitting that model and construct
appropriate residual plots to assess whether the
conditions for a multiple regression model are
reasonable.

10.78 Checking Conditions for Predicting Body
Mass Gain in Mice In Exercise 10.55 on page 669,
we use the data in LightatNight4Weeks to predict
body mass gain in mice (BMGain) over a four-
week experiment based on stress levels measured
in Corticosterone, percent of calories eaten during
the day (most mice in the wild eat all calories at
night) DayPct, average daily consumption of food
in grams Consumption, and activity level Acti𝑣ity.
Use technology to find the residuals for that model
and construct appropriate residual plots to assess
whether the conditions for a multiple regression
model are reasonable.

10.79 Checking Conditions for Predicting NBA
Winning Percentage In Exercise 10.56 on page 669,
we use the data in NBAStandings2019 to pre-
dict NBA winning percentage based on PtsFor and
PtsAgainst. Use technology to find the residuals for
fitting that model and construct appropriate resid-
ual plots to assess whether the conditions for a mul-
tiple regression model are reasonable.

10.80 Checking Conditions for Predicting Mustang
Prices In Exercise 10.57 on page 669, we use the
data in MustangPrice to predict the Price of used
Mustang cars based on theAge in years and number
ofMiles driven. Use technology to find the residuals
for fitting that model and construct appropriate
residual plots to assess whether the conditions for
a multiple regression model are reasonable.

10.3USING MULTIPLE REGRESSION

For most of this book, data analysis has been restricted to just one or two variables
at a time. Multiple regression, allowing for the inclusion of many variables, opens up
a whole new world of possibilities! The goal of this section is to delve a little deeper
into multiple regression, and to provide a taste of the type of data analysis you are
now capable of.

Choosing a Model
When several explanatory variables are available, how do we decide which combina-
tion of variables form the best model? If the goal is to use the model for prediction,
we want our model to include all explanatory variables that are helpful for predict-
ing the response, but to not include superfluous variables. Choosing a final regression
model from several potential predictors is somewhat of an art that often requires a
good deal of experience. While the intricacies of model selection are beyond the
scope of this course (time to take Stat2?) you can still experiment with competing
models and become aware of some criteria available for choosing a model.
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Example 10.14
More Predictors for Body Fat

In Section 10.1 we use Weight, Height, and Abdomen circumference to predict per-
cent body fat, Bodyfat. We also have data in Bodyfat on Age and Wrist circumfer-
ence for the 100 men in this sample. What combination of these predictors will do
the best job at predicting percent body fat? As an initial step, run a multiple regres-
sion with all five possible explanatory variables included. Determine if the overall
model is effective and identify the least effective of the explanatory variables. Should
this variable be dropped from the model?

Solution Here is some computer output for fitting a model for Bodyfat based on these five
predictors:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −24.94157 20.77414 −1.201 0.2329
Weight −0.08434 0.05891 −1.432 0.1555
Height 0.05177 0.23849 0.217 0.8286
Abdomen 0.96762 0.13040 7.421 5.15e-11 ***
Age 0.07740 0.04868 1.590 0.1152
Wrist −2.05797 0.72893 −2.823 0.0058 **

Residual standard error: 4.074 on 94 degrees of freedom
Multiple R-squared: 0.7542, Adjusted R-squared: 0.7411
F-statistic: 57.67 on 5 and 94 DF, p-value: < 2.2e-16

With all of these predictors, we explain 75.4% of the variability in Bodyfat and
the p-value for the F-statistic is essentially zero, giving strong evidence that some
part of the model is effective for predicting body fat. Looking at the individual t-
tests, only the coefficients corresponding to Abdomen andWrist are significant. The
p-value for Height is very large (0.8286), indicating that Height is not contributing
significantly to the model.

Based on the result of Example 10.14, we drop Height from the model and
obtain the following output:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −21.06107 10.52814 −2.000 0.04831 *
Weight −0.07608 0.04474 −1.700 0.09231
Abdomen 0.95069 0.10399 9.142 1.13e-14 ***
Age 0.07854 0.04815 1.631 0.10620
Wrist −2.06898 0.72350 −2.860 0.00521 **

Residual standard error: 4.054 on 95 degrees of freedom
Multiple R-squared: 0.754, Adjusted R-squared: 0.7437
F-statistic: 72.81 on 4 and 95 DF, p-value: < 2.2e-16

First, notice that R2 has only decreased by 0.0002, from 0.7542 to 0.7540. Removing
a predictor, even a predictor entirely unrelated to the response variable, can never
explain more variability, so rather than looking for an increase in R2 we check that
R2 has not decreased by any substantial amount. HereR2 barely changes, so the new
model can explain essentially as much variability in body fat without the unnecessary
variable Height.
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Beyond R2, we can look at several other numbers to compare models. We could
compare ANOVA p-values and choose in favor of the model with the smaller p-
value, but, as is often the case, here both p-values are too small to observe a mean-
ingful difference. The residual standard error has decreased from 4.074 to 4.054,
indicating that the model without Height yields somewhat more accurate predic-
tions. The F-statistic has increased from 57.67 to 72.81, more evidence in favor of the
model without Height. Lastly, a number called “Adjusted R2” has increased from
0.7411 to 0.7437. Adjusted R2 is essentially R2, but with a small penalty for including
extra variables that are not helping the model. Because of this penalty, removing a
superfluous variable can cause Adjusted R2 to increase, and the fact that it increases
here is further evidence that removing Height is a good idea.

Criteria for Choosing a Model

There are several numbers which can help in choosing a model:

• Individual t-test p-values

• R2

• Residual standard error

• Overall model p-value

• F-statistic fromANOVA

• Adjusted R2

We want the individual t-test p-values, overall p-value, and residual
standard error to be low, and R2, adjusted R2, and the F-statistic to
be high.

In practice, we may not find a single model that is best for all
of these criteria and we need to use some judgement to balance
between them.

Can we improve the body fat model further by removing Age, which has the
next highest p-value of 0.1062? Let’s find out!

Example 10.15
Multiple regression output using Weight, Abdomen, and Wrist to predict Bodyfat
(without Age) is given below. Compare this to the previous output to determine
whether the model with or without Age is better.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −28.75313 9.49382 −3.029 0.003156 **
Weight −0.12360 0.03425 −3.609 0.000491 ***
Abdomen 1.04495 0.08720 11.983 < 2e-16 ***
Wrist −1.46586 0.62722 −2.337 0.021513 *

Residual standard error: 4.089 on 96 degrees of freedom
Multiple R-squared: 0.7471, Adjusted R-squared: 0.7392
F-statistic: 94.56 on 3 and 96 DF, p-value: < 2.2e-16

Solution Some statisticians would say that the model without Age is superior, because the p-
value forAge is insignificant in the earlier model, because removingAge only caused
R2 to decrease from 0.754 to 0.747, and because the F-statistic increased from 72.81
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to 94.56. Other statisticians would say that the model with Age included is superior,
because its residual standard error is lower (4.054 to 4.089) and because its Adjusted
R2 is higher in that model (0.7437 to 0.7392).

The above solution is somewhat unsatisfying. Which answer is correct? This is
where statistics starts to be just as much an art as a science. Often in model selection
there is no “right” answer, and even experienced statisticians will disagree as to
which is the best model. You can make your own decision about whetherAge should
be left in the model. This is part of the fun of statistics!

Based on the output in Example 10.15, we would probably not consider remov-
ing any of the remaining variables from the model.Weight, Abdomen, andWrist all
yield low individual p-values, indicating that all three of these variables contribute
significantly to the model.

Notice that we consider removing variables one at a time, rather than removing
all insignificant variables immediately from the original model. This is because coef-
ficients and significance of variables change, depending on what else is included in
the model. For example, Weight was insignificant (p-value = 0.1555) in the original
model including Height and Age, but became quite significant (p-value = 0.00889)
once Height and Age were removed. It’s good practice to consider the removal of
one variable at a time, and then reassess the importance of the other variables based
on the new model.

The coefficients and p-values of remaining variables change when we remove a
variable from a multiple regression model. For this reason, we usually remove one
variable at a time and reassess the model at each stage.

Categorical Variables
Multiple regression is powerful because it can include not only quantitative variables
as predictors, but, when used correctly, categorical explanatory variables as well. For
the model

Y = 𝛽0 + 𝛽1X1 + · · · + 𝛽kXk + 𝜖

to make sense, the values of all explanatory variables need to be numbers. We
can include a binary categorical variable simply by coding its two categories with
0 and 1.

Ikon - New Paradigm Images/SuperStock
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D A T A 10 . 2 Gender Discrimination among College Teachers?

SalaryGender contains data collected in 2010 on a random sample6 of 100
postsecondary (college) teachers including Gender (coded 0 = female and
1 = male), yearly Salary (in thousands of dollars), Age, and whether or not the
teacher has a PhD (coded 0 = no and 1 = yes). We are interested in whether the
data provide evidence for discrimination based on gender among college
teachers. ◼

Side-by-side boxplots of salary by gender are shown in Figure 10.9. It appears
that the males are making more than the females; is this difference significant? The
sample difference in means is

xm − xf = 63.418 − 41.631 = 21.787

On average, the males in the sample make $21,787 more per year than the females.
A randomization test or t-test for a difference in means yields a two-tail p-value
around 0.0096, indicating that male college teachers have significantly different (and
higher) mean salaries than female college teachers.

We can also do this test using regression. (In fact, you may notice that much of
what we’ve covered in earlier chapters of this book can also be accomplished using
regression.)

Figure 10.9 Yearly
salary (in thousands of
dollars) of college
teachers by gender
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Example 10.16
Run a regression model using Salary as the response variable and the 0/1 coded
Gender as the explanatory variable. Comment on how the estimated coefficients
relate to the salary means.

Solution Here is some output for fitting the model Salary = 𝛽0 + 𝛽1Gender + 𝜖 using the data
in SalaryGender:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 41.631 5.796 7.183 1.34e-10 ***
Gender 21.787 8.197 2.658 0.00918 **

Residual standard error: 40.98 on 98 degrees of freedom
Multiple R-squared: 0.06724, Adjusted R-squared: 0.05772
F-statistic: 7.065 on 1 and 98 DF, p-value: 0.009181

6A random sample taken from the 2010 American Community Survey (ACS) 1-year Public Use Micro-
data Sample (PUMS), http://www.census.gov/acs/www/data_documentation/public_use_microdata_sample/.
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We notice that the intercept, 41.631, matches the mean salary for the females
in the sample. The coefficient of Gender, 21.787, is exactly the same as the sample
difference in means (xm − xf ), and the p-value is quite close to the one we achieved
using a test for difference in means.

This is not a coincidence! To interpret this more fully, we need to think a lit-
tle harder about what it actually means to code a categorical variable to use in a
regression model.

From the regression output in Example 10.16, we get the prediction equation

̂Salary = 41.631 + 21.787 ×Gender

We find the predicted salary for males usingGender = 1:

̂Salary = 41.631 + 21.787 × 1 = 63.418

and the predicted salary for females usingGender = 0:

̂Salary = 41.631 + 21.787 × 0 = 41.631

In this sample, the males make an average of $63,418, and the females make an
average of $41,631 a year. These results based on the fitted regression model match
the means for the females and males in the sample and we see that the slope of the
regression measures the difference in those means.

Example 10.17
Salary and PhD

Output from a model using PhD (1 = teacher has a PhD, 0 = teacher does not have
a PhD) as an explanatory variable for the response variable Salary is shown below.
Use the regression output to answer the questions that follow.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 33.863 4.518 7.496 2.97e-11 ***
PhD 47.850 7.234 6.614 1.98e-09 ***

Residual standard error: 35.28 on 98 degrees of freedom
Multiple R-squared: 0.3086, Adjusted R-squared: 0.3016
F-statistic: 43.75 on 1 and 98 DF, p-value: 1.979e-09

About how big is the difference in mean salary between the two groups in this sam-
ple? Is there evidence that college teachers with a PhD earn significantly more, on
average, than those without a PhD? Give a 95% confidence interval for the size
of the difference in the mean salaries of those with and without PhD’s among all
college teachers from which this sample was drawn.

Solution The estimated coefficient of PhD for this model is 47.85, which indicates that col-
lege teachers with PhD’s average about $47,850 more in salary than those without
PhD’s. The very small p-value of 1.98 × 10−9 for testing this coefficient in the model
gives strong evidence that a difference this large would be very surprising to see
by random chance alone. Since this slope estimates the difference in means, a 95%
confidence interval for the slope can be interpreted as a 95% confidence interval for
the difference in the two means. Using a t-distribution with 100 − 2 = 98 degrees of
freedom and the standard error for the slope in the regression output we have

b1 ± t∗ ⋅ SE = 47.85 ± 1.98(7.234) = 47.85 ± 14.32 = (33.53, 62.17)



10.3 Using Multiple Regression 685

We are 95% sure that college teachers with a PhD average between $33,530 and
$62,170 more dollars a year than college teachers without a PhD.

Categorical variables with more than two levels can be included similarly, with
multiple 0-1 variables for multiple levels, although the details are beyond the scope
of this course.

We have seen how to use binary categorical variables (with only two possible
categories) in a multiple regression model. In general, it is not appropriate to sim-
ply assign numbers to the categories of a categorical variable with more than two
variables to use in a model.

Accounting for Confounding Variables
We have learned that among college teachers, males get paid significantly more than
females. However, is this alone evidence of gender discrimination? There may be a
confounding variable, or another variable that is associated with both gender and
salary, that can explain the salary difference by gender. For example, we’ve just
learned in Example 10.17 that college teachers with a PhD earn significantly more,
on average, than those without a PhD. Also, in this sample 48% of the males have a
PhD, while only 30% of the females have a PhD. Could this explain the difference
in salary due to gender? How do we account for this?

Until now in the course, the only way we’ve had to deal with confounding vari-
ables is to conduct a randomized experiment. With gender and salary, a randomized
experiment would be extremely difficult—how would you randomize a teacher to
be female? While a randomized experiment is the only way to truly eliminate all
confounding variables, multiple regression provides a powerful way to account for
confounding variables by including them as additional explanatory variables in the
model.

To test whether mean salaries are significantly higher for male college teachers,
even after accounting for the variable PhD, we simply include bothGender and PhD
as explanatory variables in a multiple regression model. This output is below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 28.050 5.383 5.211 1.06e-06 ***
Gender 13.638 7.083 1.926 0.0571
PhD 45.270 7.261 6.235 1.18e-08 ***

Residual standard error: 34.81 on 97 degrees of freedom
Multiple R-squared: 0.3341, Adjusted R-squared: 0.3204
F-statistic: 24.33 on 2 and 97 DF, p-value: 2.725e-09

The fitted model is

̂Salary = 28.05 + 13.64 ⋅Gender + 45.27 ⋅ PhD

After accounting for whether or not the teachers have a PhD, Gender becomes
only marginally significant (p-value = 0.0571 is not significant at a 5% level), and
the estimated difference in mean salary due to gender drops from $21,878 without
accounting for PhD to $13,638 after accounting for PhD.

Example 10.18
Accounting for both PhD and Age

PhD is not the only potential confounding variable. The sample mean age for males
in SalaryGender is xM = 49.32, and only xF = 44.44 for females. Also, regressing
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Salary on Age, we find that Age and Salary are significantly associated, with pre-
dicted salary increasing by $1,319 for every year increase inAge. We account forAge
by including it in the model as an additional explanatory variable, with the relevant
output given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −6.9549 10.8364 −0.642 0.52253
Gender 11.0944 6.7070 1.654 0.10136
PhD 36.4305 7.2534 5.023 2.35e-06 ***
Age 0.8474 0.2318 3.655 0.00042 ***

Residual standard error: 32.78 on 96 degrees of freedom
Multiple R-squared: 0.4154, Adjusted R-squared: 0.3972
F-statistic: 22.74 on 3 and 96 DF, p-value: 3.308e-11

Is gender a significant predictor of salary, after accounting for the age of the teachers
and for whether or not they have a PhD?

Solution No. After accounting for Age and PhD, Gender is no longer a significant predictor
of Salary (p-value = 0.101). In other words, based solely on this dataset, we do not
have significant evidence of gender discrimination in salaries for college teachers.

It may be tempting to conclude that all differences in salary due to gender can be
explained by the fact that male college teachers tend to be older and more likely to
have a PhD, and therefore that gender discrimination does not exist among salaries
of college teachers. However, remember that lack of significance does NOT mean
the null hypothesis is true! In fact, this is only a subset of a much larger dataset, and
running the same model on the larger dataset yields a significant p-value forGender,
even after accounting for PhD and Age.

It also may be tempting to make causal conclusions once we have accounted
for confounding variables, but multiple regression only allows us to account for
confounding variables which we have data on. The only way to really make causal
conclusions is to eliminate all possible confounding variables, which can only be
done with a randomized experiment.

Association between Explanatory Variables
The ability to include multiple explanatory variables opens up endless possibilities
for modeling. However, multiple explanatory variables can also make interpreting
models much more complicated, particularly when explanatory variables are associ-
ated with each other.

D A T A 10 . 3 Exam Grades
It’s that time of year; your first class in statistics is ending, and the final exam is
probably on your mind. Wouldn’t it be nice to be able to predict your final exam
score? StatGrades contains data on exam scores for 50 students who have
completed a course using this textbook.7 The dataset contains scores on Exam1
(Chapters 1 to 4), Exam2 (Chapters 5 to 8), and the Final exam (entire book). ◼

7These students were randomly selected from all students who took a course using this textbook and
were taught by a particular member of the Lock family.
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Example 10.19
How well do scores on the first two exams predict scores on the final exam?

Solution We fit a multiple regression model with both exam scores as explanatory variables
and final exam score as the response:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 30.8952 7.9973 3.863 0.000342 ***
Exam1 0.4468 0.1606 2.783 0.007733 **
Exam2 0.2212 0.1760 1.257 0.215086

Residual standard error: 6.377 on 47 degrees of freedom
Multiple R-squared: 0.5251, Adjusted R-squared: 0.5049
F-statistic: 25.98 on 2 and 47 DF, p-value: 2.515e-08

The first two exam scores explain 52.5% of the variability in final exam scores. We
expect the actual final exam score to be within approximately two residual standard
errors, or 2 × 6.38 = 12.76, of the predicted final exam score.

You may have noticed that Exam2, with a p-value of 0.215, is not a significant
predictor in this model. The final exam covers material from the entire book, includ-
ing the material from Chapters 5 to 8 that is tested on Exam2, so intuitively it seems
as if a student’s score on Exam2 should help predict that student’s score on the
final. In fact, running a simple linear regression with Exam2 as the only explanatory
variable, we see that Exam2 is a very significant predictor of Final exam score:

Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 32.8699 8.5071 3.864 0.000334 ***

Exam2 0.6332 0.1017 6.227 1.13e-07 ***

Residual standard error: 6.81 on 48 degrees of freedom

Multiple R-squared: 0.4468, Adjusted R-squared: 0.4353

F-statistic: 38.77 on 1 and 48 DF, p-value: 1.129e-07

The key is that Exam2 is very helpful for predicting Final exam score on its own,
but if Exam1 is already in the model, also knowing how the student did on Exam2
becomes unnecessary and redundant. This is because Exam1 and Exam2 are very
highly associated (r = 0.84), so if Exam1 is known, also knowing Exam2 does not
contribute that much additional information. The relationships between exam
scores are shown in Figure 10.10.

Particularly when explanatory variables are associated with each other, it is
important to remember that estimates and significance of coefficients in multiple
regression depend on the other explanatory variables included in the model.

Of course, we don’t recommend using these models to predict your own final
exam score. These are scores of students of one professor so they cannot be gener-
alized to other statistics classes and other exams. Always remember to think about
how the data were collected and how this affects the scope of inference!

This section presents several examples of howmultiple regression is used. There
are entire statistics courses devoted solely to multiple regression, and there is much
more to discover on the topic. If this has begun to whet your appetite, we encourage
you to take Stat2!
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Figure 10.10 Relationships between Exam1, Exam2, and Final exam scores

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Decide which variables to remove and which variables to keep in a mul-
tiple regression model

• Use categorical variables with two categories as explanatory variables
in multiple regression

• Use multiple regression to account for confounding variables

• Recognize that care should be taken when interpreting coefficients of
predictors that are strongly associated with each other

Exercises for Section 10.3

SKILL BUILDER 1
In Exercises 10.81 and 10.82, use the given out-
put to answer questions about how a model might
change.

10.81 Use the multiple regression output shown to
answer the following questions.

The regression equation is Y = 9.78 + 0.244 X1 + 0.065 X2 - 0.219 X3

Predictor Coef SE Coef T P
Constant 9.781 4.047 2.42 0.025
X1 0.2440 0.1777 1.37 0.184
X2 0.0653 0.1771 0.37 0.716
X3 −0.2186 0.1706 −1.28 0.214

S = 4.93734 R-Sq = 15.0% R-Sq(adj) = 2.9%

Analysis of Variance
Source DF SS MS F P
Regression 3 90.32 30.11 1.23 0.322
Residual Error 21 511.92 24.38
Total 24 602.24

(a) Which variable might we try eliminating first to
possibly improve this model?

(b) What is R2 for this model? Do we expect R2 to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in R2 would indicate that removing
the variable chosen in part (a) was a good idea?
A bad idea?

(c) What is the p-value for ANOVA for the original
3-predictor model? Is the p-value most likely to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in the p-value for ANOVA would
indicate that removing the variable chosen in
part (a) was a good idea? A bad idea?

(d) What is the F-statistic from ANOVA for this
model? Is this F-statistic most likely to increase,
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decrease, or remain the same if we eliminate an
insignificant variable? What do we hope is true
about any change in this F-statistic when we
eliminate such a variable?

10.82 Use the multiple regression output shown to
answer the following questions.

The regression equation is Y = 15.1 + 0.135 X1 - 0.696 X2 + 0.025 X3

Predictor Coef SE Coef T P
Constant 15.069 5.821 2.59 0.020
X1 0.1353 0.2354 0.57 0.573
X2 −0.6962 0.3029 −2.30 0.035
X3 0.0253 0.1920 0.13 0.897

S = 4.92431 R-Sq = 41.7% R-Sq(adj) = 30.7%

Analysis of Variance
Source DF SS MS F P
Regression 3 277.02 92.34 3.81 0.031
Residual Error 16 387.98 24.25
Total 19 665.00

(a) Which variable might we try eliminating first to
possibly improve this model?

(b) What is R2 for this model? Do we expect R2 to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in R2 would indicate that removing
the variable chosen in part (a) was a good idea?
A bad idea?

(c) What is the p-value for ANOVA for the original
3-predictor model? Is the p-value most likely to
increase, decrease, or remain the same if we elim-
inate the variable chosen in part (a)? What type
of change in the p-value for ANOVA would
indicate that removing the variable chosen in
part (a) was a good idea? A bad idea?

(d) What is the F-statistic from ANOVA for this
model? Is this F-statistic most likely to increase,
decrease, or remain the same if we eliminate an
insignificant variable? What type of change in
the F-statistic would indicate that removing the
variable chosen in part (a) was a good idea?

10.83 Predicting Opening Weekend Income of
Hollywood Movies The dataset HollywoodMovies
includes information on movies that came out of
Hollywood between 2012 and 2018. We want to
build a model to predict OpeningWeekend, which
is the gross income (in millions) from the movie’s
opening weekend. Start with a model including the
following five explanatory variables:

RottenTomatoes Meta rating of critical
reviews, from the Rotten
Tomatoes website

AudienceScore Average audience score,
from the Rotten Toma-
toes website

TheatersOpenWeek Number of theaters
showing the movie on
opening weekend

Budget Production budget (in
millions)

Year Year movie was released

Eliminate variables (and justify your decisions) and
comment on how the model changes. Decide which
model you believe is best using only these variables
or a subset of them. (Note: Several of the variables
have missing values, so the movies used to fit each
model might change slightly depending on which
predictors are in the model.) Give the model you
believe is best and explain why and how you chose
it as the best model.

10.84 Predicting Mercury Levels in Fish The
dataset FloridaLakes includes information on lake
water in Florida. We want to build a model to
predict A𝑣gMercury, which is the average mercury
level of fish in the lake. Start with a model including
the following four explanatory variables:Alkalinity,
pH, Calcium, and Chlorophyll. Eliminate variables
(and justify your decisions) and comment on how
themodel changes. Decide whichmodel you believe
is best using only these variables or a subset of them.
Give the model you believe is best and explain why
and how you chose it as the best model.

10.85 Predicting Blood Levels of Beta-Carotene
We wish to find a model to predict levels of
beta-carotene in the blood, which is the variable
BetaPlasma in the datasetNutritionStudy, using the
following variables as potential predictors:Age, Fat,
Fiber,Alcohol, and BetaDiet. The last is the amount
of beta-carotene consumed by a person.

(a) Use technology to find the correlation between
each of the predictors and the response vari-
able BetaPlasma. Identify the predictors that
appear to be potentially useful based on these
correlations.

(b) Try different models and combinations of pre-
dictors to help explain the beta-carotene plasma
levels. Try to get a good R2 and a good ANOVA
p-value, but also have significant predictors.
Decide on a final model and briefly indicate why
you chose it.
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10.86 Predicting Length of Games in Baseball
Baseball is played at a fairly leisurely pace—in fact,
sometimes too slow for some sports fans. What con-
tributes to the length of a major league baseball
game? The file BaseballTimes contains information
from a sample of 30 games to help build a model for
the time of a game (in minutes). Potential predictors
include:

Runs Total runs scored by both teams
Margin Difference between the winner’s and

loser’s scores
Hits Total base hits for both teams
Errors Total number of errors charged to both

teams
Pitchers Total number of pitchers used by both

teams
Walks Total number of walks issued by pitch-

ers from both teams

(a) Use technology to find the correlation between
each of the predictors and the response variable
Time. Identify the predictors that appear to be
potentially useful based on these correlations.

(b) Try different models and combinations of pre-
dictors to help explain the game times. Try to
get a good R2 and a good ANOVA p-value,
but also have significant predictors. Decide on
a final model and briefly indicate why you
chose it.

10.87 Prenatal Fluoride Exposure and IQ
Exercise 2.250 introduces a study examining the
association between fluoride exposure in pregnant
women and subsequent IQ scores of their chil-
dren. (Fluoride is often added to drinking water to
prevent tooth decay and may have other effects.)
The observational study included 512 Canadian
women and found a significant negative association
between maternal fluoride levels and IQ scores in
children, using regression analysis and a significance
level of 5%.

(a) What can be concluded about the p-value for
testing this association?

(b) Can we conclude from the information given
that additional fluoride exposure during preg-
nancy causes lower IQ scores in children?

(c) Because this was an observational study, there
are many possible confounding variables. In an
effort to account for some of these possible con-
founding variables, the article states “Adjusting
for lead, mercury, manganese, and arsenic did
not substantially alter the association between

fluoride level and IQ.”6 How did they likely
account for these other variables?

(d) Since we see in part (c) that the model
accounted for confounding variables, can we
now conclude that additional fluoride exposure
during pregnancy causes lower IQ scores in
children?

10.88 Life Expectancy and Electricity Use Use
the data in AllCountries to answer the following
questions.

(a) Is electricity use a significant single predictor of
life expectancy?

(b) Explain why GDP (per-capita Gross Domestic
Product) is a potential confounding variable in
the relationship between Electricity and Life-
Expectancy.

(c) Is electricity use a significant predictor of life
expectancy, even after accounting forGDP?

10.89 Life Expectancy and Cell Phones Use
the data in AllCountries to answer the following
questions.

(a) Is the number of mobile subscriptions per
100 people, Cell, a significant single predictor of
life expectancy?

(b) Explain why GDP (per-capita Gross Domes-
tic Product) is a potential confounding variable
in the relationship between Cell and Life-
Expectancy.

(c) Is Cell a significant predictor of life expectancy,
even after accounting forGDP?

10.90 Predicting Prices of Homes In Exercise 10.38
on page 665 we fit a model predicting the price
of a home (in $1000s), using size (in square feet),
number of bedrooms, and number of bathrooms,
based on data in HomesForSale. Output for fitting
a slightly revised model is shown below where the
Size1000 variable is measured in 1000s of square
feet (rather than just the raw square footage in Size
in the previous model):
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 103.75 92.92 1.117 0.2665
Size1000 81.99 42.64 1.923 0.0570
Beds −25.81 32.82 −0.786 0.4334
Baths 84.96 34.48 2.464 0.0152

Residual standard error: 228.1 on 116 degrees of freedom
Multiple R-squared: 0.1953, Adjusted R-squared: 0.1745
F-statistic: 9.385 on 3 and 116 DF, p-value: 1.329e-05

6Green R, Lanphear B, and Hornung R, “Association Between
Maternal Fluoride Exposure During Pregnancy and IQ scores in
Offspring in Canada,” JAMA Pediatrics, August 19, 2019.
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(a) Compare this output to the regression output in
Exercise 10.38 and comment on how the coeffi-
cient, standard error, and t-statistic for Size1000
change when we code the variable in 1000’s of
square feet rather than square feet as in Size.

(b) Interpret the coefficient forBeds, the number of
bedrooms in this fitted model.

(c) An architect (who has not taken statistics) sees
this output and decides to build houses with
fewer bedrooms so they will sell for more
money. As someone who has taken statistics,
help him to correctly interpret this output.

ARE CARBON OR STEEL BIKES FASTER?
Exercises 10.91 through 10.94 refer to data intro-
duced in Exercise C.124 on page 540 from an exper-
iment in which Dr. Jeremy Groves flipped a coin
each day to randomly decide whether to ride his
20.9 lb (9.5 kg) carbon bike or his 29.75 lb (13.5 kg)
steel bike for his 27-mile round-trip commute. His
data for 56 days are stored in BikeCommute. The
type of bicycle (carbon or steel) is the Bike variable
and his time (in minutes) is stored inMinutes. We’ve
created a new variable BikeSteel, which is 1 if the
ride is on a steel bike and 0 if the ride is on a carbon
bike.

10.91 Minutes vs Bike TypeOutput regressingMin-
utes on BikeSteel is shown below.
Response: Minutes
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 108.342 1.087 99.624 <2e-16 ***
BikeSteel −0.553 1.486 −0.372 0.711

Residual standard error: 5.545 on 54 degrees of freedom
Multiple R-squared: 0.002558, Adjusted R-squared: −0.01591
F-statistic: 0.1385 on 1 and 54 DF, p-value: 0.7112

(a) What is his predicted commute time if riding the
steel bike?

(b) What is his predicted commute time if riding the
carbon bike?

(c) Based on this experiment, is there a significant
difference between the commute time for the
carbon bike and steel bike?

10.92 Distance vs Bike Type The commute is about
27 miles round trip, but actual biking distances,
Distance, ranged from 25.86 to 27.52 miles. Out-
put regressing Distance on BikeSteel is given below.
Is the predicted distance higher for the carbon or
the steel bike? By how much? Is this difference
significant?

Response: Distance
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 27.37446 0.04164 657.363 < 2e-16 ***
BikeSteel −0.39613 0.05689 − 6.962 4.74e-09 ***

Residual standard error: 0.2123 on 54 degrees of freedom
Multiple R-squared: 0.473, Adjusted R-squared: 0.4633
F-statistic: 48.48 on 1 and 54 DF, p-value: 4.741e-09

10.93 Minutes vs Distance and Bike Type Distance
is associated with both the type of bike and com-
mute time, so if we are really interested in which
type of bike is faster, we should account for the con-
founding variableDistance. Output regressingMin-
utes on both BikeSteel and Distance (measured in
miles) is shown below.

Response: Minutes
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −176.620 90.065 −1.961 0.05514
BikeSteel 3.571 1.895 1.884 0.06500
Distance 10.410 3.290 3.164 0.00258 **

Residual standard error: 5.133 on 53 degrees of freedom
Multiple R-squared: 0.161, Adjusted R-squared: 0.1294
F-statistic: 5.087 on 2 and 53 DF, p-value: 0.00953

(a) Interpret the coefficient of BikeSteel.

(b) Interpret the coefficient ofDistance.

(c) What is the predicted commute time for a
27-mile commute on the steel bike? On the car-
bon bike?

10.94 Predicting Average Bike Speed In Exer-
cise 10.91, regressing Minutes on BikeSteel, the
coefficient for BikeSteel is negative. In Exercise
10.93, regressingMinutes onBikeSteel andDistance,
the coefficient for BikeSteel is positive.

(a) A biker interested in whether carbon or steel
bikes are faster is not sure what to make of
these seemingly contradictory results. Explain
to her why the coefficient can be negative in
one model and positive in the other. (Hint:
In Exercise 10.92 we see regressing Distance
on BikeSteel yields a negative coefficient for
BikeSteel.)

(b) If we were to regress the variable A𝑣gSpeed =
Distance∕Minutes on BikeSteel, would the coef-
ficient for BikeSteel be negative or positive?
Explain. (You should not need technology to
answer this question.)

10.95 Par and Distance as Predictors of Golf
Scores Exercise 10.49 on page 668 asks you to pre-
dict the score on a golf hole based on a multiple
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regression model using the Par and Distance of the
hole. Here we assess the effectiveness of those two
predictors in this model. The data (scorecard for
one round of 18 golf holes) for fitting the model are
stored in GolfRound.
(a) Use the individual t-tests to assess the impor-

tance of each of the predictors (Par and Dis-
tance) in the multiple regression model to pre-
dict Score.

(b) Use the ANOVA F-test to assess the overall
effectiveness of this two-predictor model.

(c) The conclusions of parts (a) and (b) should look
somewhat inconsistent with each other. Can
you explain why? Hint: Look at the correlation
between Par and Distance.

10.96 Big CoefficientsA classmate tells you that an
easy way to tell which variables are most impor-
tant in a multiple regression model is to choose
the ones with the largest coefficients (in absolute
value). Use the Cars2020 data to create an example
that will show your classmate that this is not a reli-
able method.
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Summary of Inference for Multiple Parameters
InUnit D, we discuss themethods for inference withmultiple parameters; either per-
taining to multiple categories in a categorical variable (chi-square tests and analysis
of variance) or multiple parameters in a regression model.

Chi-square tests and analysis of variance extend the hypothesis tests of
Chapters 4 and 6 to allow for categorical variables with multiple categories.
Chi-square tests allow for testing one or two categorical variables with multiple
categories, and analysis of variance allows for testing one quantitative and one
categorical variable with multiple categories.

Regression involves building models to predict a quantitative response vari-
able based on one quantitative explanatory variable (simple regression), or multiple
explanatory variables (multiple regression). Most of the inferential methods pre-
sented in this book pertain to one or two variables, but multiple regression provides
a way of incorporating more than two variables.

As with the rest of the book, the appropriate method of analysis is determined
by the type of variables, categorical or quantitative, although now we also have to
determine whether the categorical variables have two categories or more than two
categories. The appropriate methods of inference, based on the number of variables,
whether the variable(s) are categorical or quantitative, and whether the categorical
variable(s) have two or more categories, are summarized in Table D.1.

Table D.1 Guide to choosing the appropriate method based on the
variables and number of categories

Variables Number of Categories Appropriate Inference

Two Categories Single Proportion or
One Categorical Chi-Square Goodness of Fit

More Categories Chi-Square Goodness of Fit

One Quantitative — Single Mean

Two Categories Difference in Proportions or
Two Categorical Chi-Square Test for Association

More Categories Chi-Square Test for Association

Two Categories Difference in Means or
One Categorical, Analysis of Variance
One Quantitative More Categories Analysis of Variance

Two Quantitative — Correlation,
Simple Regression

Quantitative Response, — Multiple Regression
Multiple Explanatory

Categorical Response, — Take STAT2!
Multiple Explanatory

Hypothesis Testing
Although the methods of this unit are quite different, they all include hypothesis

testing. In every instance of hypothesis testing:

• We have a null and an alternative hypothesis, a test statistic, a p-value, and a con-
clusion to reject or not reject the null hypothesis.

693
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• The null hypothesis is usually that nothing interesting is going on (no association,
proportions are as specified, variable not useful in model), whereas the alternative
is that there is something interesting going on.

• A smaller p-value provides more evidence to support the alternative hypothesis,
often that there is a relationship between variables.

• The fundamental question in every case: Do the sample data provide enough evi-
dence against the null hypothesis to rule out random chance as an explanation for
the data (if the null hypothesis is true)?

Although we encounter new distributions and more sophisticated computations, the
basic ideas all build on the fundamental concepts we introduce in Chapter 4 and
have carried throughout the text.

Confidence Intervals
Themethods in Unit D tend to bemore focused on testing hypotheses (is there a

relationship between these variables?) rather than estimating with confidence inter-
vals (how big is the effect?). In many of the settings, we use intervals after running
an initial test to see if a relationship exists or after fitting a model. For example:

• After an ANOVA for difference in means, find a confidence interval for the dif-
ference in means between a specific pair of groups.

• After finding an effective simple linear regression model, find a prediction interval
for the response for a specific value of the explanatory variable.

• After fitting a regression model, find a confidence interval for the coefficient
(slope) for a predictor.

For each of these intervals, we use the familiar formula

Sample Statistic ± t∗ ⋅ SE

where we use technology or a formula to find the appropriate standard error.

Chi-Square Tests: Tests for Categorical Variables
Chi-square tests are used for testing hypotheses about one or two categorical

variables and are appropriate when the data can be summarized by counts in a table.
The variables can have multiple categories. The type of chi-square test depends on
whether there are one or two categorical variables:

• One Categorical Variable: Chi-Square Goodness-of-Fit Test

• Two Categorical Variables: Chi-Square Test for Association

Chi-square tests compare observed counts to expected counts (if the null hypothesis
were true). If the observed counts are farther away from the expected counts than
can be explained just by random chance, we have evidence against the null hypoth-
esis and in favor of the alternative. The distance between observed and expected
counts is quantified with the 𝜒

2-statistic, which is compared to a 𝜒
2-distribution to

calculate the p-value. The details are laid out below:

1. State hypotheses

• For one categorical variable:

–Null hypothesis: The proportions match some pre-assumed set of proportions.

–Alternative hypothesis: At least one category has a proportion different from
the null values.
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• For two categorical variables:

–Null hypothesis: There is no association between the variables (distribution of
proportions for one variable is the same within each category of the second
variable).

–Alternative hypothesis: There is an association between the variables.

2. Summarize the data in a table with observed counts
3. Calculate the expected counts for each cell (as if the null hypothesis were true)

• For one categorical variable:
Expected count for a cell= n ⋅ pi, where pi is given inH0.

• For two categorical variables:

Expected count for a cell = Row total ⋅ Column total
Total sample size

.

4. Compute the 𝝌𝟐-statistic:

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

5. Find the p-value as the upper tail in a 𝝌𝟐-distribution

• For one categorical variable: df = k − 1, where k is the number of categories in
the variable.

• For two categorical variables: df = (r − 1) ⋅ (c − 1), where r is the number of rows
(categories in one variable) and c is the number of columns (categories in the
other).

6. Make a conclusion

• If the results are significant, we have evidence in favor of the alternative hypoth-
esis. A more informative conclusion can be given by comparing the relative sizes
of observed and expected counts of individual cells, and the relative contribution
of cells to the chi-square statistic.

With only two categories the chi-square goodness-of-fit test is equivalent to a
test for a single proportion, and the chi-square test for association is equivalent
to a test for a difference in two proportions.

Analysis of Variance: Test for a Difference in Means
Analysis of variance is used to test for an association between one quantita-

tive variable and one categorical variable or, equivalently, to test for a difference in
means across categories of a categorical variable. The categorical variable can have
multiple categories. This method is appropriate when the summary statistics include
sample means calculated within groups.

Analysis of variance compares variability within groups to variability between
groups. If the ratio of variability between groups to variability within groups is higher
than we would expect just by random chance, we have evidence of a difference in
means. This ratio is called the F-statistic, which we compare to an F-distribution to
find the p-value. The details are laid out below.

1. State hypotheses

• Null hypothesis: 𝜇1 = 𝜇2 = · · · = 𝜇k (no difference in means by category).

• Alternative hypothesis: Some 𝜇i ≠ 𝜇j (difference in means between categories).
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2. Compute the F-statistic using an ANOVA table:

Source df Sum of Sq. Mean Square F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

The sums of squares SSTotal = SSG + SSE are obtained by technology or formula.
3. Find the p-value as the upper tail in an F-distribution

• Use df for Groups and df for Error from the ANOVA table.

4. Make a conclusion

• If the results are significant, we have evidence of an association between the vari-
ables (and a difference in means between the groups defined by the categorical
variable). A more informative conclusion can be given if desired by using the
methods of pairwise comparison presented in Section 8.2.

If the categorical variable has only two categories, analysis of variance is equiv-
alent to a test for a difference in means between two groups.

Inference after ANOVA: Confidence Intervals or Pairwise Tests

• Use t-distribution with Error df and
√
MSE fromANOVA to estimate variability.

Use technology or see formulas on page 606.

Regression
Regression is used to predict a quantitative response variable based on one or

more explanatory variables, and to model relationships between explanatory vari-
able(s) and a quantitative response variable. In order to use regression, all variables
need to be measured on the same set of cases.

The simple linear regression model (one quantitative explanatory variable) is
introduced in Section 2.6, and Chapter 9 extends this analysis to include inference.
Multiple regression extends simple linear regression to include multiple explanatory
variables.

Some important aspects of regression are summarized below:

• R2 gives the percent of variability in the response variable that is explained by the
explanatory variable(s) in the model.

• Test for Correlation (only for simple regression)

–Null hypothesis: There is no linear relationship between the variables (𝜌 = 0)

–Test statistic: t = r
√
n − 2√
1 − r2

–Distribution: t-distribution with df = n − 2

• Test for Slope (in simple regression this is equivalent to a test for correlation)

–Null hypothesis: The variable is not significant in the model (𝛽i = 0)

–Test statistic: t =
bi − 0
SE

, where SE is the standard error of the slope

–Distribution: t-distribution with df = n − k − 1, where k is the number of
explanatory variables
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• Analysis of Variance for Regression (check overall model fit)

–Null hypothesis: The model is not effective at predicting the response variable

–Test statistic: F-statistic from an ANOVA table (see details on page 635)

–Distribution: Upper tail in an F-distribution with df for Model and df for Error

• Conditions for Regression

–In a scatterplot (in simple regression) or residuals vs fits plot (in multiple
regression), watch out for curvature (or any non-linear trend), increasing or
decreasing variability, or outliers.

–In a histogram or dotplot of the residuals, watch out for obvious skewness or
outliers.

• Regression intervals (use technology or formulas on page 647)

–Confidence interval for the mean response at some specific explanatory value

–Prediction interval for an individual response at some specific explanatory value

• Variables in Multiple Regression

–The coefficient and significance of each explanatory variable depend on the
other explanatory variables included in the model.

–More variables are not always better; consider pruning insignificant variables
from the model.

iStock.com/Klubovy

Is this an early morning class?

Case Study: Sleep, Circadian Preference,
and Grade Point Average
In Data A.1 on page 179, we introduce a study examining the relationship between
class start times, sleep, circadian preference, alcohol use, academic performance, and
other variables in college students. The data were obtained from a sample of stu-
dents who did skills tests to measure cognitive function, completed a survey that
asked many questions about attitudes and habits, and kept a sleep diary to record
time and quality of sleep over a two-week period. Some data from this study, includ-
ing 27 different variables, are available in SleepStudy. When we introduced this
study in Unit A, we had only finished Chapters 1 and 2 and could only describe
the data. We return to some of the same questions now, when we have many more
powerful statistical tools at our disposal.
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Example D.1
Are You a Lark or an Owl?

Past studies7 indicate that about 10% of us are morning people (Larks) while 20%
are evening people (Owls) and the rest aren’t specifically classified as either. Studies
also indicate that this circadian preference may not be settled until 22 years of age
or later. Table D.2 shows the number in each category for the 253 college students
in the study described in Data A.1. Is there evidence that the owl/lark preferences
for college students differ from the claimed proportions?

Table D.2 Circadian preference:
Are you a lark or an owl?

Type Frequency

Lark 41
Neither 163
Owl 49

Total 253

Solution We are comparing frequency counts from a sample to some preconceived propor-
tions, so we use a chi-square goodness-of-fit test for this analysis. The hypotheses
are

H0 ∶ pL = 0.1, pN = 0.7, pO = 0.2

Ha ∶ Some pi is wrong

where pL, pN , pO represent the proportion in each category of Lark, Neither, Owl,
respectively, for the population of college students represented by this sample. We
find the expected counts using n ⋅ pi, so we have

EL = 253(0.1) = 25.3 EN = 253(0.7) = 177.1 EO = 253(0.2) = 50.6

All of the expected counts are well above 5 so we proceed with a chi-square test. We
find the chi-square statistic using

𝜒
2 = (41 − 25.3)2

25.3
+ (163 − 177.1)2

177.1
+ (49 − 50.6)2

50.6
= 9.743 + 1.123 + 0.051 = 10.917

We use the upper tail of a chi-square distribution to find the p-value, and there are
three categories so df = 3 − 1 = 2. The area above 𝜒

2 = 10.917 gives a p-value of
0.004. This is a small p-value and we find evidence that the proportions are sig-
nificantly different than those expected. The largest contribution comes from the
“Lark” cell and we see (surprisingly, for college students!) that there are more Larks
than expected.

Example D.2
Stress and Circadian Preference

Are stress levels of college students affected by circadian preference? Test to see if
there is evidence of a relationship between the variables LarkO𝑤l and Stress. Stress
level is identified as either normal or high and circadian preference is identified as
lark, owl, or neither. Table D.3 shows the counts in each cell.

7http://www.nasw.org/users/llamberg/larkowl.htm.
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Table D.3 Stress levels and circadian
preference

Lark Neither Owl Total

Normal 31 125 41 197
High 10 38 8 56

Total 41 163 49 253

Solution The data are frequency counts for two categorical variables, so we use a chi-square
test of association for the analysis. The null hypothesis is that there is no relationship
between Stress and LarkO𝑤l status and the alternative hypothesis is that there is a
relationship. We find the expected count in each cell, and then the contribution to
the chi-square statistic, using

Expected count = Row total ⋅ Column total
Total sample size

Contribution =
(Obser𝑣ed − Expected)2

Expected

The computer output below shows, for each cell, the observed count from the table
with the expected count below it and the contribution to the chi-square statistic
below that:

Lark Neither Owl

Normal 31 125 41
31.92 126.92 38.15
0.027 0.029 0.212

High 10 38 8
9.08 36.08 10.85

0.094 0.102 0.747

We add up all the contributions to obtain the 𝜒
2-statistic:

𝜒
2 = 0.027 + 0.029 + 0.212 + 0.094 + 0.102 + 0.747 = 1.211

We use a chi-square distribution to find the p-value, with df = (r − 1) ⋅ (c − 1) =
1 ⋅ 2 = 2. We find a p-value of 0.546. This is a large p-value and does not offer
sufficient evidence that circadian preference and stress levels are related.

Example D.3
Are Cognitive Skills and Alcohol Use Related?

One of the variables in SleepStudy is CognitionZscore which assigns each person a
z-score based on results on several cognitive skills tests, with higher scores indicating
stronger cognitive ability. Another is AlcoholUse which shows self-reported levels
of alcohol use in one of four categories: Abstain, Light, Moderate, or Heavy. Is there
a relationship between cognitive skills and alcohol use? Summary statistics are given
in Table D.4 and side-by-side boxplots are shown in Figure D.1.

Solution Notice that the light drinkers have the highest mean cognitive score while the heavy
drinkers have the lowest. Is the difference between these four alcohol use groups
significant? We are investigating a relationship between a quantitative variable
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Table D.4 Cognitive skills and alcohol use

Sample Size Mean Std.Dev.

Abstain 34 0.0688 0.7157
Light 83 0.1302 0.7482
Moderate 120 −0.0785 0.6714
Heavy 16 −0.2338 0.6469

Overall 253 0.000 0.7068

Figure D.1 Is there a
difference in cognitive
skills based on alcohol
use?
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(CognitionZscore) and a categorical variable (AlcoholUse), so the appropriate test
is analysis of variance for a difference in means. The relevant hypotheses are:

H0 ∶ Mean cognition score is the same for each alcohol use group

Ha ∶ Mean cognition score differs among some alcohol use groups

We see in Table D.4 and Figure D.1 that the normality and equal variance con-
ditions appear to be met, so we proceed to construct the ANOVA table.

The Groups df is k − 1 = 4 − 1 = 3 in this case, while the Total df is n− 1=
253− 1 = 252 and the Error df is n − k = 253 − 4 = 249. We find the sum of squares
using the formulas or using technology. Using the formulas (page 592), we have

SSG = 34(0.069 − 0)2 + 83(0.130 − 0)2 + 120(0.079 − 0)2

+ 16(−0.234 − 0)2 = 3.2

SSError = 33(0.71572) + 82(0.74822) + 119(0.67142) + 15(0.64692) = 122.7

SSTotal = 252(0.7068)2 = 125.9

Completing the ANOVA table, we arrive at the results shown in the following com-
puter output:

Source DF SS MS F P
AlcoholUse 3 3.183 1.061 2.15 0.094
Error 249 122.718 0.493
Total 252 125.901

The p-value is found using the F-distribution with 3 numerator df and 249 denomina-
tor df. The p-value of 0.094 is not significant at a 5% level, so we do not find evidence
of a difference in mean cognition score based on alcohol use. At a 10% level, how-
ever, we do find this evidence. As always, we should be careful not to infer cause
and effect (in either direction) since these data come from an observational study.
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Example D.4
Comparing Cognitive Skill between Light and Heavy Drinkers

Based on the ANOVA results of Example D.3, find and interpret a 95% confidence
interval for the difference in mean cognitive skill z-scores between students who
classify themselves as light and heavy alcohol users.

Solution From the ANOVA output we find MSE = 0.493 with 249 degrees of freedom. For
95% confidence and this many degrees of freedom we find t∗ = 1.97. Using the
means and sample sizes for the light and heavy categories of Table D.4 we compute
the confidence interval for the difference in means as

(xL − xH) ± t∗ ⋅

√
MSE

(
1
nL

+ 1
nH

)

(0.1302 − (−0.2338)) ± 1.97 ⋅

√
0.493

(
1
83

+ 1
16

)

0.3640 ± 0.3780

−0.014 to 0.742

We are 95% sure that students who classify themselves as light alcohol users have an
average cognitive z-score that is somewhere between 0.014 points lower and 0.742
points higher than students classified as heavy alcohol users. Note that this inter-
val includes zero (no difference at a 5% level) as we expect given the result of the
ANOVA test in Example D.3.

Example D.5
Early Classes and Grade Point Average

The correlation between number of early classes (starting at or before 8:30 am) per
week and grade point average is r = 0.101 with n = 253. Explain what a positive
correlation means in this situation, and test whether this sample correlation provides
evidence of an association between these two variables.

Solution A positive correlation implies that grades tend to be higher for those taking more
early classes. To test for an association, we test H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 ≠ 0. The
t-statistic is

t = r
√
n − 2√
1 − r2

= 0.101
√
251√

1 − (0.1012)
= 1.608

Using a t-distribution with n − 2 = 253 − 2 = 251 degrees of freedom, and using a
two-tail test, we find a p-value of 2(0.0545) = 0.109. We do not find sufficient evi-
dence to show an association between the number of early classes and grade point
average.

Example D.6
Sleep Quality and DASScore

Students were rated on sleep quality and the results are in the quantitative variable
PoorSleepQuality, with higher values indicating poorer sleep quality. Students were
also rated onDepression, Anxiety, and Stress scales, with theDAS score (DASScore)
giving a composite of the three scores, with higher values indicting more depres-
sion, anxiety, and/or stress. How well does the DAS score predict sleep quality?
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Figure D.2 Sleep quality
and depression scores
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A scatterplot of the data is in Figure D.2 and computer output for the regression
analysis is given below:

The regression equation is
PoorSleepQuality = 4.64 + 0.0806 DASScore

Predictor Coef SE Coef T P
Constant 4.6418 0.2574 18.04 0.000
DASScore 0.080594 0.009912 8.13 0.000

S = 2.60279 R-Sq = 20.8% R-Sq(adj) = 20.5%

Analysis of Variance
Source DF SS MS F P
Regression 1 447.90 447.90 66.12 0.000
Residual Error 251 1700.40 6.77
Total 252 2148.30

(a) Do the conditions for fitting a linear model appear to be met?

(b) Interpret R2 in this context.

(c) Identify and interpret the t-test of the slope.

(d) What conclusion can we draw based on the ANOVA table?

Solution (a) Judging from the scatterplot of the data, the conditions for a linear model appear
to be met. There is no obvious curvature and the data appear to be scattered in
roughly parallel bands above and below the least squares line.

(b) We see that R2 = 20.8%, so 20.8% of the variability in sleep quality can be
explained by students’ DAS scores.

(c) The slope is 0.0806 and we see from the large t-statistic of 8.13 and small p-value
of 0.000 that DAS score is an effective predictor of sleep quality.

(d) From the ANOVA test, we see that the F-statistic is 66.12 and the p-value is
0.000. This simple linear regression model based on DAS score is effective at
predicting sleep quality.

Example D.7
Predicting Sleep Quality for a Specific Student

Suppose that one of the students at this college has a fairly high DAS score of 40.
Predict the sleep quality for this student and find an interval that will be 95% sure
to contain the actual value for her PoorSleepQuality.



D Essential Synthesis 703

Solution Using the regression equation from Example D.6 we find that the predicted
PoorSleepQuality score for a student withDASScore = 40 is

PoorŜleepQuality = 4.642 + 0.0806(40) = 7.87

We use technology to request regression intervals when DASScore = 40 to pro-
duce the output below:

New Obs Fit SE Fit 95% CI 95% PI
1 7.866 0.257 (7.360, 8.371) (2.715, 13.017)

Since we need an interval to contain the sleep quality for a particular student,
we use the prediction interval. We are 95% sure that a student with DAS score of 40
will have a poor sleep quality score somewhere between 2.7 and 13.0.

Example D.8
Predicting Grade Point Average with Multiple Predictors

We create a multiple regression model to predict grade point average (GPA) from
the number of early classes, the number of classes missed, the quality of sleep, a
happiness score (with higher values indicating greater happiness), the number of
alcoholic drinks per week, and the average number of hours of sleep per night.
Graphs of residuals raise no serious concerns about performing the analysis, and
computer output is shown:

The regression equation is
GPA = 3.77 + 0.0111 NumEarlyClass − 0.0198 ClassesMissed

− 0.00424 PoorSleepQuality − 0.00244 Happiness − 0.0254 Drinks
− 0.0339 AverageSleep

Predictor Coef SE Coef T P
Constant 3.7699 0.2825 13.34 0.000
NumEarlyClass 0.01110 0.01634 0.68 0.497
ClassesMissed −0.019795 0.007907 −2.50 0.013
PoorSleepQuality −0.004241 0.009540 −0.44 0.657
Happiness −0.002439 0.004774 −0.51 0.610
Drinks −0.025418 0.006040 −4.21 0.000
AverageSleep −0.03388 0.02623 −1.29 0.198

S = 0.386280 R-Sq = 10.9% R-Sq(adj) = 8.7%

Analysis of Variance
Source DF SS MS F P
Regression 6 4.4822 0.7470 5.01 0.000
Residual Error 246 36.7062 0.1492
Total 252 41.1884

(a) Interpret (in context) the signs of the coefficients for NumEarlyClasses and
ClassesMissed.

(b) Which of the six explanatory variables is most significant in the model? Is the
coefficient of this variable positive or negative? Interpret the sign in context.

(c) Which variables are significant at a 5% level?

(d) Use output in the ANOVA table to determine whether the overall model is
effective at predicting GPA.

(e) Interpret R2.

(f) How might we try to improve the model?
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Solution (a) The coefficient of NumEarlyClasses is positive, which means that, given the
other variables in the model, GPA tends to go up as the number of early classes
goes up. (This makes sense, since studies show that more motivated students
tend to be more likely to take early classes.) The coefficient of ClassesMissed is
negative, which means that, given the other variables in the model, GPA tends
to go down as the number of classes missed goes up. (This also makes sense,
since more motivated students are less likely to miss class.)

(b) The variable Drinks is most significant in the model. The coefficient is negative
which means that, given the other variables in the model, GPA tends to be lower
for students who have more alcoholic drinks. This variable is very significant in
the model, with a p-value of 0.000.

(c) Only two variables are significant at a 5% level:Drinks and ClassesMissed. Both
have negative coefficients.

(d) The p-value from the ANOVA table is 0.000 so the model as a whole is effective
at predicting grade point average.

(e) We see that 10.9% of the variability in grade point averages can be explained by
these six explanatory variables.

(f) Several of the explanatory variables (such as PoorSleepQuality and Happiness)
are very insignificant in the model. It makes sense to try eliminating one of
them from the model and running the regression again. For example, using
ClassesMissed, Drinks, and A𝑣erageSleep will still give an R2 of 10.5%. Are
there other explanatory variables that might do better? Try it and see!

There are many interesting variables in this dataset and much more analysis that
can be conducted. Make up some of your own questions using these variables. Then
use technology and the dataset to see what you can discover!

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify which type of inference for multiple categories or multiple vari-
ables is appropriate in a given situation

• Put all the pieces together to answer more involved questions using
real data for which chi-square, ANOVA, or regression analysis is
appropriate

Exercises for UNIT D: Essential Synthesis

RESTAURANT TIPS
In Data 2.12 on page 137, we introduce the dataset
RestaurantTips containing information on the tip-
ping patterns of patrons of the First Crush bistro
in northern New York state. The data from 157
bills include the amount of the bill, size of the tip,
percentage tip, number of customers in the group,

whether or not a credit card was used, day of the
week, and a coded identity of the server. The first
four variables are quantitative and the last three
are categorical. In Exercises D.1 to D.10, we use
the RestaurantTips dataset to analyze relationships
between these variables.
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D.1 Do the Servers Serve Equal Numbers of
Tables? The data come from three different servers,
coded as A, B, and C to preserve anonymity.
The number of bills for each server is shown in
Table D.5. Do the servers serve equal numbers of
tables?

Table D.5 Number of bills by server

Server A B C Total

Number of Bills 60 65 32 157

D.2 Are Bills Evenly Distributed between the
Days of theWeek? The number of bills for each day
of the week is shown in Table D.6. Does this pro-
vide evidence that some days of the week are more
popular (have more bills) than others?

Table D.6 Number of bills by day

Day Mon Tues Wed Thurs Fri Total

Number of Bills 20 13 62 36 26 157

D.3 Are Credit Cards Used Equally Often among
the Three Servers?The data come from three differ-
ent servers, coded as A, B, and C, and we also have
information on whether or not a credit (or debit)
card was used to pay the bill rather than cash. The
frequency counts are shown in the two-way table
in Table D.7. At a 5% significance level, is there an
association between who the server is and whether
the bill is paid in cash or with a credit/debit card?

Table D.7 Cash or credit card by server

A B C Total

Cash 39 50 17 106
Card 21 15 15 51

Total 60 65 32 157

D.4 Are Credit Cards used Equally Often
between the Days of the Week? The data come
from all five week days and we also have informa-
tion on whether or not a credit (or debit) card was
used to pay the bill rather than cash. The frequency
counts are shown in the two-way table in Table D.8.
Find the chi-square statistic for this two-way table.
Are the conditions met to use the chi-square dis-
tribution? Why or why not? Conduct the appro-
priate test to determine whether there is evidence

of an association between the day of the week and
whether the bill is paid in cash or with a credit/debit
card.

Table D.8 Cash or credit card by day

Mon Tues Wed Thurs Fri Total

Cash 14 5 41 24 22 106
Card 6 8 21 12 4 51

Total 20 13 62 36 26 157

D.5 Does Average Tip Percentage Vary by
Server?Most restaurant patrons leave a tip between
15% and 20% of the bill, and some restaurant cus-
tomers determine the percent tip to leave based on
the quality of service. Summary statistics for mean
tip percentage left between the three servers, coded
A, B, and C, are given in Table D.9. Is there a dif-
ference in mean tip percentage between the three
servers? Be sure to check conditions of the test, and
conduct the appropriate test.

Table D.9 Percent tip by server

Server Sample Size Mean Std.Dev.

A 60 17.543 5.504
B 65 16.017 3.485
C 32 16.109 3.376

Overall 157 16.619 4.386

D.6 Does Size of the Bill Vary by Server? Are
some servers given the big spenders (or large
groups) while others tend to those having only a
cup of coffee or a glass of wine? Is there a differ-
ence in the mean size of the bill between the three
different servers? Summary statistics for mean bill
size between the three servers, coded A, B, and
C, are given in Table D.10. Is there a difference in
mean bill size between the three servers? Be sure to
check conditions of the test, and conduct the appro-
priate test.

Table D.10 Size of the bill by server

Server Sample Size Mean Std.Dev.

A 60 22.76 12.71
B 65 21.14 10.19
C 32 25.92 14.35

Overall 157 22.729 12.157
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D.7 Tip by Number of Guests: Correlation Do
larger parties tend to leave a larger tip? Figure D.3
shows a scatterplot between the size of the tip and
the number of guests.

(a) Does there appear to be an association in the
data between number of guests and tip size?
If so, is it positive or negative? Are there any
outliers?

(b) The correlation between the two variables is
r = 0.504 with n = 157. Test to see if this shows
a significant positive correlation.

(c) If the correlation is significant, does that imply
that more guests cause the tip to go up? If not,
what is an obvious confounding variable?
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Figure D.3 Size of the tip by number of guests

D.8 Tip by Number of Guests: Regression How
much larger do tips get with larger parties?
Figure D.3 shows a scatterplot between the size of
the tip and the number of guests. Output regressing
Tip onGuests is shown below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.1068 0.4130 2.680 0.00816 **
Guests 1.3087 0.1802 7.264 1.72e-11 ***

Residual standard error: 2.098 on 155 degrees of freedom
Multiple R-squared: 0.254, Adjusted R-squared: 0.2492
F-statistic: 52.77 on 1 and 155 DF, p-value: 1.715e-11

(a) Interpret the value of the coefficient for Guests
in context.

(b) A server begins to wait on a table with three
guests. What is her predicted tip?

(c) The server calculates a 95% confidence interval
for the average tip for a table of three guests to
be (4.57, 5.49), and a 95% prediction interval to

be (0.86, 9.20), but is unsure what these inter-
vals tell about how much she should expect to
get as a tip. Help her interpret both intervals.

D.9 ANOVA for Regression to Predict Tip from
Bill We have seen in earlier exercises that the con-
ditions are met for using a regression line to predict
the Tip from the size of the Bill. Some regression
output is shown for fitting this linear model:

The regression equation is
Tip = −0.292 + 0.182 Bill

S = 0.979523 R-Sq = 83.7% R-Sq(adj) = 83.6%

Analysis of Variance
Source DF SS MS F P
Regression 1 765.53 765.53 797.87 0.000
Residual Error 155 148.72 0.96
Total 156 914.25

(a) Find the value forR2 in the output and interpret
it in context.

(b) Find the F-statistic and p-value in the regression
ANOVA. What is the conclusion of this test?

D.10 Predicting Tip from Bill and Number of
Guests In Exercise D.9, we use the size of the bill
to predict the tip. In this exercise, we use both the
size of the bill and the number of guests to predict
the size of the tip. Some regression output is shown
for this analysis:

The regression equation is
Tip = −0.252 + 0.184 Bill − 0.036 Guests

Predictor Coef SE Coef T P
Constant −0.2524 0.2019 −1.25 0.213
Bill 0.183751 0.007815 23.51 0.000
Guests −0.0357 0.1019 −0.35 0.727

S = 0.982307 R-Sq = 83.7% R-Sq(adj) = 83.5%

Analysis of Variance
Source DF SS MS F P
Regression 2 765.65 382.82 396.74 0.000
Residual Error 154 148.60 0.96
Total 156 914.25

(a) What is the regression equation? What tip is
predicted for three guests with a $30 bill?

(b) There are two explanatory variables in the
model. Interpret the coefficient of each.

(c) Give the p-value for testing the slope of each
explanatory variable, and indicate whether each
is significant in the model.

(d) Give the value of R2 and interpret it in context.

(e) Find the F-statistic and p-value in the regression
ANOVA. What are the hypotheses and conclu-
sion of this test?
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Review Exercises for UNIT D

USING THEORETICAL DISTRIBUTIONS
In Exercises D.11 to D.18, a test statistic for one of
the tests in this unit is given, along with information
about sample size(s) or degrees of freedom. Give
the p-value and indicate whether the results are sig-
nificant at the 5% level.

D.11 An upper-tail test for correlation with
t-statistic = 1.36 and df = 15

D.12 An analysis of variance test with F-statistic =
7.42 and df-numerator= 3 and df-denominator= 56

D.13 A chi-square goodness-of-fit test with
𝜒
2-statistic = 4.18 and 5 groups

D.14 A two-tailed test for slope in a one-predictor
regression model with t-statistic = 2.89 and n = 30

D.15 ANOVA for difference in means for 100 peo-
ple separated into six groups with F-statistic = 2.51

D.16 A chi-square test for a 2 × 4 table with 𝜒
2-

statistic = 6.83

D.17 A two-tailed test for the coefficient of the first
predictor in a three-predictor regression model with
t-statistic = 1.83 and n = 26

D.18 A lower-tail test for correlation with t-statistic
= −4.51 and n = 81

WHICH TEST IS APPROPRIATE?
In this unit, we have covered six specific tests, listed
below. For each situation given in Exercises D.19
to D.27, identify which of these tests is most appro-
priate. If multiple tests are appropriate, list them all.

• Chi-square goodness-of-fit test

• Chi-square test for association

• Analysis of variance for difference in means

• Test for correlation

• Test for a slope/coefficient in a regression model

• Analysis of variance for regression

D.19 Three different drugs are being tested on
patients who have leukemia and the response vari-
able is white blood cell count.

D.20 Three different drugs are being tested on
patientswhoareHIV-positive and the response vari-
able is whether or not the person develops AIDS.

D.21 Data are collected from 50 different towns
on number of wood-burning houses and number of
people with asthma, and the study is investigating
whether there is a linear relationship between the
two.

D.22 The admissions office at a university uses data
from high school transcripts such as number of
honors courses, number of AP courses, grade in
11th grade English, and grade in 9th grade math
to develop a model to predict success in college as
measured by grade point average. They wish to test
the effectiveness of this model.

D.23 Apolling agencyworking in a large city knows
(from census data) the distribution of all city resi-
dents by race. They select a sample of 2000 residents
andwould like to check that the distribution of racial
groups within their sample is not significantly differ-
ent from the proportions in the city as a whole.

D.24 A breakfast cereal company wants to know
how useful the height of the display for that brand is
in the store, in a model predicting sales of the boxes
of cereal based on height of the display, price of the
cereal, width of the aisle in the store, and amount
spent on advertising in that community.

D.25 Ahockey teamwants to determine how effec-
tive a model is to predict winning percentage based
on power-play percentage, penalty-kill percentage,
number of checks per game, face-off win percent-
age, and number of penalties per game.

D.26 A test is being conducted to see if the average
time it takes for a case to go to trial differs between
counties in a state. Seven counties will be included
and the data will include a random sample of 25
cases from each county.

D.27 A test is being conducted to see if the propor-
tion of cases that get settled out of court is differ-
ent between the different counties in a state. Seven
counties will be included and the data will include a
random sample of 60 cases from each county.

D.28 Ford Car Sales Assume you are working as
a statistician for the automotive company Ford.
Ford’s three most popular cars are the Escape
(SUV), the Focus (midsize sedan), and the Fusion
(hybrid sedan). Your boss is putting together next
year’s production numbers and asks you to deter-
mine if any of the three models are selling bet-
ter or worse than the other two. You have the
sales numbers from one month of sales: the Escape
sold 22,274, the Focus 21,385, and the Fusion sold
20,808.8 Perform the necessary test to determine if
sales are significantly different and report the con-
clusion(s) of interest to your boss.

8Sales from The Wall Street Journal for June 2011.
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D.29 Higher SAT Score? One of the variables in
our StudentSurvey dataset is a categorical variable
indicating in which SAT subject the student scored
higher (Math, Verbal, or the same). The results are
in Table D.11. Perform the appropriate test to deter-
mine if the overall number of intro stat students
who score higher on the math section is different
from the number who score higher on the verbal.
(Hint: Ignore ties.)

Table D.11 Higher SAT subject

Math Verbal Same

205 150 7

D.30 Rain in California Amy is interested in mov-
ing to California but isn’t certain which city she’d
prefer. One variable of interest to her is the propor-
tion of rainy days in each city. She took a random
sample of days for each of the four biggest cities in
California (Los Angeles, San Francisco, San Diego,
and San Jose) and recorded the results in Table
D.12.9 If a day contained any precipitation it is con-
sidered a rainy day.

(a) Is the chi-square distribution appropriate for
testing this two-way table?

(b) Perform the appropriate test to determine if
the proportion of rainy days is different among
these four cities.

(c) State your conclusion(s). If there is a significant
difference, which city would you advise Amy to
move to if she does not like rainy days?

Table D.12 Count of rainy days in four
California cities

LA SF SD SJ Total

Rain 4 6 22 3 35
No Rain 21 17 63 20 121

Total 25 23 85 23 156

D.31 Rain in San Diego In Exercise D.30 we
observe that within the random sample of 85 days
the city of San Diego has rainy weather just over
a quarter of the time. Amy is now curious as to
whether there is a rainy season, or if the rainy days
are dispersed evenly throughout the year. She sepa-
rates the 85 days into the four seasons, Spring (Mar–
May), Summer (Jun–Aug), Fall (Sep–Nov), and
Winter (Dec–Feb) and observes rainy day counts as
seen in Table D.13.

9Sample collected from http://www.wunderground.com.

Table D.13 Count of rainy days in four
San Diego seasons

Spring Summer Fall Winter

Rain 5 0 6 11
No Rain 16 22 14 11

(a) Is the chi-square distribution appropriate for
testing this two-way table?

(b) Perform the appropriate test to determine if the
proportion of rainy days is different among the
four seasons.

(c) State your conclusion(s). If there is a significant
difference, when is the rainy season?

D.32 Homes for Sale: Chi-Square Test Throughout
Unit C we examine various relationships between
the variables regarding houses for sale in the dataset
HomesForSale. One topic of repeated interest is
differences between states. We previously only had
the capability to test for a difference between two
states at a time, but we can now test for relation-
ships across all four states at once. Table D.14 shows
the number of smaller (less than 1600 sq. ft.) and
larger houses for each of the four states. Is location
associated with the proportion of smaller houses?
Determine whether conditions are met for a chi-
square test and explain your reasoning. Perform the
appropriate test to see if the proportion of smaller
houses is related to location (states).

Table D.14 Houses for sale in four states

New New
California Jersey York Pennsylvania Total

Larger 15 15 21 17 68
Smaller 15 15 9 13 52
Total 30 30 30 30 120

D.33 Homes for Sale: ANOVA In Exercise C.115
on page 539, we look at differences in average
housing price between two states at a time with
data from HomesForSale. We can now set up an
ANOVA to test and see if there is a difference
between all four states at once. We have a total of
n = 120 homes from the k = 4 states.

(a) What are the null and alternative hypotheses?

(b) What is the degrees of freedom for Groups?

(c) What is the degrees of freedom for Error?

(d) Without looking at the data, which (groups or
error) would you guess has a greater sum of
squares?
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D.34 Checking Conditions for Homes for Sale In
Exercise D.33 we outline and discuss an ANOVA
approach to test for a difference in average hous-
ing price between all four states using the dataset
HomesForSale. Figure D.4 shows one of the sam-
ples, specifically for New York, and Table D.15
shows the mean and standard deviation for each
of the four states. Are the conditions for ANOVA
met? If not, what is the problem or problems?
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Figure D.4 Histogram of sales for New York

Table D.15 Mean housing prices for
four states

State n Mean Std.Dev.

California 30 535.4 269.2
New Jersey 30 328.5 158.0
New York 30 365.3 317.8
Pennsylvania 30 265.6 137.1

D.35 Fiber and Brand in Breakfast CerealData 9.2
on page 633 introduces the dataset Cereal, which
includes information on the number of grams of
fiber in a serving for 30 different breakfast cere-
als. The cereals come from three different compa-
nies: General Mills, Kellogg’s, and Quaker. Use the
fact that SSGroups is 4.96 and SSTotal is 102.47
to conduct an analysis of variance test to deter-
mine whether there is a difference in mean num-
ber of grams of fiber per serving between the
three companies. The conditions for ANOVA are
reasonably met.

D.36 Height and Voice Data were collected on the
heights of singers10 and are summarized and dis-
played below. Does average height differ by voice?

10Chambers, J., Cleveland, W., Kleiner, B., and Tukey P.,Graphi-
cal Methods for Data Analysis, Wadsworth International Group,
Belmont, CA, 1983, p. 350.

mean sd n
alto 64.88571 2.794653 35
bass 70.71795 2.361408 39
soprano 64.25000 1.872737 36
tenor 69.15000 3.216323 20
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(a) State the null and alternative hypotheses.

(b) Are the conditions for using the F-distribution
satisfied? Why or why not?

(c) Complete the ANOVA table given below, and
make a conclusion in context.

Sum of Mean
Source df Sq. Square F-statistic p-value
Groups 1058.5
Error 796.7
Total

D.37 Effect of Color on Performance: In Exer-
cise 8.19 on page 596, we discuss a study investigat-
ing the effect of ink color on performance in an
anagram test. Three different colors were used with
a total of 71 participants. The red group contained
19 participants and they correctly solved an average
of 4.4 anagrams. The 27 participants in the green
group correctly solved an average of 5.7 anagrams
and the 25 participants in the black group correctly
solved an average of 5.9 anagrams. From the anal-
ysis of variance in Exercise 8.19, we see that there
is a significant difference between the groups and
that the mean square error from the ANOVA table
is 0.84.

(a) Find and interpret a 95% confidence interval for
the mean number of anagrams we expect peo-
ple to solve when the ink is red.

(b) Find and interpret a 95% confidence interval for
the difference in mean number of anagrams we
expect people to solve between when the ink is
green and when it is red.

(c) Test whether there is a significant difference in
means between when the ink is red and when it
is black.

D.38 Heat from Laptop Computers and Sperm
Count In Exercise 8.20 on page 596, we conduct
an ANOVA test to see if mean scrotal tempera-
ture increase is different between three different
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conditions. In each condition, males sit with a laptop
computer on the lap. In one condition, they sit with
legs together, in another with legs apart, and in a
third with legs together but a lap pad under the lap-
top. The ANOVA test found a significant difference
in temperature increase between the groups. The
summary statistics are shown in Table D.16 and the
mean square error from the ANOVA table is 0.63.
Conduct tests of all three pairwise comparisons and
summarize the findings.

Table D.16 Scrotal temperature increase
in ∘C with a laptop computer on lap

Condition n Mean Std.Dev.

Legs together 29 2.31 0.96
Lap pad 29 2.18 0.69
Legs apart 29 1.41 0.66

D.39 Cognition Skills Test and Grade Point Aver-
age How closely related are results on short cog-
nitive skills tests and a grade point average over
several years in college? In Data A.1 on page 179,
we introduce the data in SleepStudy. Two of the
variables in that study are CognitionZscore, which
is a standardized z-score derived frommultiple tests
of cognitive skills such as recalling a list of words,
and GPA, grade point average on a 4-point scale.
The sample correlation between these two variables
is r = 0.267 with n = 253. Test to see if there is evi-
dence to show a positive association between these
two variables in the population.

D.40 Happiness and Hours of Sleep Does a good
night’s sleep make you happier? In Data A.1 on
page 179, we introduce the data in SleepStudy. Two
of the variables in that study are Happiness, scores
on a standard happiness scale with higher numbers
indicating greater happiness, and A𝑣erageSleep,
average number of hours slept in a night. The sam-
ple correlation between these two variables is r =
0.104 with n = 253. Test to see if there is evidence to
find a positive association between these two vari-
ables in the population.

D.41 Depression and Missed Classes Is depres-
sion a possible factor in students missing classes?
In Data A.1 on page 179, we introduce the data
in SleepStudy. Two of the variables in that study
are DepressionScore, scores on a standard depres-
sion scale with higher numbers indicating greater
depression, and ClassesMissed, the number of
classes missed during the semester. Computer out-

put is shown for predicting the number of classes
missed based on the depression score.
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1.77712 0.26714 6.652 1.79e-10 ***
DepressionScore 0.08312 0.03368 2.468 0.0142 *

Residual standard error: 3.208 on 251 degrees of freedom
Multiple R-squared: 0.0237, Adjusted R-squared: 0.01981
F-statistic: 6.092 on 1 and 251 DF, p-value: 0.01424

(a) Interpret the slope of the regression line in
context.

(b) Identify the t-statistic and the p-value for testing
the slope.What is the conclusion, at a 5% level?

(c) Interpret R2 in context.

(d) Identify the F-statistic and p-value from the
ANOVA for regression. What is the conclusion
of that test?

D.42 Alcoholic Drinks and Missed Classes Is
drinking alcohol a possible factor in students miss-
ing classes? In Data A.1 on page 179, we introduce
the data in SleepStudy. Two of the variables in that
study are Drinks, the number of alcoholic drinks in
a week, and ClassesMissed, the number of classes
missed during the semester. Computer output is
shown for predicting the number of classes missed
based on the number of drinks.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 1.86444 0.34395 5.421 1.39e-07 ***
Drinks 0.06196 0.04979 1.244 0.215

Residual standard error: 3.237 on 251 degrees of freedom
Multiple R-squared: 0.006131, Adjusted R-squared: 0.002172
F-statistic: 1.548 on 1 and 251 DF, p-value: 0.2145

(a) Interpret the slope of the regression line in
context.

(b) Identify the t-statistic and the p-value for testing
the slope.What is the conclusion, at a 5% level?

(c) Interpret R2 in context.

(d) Identify the F-statistic and p-value from the
ANOVA for regression. What is the conclusion
of that test?

D.43 Checking Conditions for Depression and
Missing Classes In Exercise D.41, we consider a
regression model to use a student’s depression
score to predict the number of classes missed in a
semester. Here we check the conditions for using
that regression model. Three graphs for this model
are shown in Figure D.5: the scatterplot with regres-
sion line, a histogram of the residuals, and a scatter-
plot of residuals against predicted values. Discuss
whether the conditions are met. Be sure to com-
ment on all three graphs.
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(a) Scatterplot with regression line
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(c) Residual vs fits plot
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(b) Histogram of residuals

Figure D.5 Checking conditions for predicting classes missed by depression scores

D.44 Checking Conditions for Alcoholic Drinks
and Missing Classes In Exercise D.42, we consider
a regression model to use the number of alco-
holic drinks a student has in a week to predict the
number of classes missed in a semester. Here we
check the conditions for using that regression
model. Three graphs for this model are shown in
Figure D.6: the scatterplot with regression line, a
histogram of the residuals, and a scatterplot of resid-
uals against predicted values. Discuss whether the
conditions are met. Be sure to comment on all three
graphs.

PREDICTING POINTS SCORED BY A BAS-
KETBALL PLAYER
Using the data in NBAPlayers2019, we can create a
regression model to predict points in a season for an
NBA basketball player based on the number of free
throws made. For our sample data, the number of
free throws made in a season ranges from 1 to 754,
while the number of points ranges from 17 to 2818.
In Exercises D.45 and D.46, use the given informa-
tion and computer output to give the values for each
interval and interpret it in context:

(a) The 95% confidence interval for the mean
response

(b) The 95% prediction interval for the response
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(a) Scatterplot with regression line
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(c) Residual vs fits plot
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(b) Histogram of residuals

Figure D.6 Checking conditions for predicting classes missed by alcoholic drinks

D.45 The intervals given are for a player who
makes 100 free throws in a season:

FTMade Fit SE Fit 95% CI 95% PI
100 750.9 18.21 (715.0, 786.8) (311.1, 1190.7)

D.46 The intervals given are for a player who
makes 400 free throws in a season:

FTMade Fit SE Fit 95% CI 95% PI
400 1841.9 36.29 (1770.3, 1913.5) (1397.8, 2286.1)

D.47 Predicting Grade Point Average The com-
puter output below shows a multiple regression
model to predict grade point average (GPA) using
six variables from the dataset SleepStudy. Gender
is coded 0 for females and 1 for males; ClassYear is
coded 1 for first year, 2 for sophomore, 3 for junior,
and 4 for senior; ClassesMissed is number of classes
missed during the semester; CognitionZscore is a
normalized z-score of results from cognitive skills
tests; DASScore is a combined measure of depres-
sion, anxiety, and stress with higher numbers indi-
cating more depression, anxiety, or stress; Drinks is
the number of alcoholic drinks consumed in a week.
The regression equation is
GPA = 3.49 − 0.0971 Gender − 0.0558 ClassYear

− 0.0146 ClassesMissed + 0.118 CognitionZscore
+ 0.00284 DASScore − 0.0163 Drinks
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Predictor Coef SE Coef T P
Constant 3.48759 0.07497 46.52 0.000
Gender −0.09714 0.05326 −1.82 0.069
ClassYear −0.05583 0.02284 −2.44 0.015
ClassesMissed −0.014613 0.007467 −1.96 0.051
CognitionZscore 0.11837 0.03421 3.46 0.001
DASScore 0.002844 0.001441 1.97 0.049
Drinks −0.016336 0.006241 −2.62 0.009

S = 0.369552 R-Sq = 18.4% R-Sq(adj) = 16.4%

Analysis of Variance
Source DF SS MS F P
Regression 6 7.5925 1.2654 9.27 0.000
Residual Error 246 33.5958 0.1366
Total 252 41.1884

(a) Interpret the coefficients of Gender, ClassYear,
and ClassesMissed in context. Be sure to pay
attention to how the first two variables are
coded.

(b) Use the p-value from the ANOVA test to deter-
mine whether the model is effective.

(c) Interpret R2 in context.

(d) Which explanatory variable is most significant
in the model? Which is least significant?

(e) Which variables are significant at a 5% level?

D.48 Predicting Percent Body Fat Data 10.1 on
page 656 introduces the dataset BodyFat. Com-
puter output is shown for using this sample to create
a multiple regression model to predict percent body
fat using the other nine variables.

The regression equation is
Bodyfat = − 23.7 + 0.0838 Age − 0.0833 Weight + 0.036 Height

+ 0.001 Neck − 0.139 Chest + 1.03 Abdomen + 0.226 Ankle
+ 0.148 Biceps − 2.20 Wrist

Predictor Coef SE Coef T P
Constant −23.66 29.46 −0.80 0.424
Age 0.08378 0.05066 1.65 0.102
Weight −0.08332 0.08471 −0.98 0.328
Height 0.0359 0.2658 0.14 0.893
Neck 0.0011 0.3801 0.00 0.998
Chest −0.1387 0.1609 −0.86 0.391
Abdomen 1.0327 0.1459 7.08 0.000
Ankle 0.2259 0.5417 0.42 0.678
Biceps 0.1483 0.2295 0.65 0.520
Wrist −2.2034 0.8129 −2.71 0.008

S = 4.13552 R-Sq = 75.7% R-Sq(adj) = 73.3%

Analysis of Variance
Source DF SS MS F P
Regression 9 4807.36 534.15 31.23 0.000
Residual Error 90 1539.23 17.10
Total 99 6346.59

(a) Interpret the coefficients of Age and Abdomen
in context. Age is measured in years and Abdo-
men is abdomen circumference in centimeters.

(b) Use the p-value from the ANOVA test to deter-
mine whether the model is effective.

(c) Interpret R2 in context.

(d) Which explanatory variable is most significant
in the model? Which is least significant?

(e) Which variables are significant at a 5% level?

D.49 Exercise, Sex, and GPA The dataset Stu-
dentSurvey, introduced on page 4, contains infor-
mation on hours of Exercise per week and GPA.
Here we use a slightly modified version called
GPAbySex which eliminates missing values (leav-
ing n = 343 students) and codes the sex with 1 for
males and 0 for females in a new CodedSex vari-
able. This allows us to use information on sex in a
regression model.

(a) Test for an association between Exercise and
GPA using the data in GPAbySex. Give the
p-value and make a conclusion in context.

(b) Tests for difference in means reveal that sex
is significantly associated with both GPA and
Exercise (males have lower GPAs and exercise
more on average), so sex may be a confound-
ing variable in the association between Exercise
andGPA. Use multiple regression to determine
whether Exercise is a significant predictor of
GPA, even after accounting for gender as coded
in CodedSex.

D.50 Number of Piercings, SAT Score, and GPA
The dataset GPAbySex, described in Exer-
cise D.49, contains a subset of the StudentSur-
vey data which also has information on total SAT
scores, GPA, and number of Piercings for those
n = 343 students.

(a) Test for an association between number of
Piercings and GPA using the data in GPAby-
Sex. Give the p-value and make a conclusion in
context.

(b) Use multiple regression to test for an associ-
ation between number of Piercings and GPA,
after accounting for SAT score.

D.51 Finding a Model for Percent Body Fat Exer-
cise D.48 shows a multiple regression model to
predict percent body fat using the nine other vari-
ables in the dataset BodyFat. Try to improve on
this model, using a subset of these predictors to
balance the desire to use important individual pre-
dictors with explaining a significant portion of the
variability in body fat. Describe the process you use
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to obtain your model and discuss the merits of your
final choice. (Note: There are a number of reason-
able final models.)

D.52 Finding a Model for Happiness The Sleep-
Study dataset introduced in Data A.1 on page 179
contains many variables measuring different char-
acteristics of the students in the study. One of these
is a Happiness score that includes values from a
minimum of 0 (very unhappy) to a maximum of
35 (extremely happy!). Find a reasonable regression
model to predict Happiness based on some of the
other variables available in the SleepStudy dataset.
Describe the process you use to obtain your model
and discuss the merits of your final choice. (Note:
There are a number of reasonable choices for final
models.)

D.53 Craps! The game of craps is a gambling game
where players place wagers on the sum from the
roll of two six-sided dice.11 One author rolled a
pair of dice 180 times and recorded the results in
Table D.17. He was attempting to make some num-
bers appear more often than they would by random
chance. Use the 180 rolls to test whether he can
defeat random chance, and should thus head to a
craps table! (Hint:You will need to calculate or find
the null proportions for each sum.)

Table D.17 180 craps throws

2 3 4 5 6 7 8 9 10 11 12
5 11 16 13 26 34 19 20 16 13 7

11For complete rules see http://www.crapsrules.org.





THE B I G P I C TURE

ESSENT I A L SYNTHES I S

We began this journey of investigating the power of statistics, way back in
Section 1.1, by classifying variables as either categorical or quantitative. This way
of organizing our thinking remains effective as we briefly summarize the methods
of description and inference discussed on the journey. Before we examine indi-
vidual variables or relationships between variables, however, we revisit again the
important messages of Chapter 1.

Summary: When Is Statistical Inference Appropriate?
Statistical inference is appropriate when we wish to use data from a sample to esti-
mate one or more parameters for a population or to test a hypothesis about one or
more parameters for a population.

Before conducting any inference procedures, we should always stop and think
about the way the data were collected. Statistical inference is only appropriate if we
believe the sample data are representative of the population about which we hope to
make inferences. The best way to ensure that a sample avoids sampling bias and is
representative of a population is to collect a random sample from the population.

In examining relationships between variables, be wary of confounding variables
and remember that the only way to infer a causal association between variables sta-
tistically is through data obtained from a randomized experiment.

We have seen many methods of analysis in this text. The best analysis there
is, however, will not make up for data that is collected in a biased manner. It is
important to reiterate that appropriate data collection is at least as important as
appropriate data analysis.

Summary: The Key Ideas of Inference
As we have seen, data from just a small subset of a population, if collected well, can
be used to give very accurate estimates and make very specific conclusions about
the entire population. We use an understanding of the variability of sample statistics
to estimate how far the true population parameter may be from the sample statistic.
This distance is the margin of error. The sample statistic, together with a margin of
error, give us a confidence interval for a population parameter.

How do we find evidence for a claim about a population? In order to conclude
that a result holds for an entire population, we need the evidence from the sample
to be quite conclusive. This means the evidence has to be strong against the “status
quo” (which we call the null hypothesis) and in support of the claim we are testing.
We determine the strength of this evidence by asking: “How likely is it that sample
results this extreme would happen just by random chance if the null hypothesis were
true?” This is what motivates the important idea of a p-value. If sample results so
extreme are very unlikely to have happened just by random chance, then the p-value
is small and we have strong evidence against the null and in favor of our (alternative
hypothesis) claim.

These key ideas, introduced early in Chapters 3 and 4, have provided the frame-
work for almost everything we have done since then, and they form the foundation
for most of statistical inference.

715
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Summary: Investigating Variables and Relationships
between Variables
We organize the summary by quantitative and categorical variables, and look first
at individual variables and then at relationships between variables. In every case,
we discuss descriptive statistics (graphs and/or summary statistics) and methods
of statistical inference. We hope this brief summary is useful, although be sure to
recognize that it leaves out many details. In particular, when using the theoretical
distributions to conduct statistical inference, we need to make sure that the relevant
conditions are met. See the individual unit summaries for more details.

Analyzing a Single Quantitative Variable
• Descriptive statistics

– Graphical display: dotplot, histogram, boxplot

– Summary statistics: mean, standard deviation, five number summary

• Statistical inference

– Estimating with a confidence interval for a mean (using bootstrap or
t-distribution)

– Testing a hypothesis about a population mean (using randomization or
t-distribution)

Analyzing a Single Categorical Variable
• Descriptive statistics

– Graphical display: bar chart, pie chart

– Summary statistics: frequency, relative frequency, proportion

• Statistical inference if the categorical variable has one particular category of inter-
est

– Estimating with a confidence interval for a proportion (using bootstrap or nor-
mal distribution)

– Testing a hypothesis about a population proportion (using randomization or
normal distribution)

• Statistical inference if the categorical variable has more than two categories of
interest

– Testing a hypothesis about population proportions using chi-square goodness-
of-fit test

Analyzing a Relationship between One Categorical Variable
and One Quantitative Variable
• Descriptive statistics

– Graphical display: side-by-side boxplots, dotplots, or histograms

– Summary statistics: statistics for the quantitative variable within each category,
difference in means

• Statistical inference if the categorical variable has two relevant categories

– Estimating a confidence interval for a difference in population means (using
bootstrap or t-distribution)

– Testing a hypothesis about a difference in population means (using randomiza-
tion or t-distribution)
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• Statistical inference if the categorical variable has more than two categories

– Testing a hypothesis about several population means using ANOVA for differ-
ence in means

– Intervals and tests for means and differences in pairs of means after ANOVA

Analyzing a Relationship between Two Categorical Variables
• Descriptive statistics

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table, row proportions, column proportions, dif-
ference in proportions

• Statistical inference if both categorical variables have two relevant categories

– Estimating a confidence interval for a difference in population proportions
(using bootstrap or normal distribution)

– Testing a hypothesis about a difference in population proportions (using ran-
domization or normal distribution)

• Statistical inference if either categorical variable has more than two categories

– Testing a hypothesis about a relationship using chi-square test for association

Analyzing a Relationship between Two Quantitative Variables
• Descriptive statistics

– Graphical display: scatterplot

– Summary statistics: correlation, regression line

• Statistical inference

– Estimation

* Estimating a confidence interval for the population correlation (using boot-
strap or t-distribution)

* Estimating a confidence interval for the population slope of the population
regression line (using bootstrap or t-distribution)

* Estimating the response variable at one value of the explanatory variable
(using confidence interval for mean response or prediction interval for indi-
vidual responses)

– Testing

* Testing a hypothesis about the population correlation (using randomization
or t-distribution)

* Testing a hypothesis about the population slope for a regression line (using
randomization or t-distribution)

* Testing the effectiveness of the regression model using analysis of variance
for regression

Analyzing Relationships between More Than Two Variables
• Data Visualization!

• Multiple regression!

As we said at the start of this book, “We are being inundated with data… The
people who are able to analyze this information are going to have great jobs and are
going to be valuable in virtually every field. One of the wonderful things about statis-
tics is that it is relevant in so many areas. Whatever your focus and your future career
plans, it is likely that you will need statistical knowledge to make smart decisions in
your field and in everyday life.” We finish with an example of such an application in
the final case study. We hope this journey we have taken together has helped you
understand the power of data!
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Case Study: Speed Dating

Marmaduke St. John/Alamy Stock Photo

Speed Dating

D A T A E . 1 Speed Dating
Between 2002 and 2004, a series of speed dating experiments were conducted
at Columbia University.15 ,16 Participants were students at Columbia’s graduate
and professional schools, recruited by mass email, posted fliers, and fliers
handed out by research assistants. Each participant attended one speed dating
session, in which they met with each participant of the opposite sex for four
minutes. Order and session assignments were randomly determined. After each
four-minute “speed date,” participants filled out a form rating their date on a
scale of 1 to 10 on the attributes Attractive, Sincere, Intelligent, Fun, Ambitious,
and SharedInterests. They also made a Decision indicating whether they would
like to see the date partner again, rated how much they Like the partner overall,
and answered how likely they think it is that the partner will say yes to them,
PartnerYes. The data are stored in SpeedDating. Each row is a date, and each
variable name is followed by either anM, indicating male answers, or an F,
indicating female answers. In other words, each case includes answers from
both parties involved in the date. To avoid dependencies in the data, we only
look at data from the first dating round of each session, giving n = 276 dates.17

We also have data on Age and Race. ◼

These data can help us gain insights into the mysterious world of dating! How
likely is it that a pair will both like each other enough to want a second date? Are
people more likely to want a second date with someone they think is interested in
them?With someone who actually is interested in them? Do opinions of dates differ
by race/ethnicity? How much is romantic interest reciprocated? Can we predict how
much a male will like a female based on howmuch the female likes the male?Which

15Fisman, R., Iyengar, S., Kamenica, E., and Simonson, I., “Gender differences in mate selection: Evi-
dence from a speed dating experiment,” Quarterly Journal of Economics, 2006; 121(2): 673–697.
16Gelman, A. and Hill, J.,Data Analysis using Regression andMultilevel/Hierarchical Models, Cambridge
University Press, New York, 2007.
17Many of the techniques we have used in this book assume independence of the cases. If we were to
include multiple dates for each individual, this assumption would be violated.
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attributes are most helpful for predicting how much someone likes his or her date
overall? Does the answer to this question differ by sex? We’ll explore all of these
questions in this section.

Example E.1
Thinking critically about the data

The following are questions you should always ask yourself before jumping into data
analysis.

(a) What are the cases?

(b) What are the variables, and is each categorical or quantitative?

(c) What is the sample? To what population would you like to make inferences?
What population is more realistic?

(d) What are some ways in which your sample may differ from your ideal popula-
tion? From your more realistic population?

(e) Do these data allow for possible conclusions about causality? Why or why not?

Solution (a) The cases are first dates during the speed dating experiment.

(b) Categorical variables are whether a person wants to see his or her partner again
(DecisionM, DecisionF) and race (RaceM, RaceF). Quantitative variables are
how much a person likes the partner (LikeM, LikeF), how likely they think it
is that the partner will say yes to them (PartnerYesM, PartnerYesF), age (AgeM,
AgeF), and the 1-10 ratings for each of the six attributes.

(c) The sample is the 276 first-round speed dates on which we have data. The ideal
population would be all first speed dates, or even all first dates. A more realistic
population may be all first-round heterosexual speed dates between graduate or
professional students at prestigious urban American universities.

(d) Regular first dates allow much more time to get to know the other person
than speed dates. Speed dates between graduate and professional students at
Columbia may involve different types of people than typical speed dates. Some
students may participate in this speed dating in the context of the research
experiment, but would not participate otherwise. Because this wasn’t a random
sample from the population, there may be other forms of sampling bias that we
are not aware of.

(e) No. This was an observational study. Although the pairings were randomized,
none of the variables were, and for causal conclusions the explanatory variable
must be randomly determined.

Example E.2
How likely is a match?

A match is declared if both the male and the female want a second date. Of the
276 speed dates, 63 resulted in matches. Create a 95% confidence interval for the
population proportion of matches using:

(a) Bootstrapping and the percentile method

(b) Bootstrapping and Statistic ± 2 × SE
(c) The normal distribution and the relevant formula for the standard error

Solution (a) Using StatKey or other technology, we create the bootstrap distribution for a
single proportion, shown in Figure E.1. Keeping only the middle 95% of boot-
strap statistics, our 95% confidence interval for the proportion of matches is
(0.181, 0.279).
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Figure E.1 Bootstrap
distribution for
proportion of matches
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(b) We calculate the sample statistic to be p̂ = 63∕276 = 0.228. We find the stan-
dard error as the standard deviation of the bootstrap distribution, SE = 0.025.
Therefore our 95% confidence interval for the proportion of matches is

Statistic ± 2 × SE = 0.228 ± 2 × 0.025 = (0.178, 0.278)

(c) The formula for the standard error for a sample proportion is

SE =
√

p̂(1 − p̂)
n

=
√

0.228(1 − 0.228)
276

= 0.025

A 95% confidence interval for the proportion of matches using z∗ = 1.96 from a
normal distribution is

p̂ ± z∗ ⋅ SE = 0.228 ± 1.96 × 0.025 = (0.179, 0.277)

Notice that however you decide to create a confidence interval, you get approxi-
mately the same answer. In all cases, the generated confidence interval is interpreted
the same: We are 95% confident that the proportion of matches among first-round
speed dates between graduate or professional students at prestigious urban Ameri-
can universities is between 0.18 and 0.28.

Example E.3 Do people tend to want a second date with people they think will also want a second
date?

Each person was asked “How probable do you think it is that this person will say
‘yes’ for you? (0 = not probable, 10 = extremely probable),” with answers stored in
PartnerYesM and PartnerYesF.18 Is the perception of the likelihood of a return yes
from a partner higher for males who want a second date than for males who don’t?
(When dating, should you be obviously “into” your dating partner?)

18The sample sizes in this example are slightly lower than in other examples because of some missing
values for PartnerYesM and PartnerYesF.
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(a) Create the relevant visualization for this relationship.

(b) Calculate the relevant summary statistic(s).

(c) State the relevant hypotheses, use a randomization test to generate a p-value,
and make a conclusion in context.

(d) Repeat (b) and (c), but for females rather than males, and using a theoretical
distribution and formula rather than a randomization test.

Solution (a) We are comparing one “yes/no” categorical variable,DecisionM, with one quan-
titative assessment of the partner’s inclination, PartnerYesM, and so visualize
with side-by-side boxplots, as shown in Figure E.2. When comparing the box-
plots, we see that the PartnerYesM values tend to be higher for those where the
male says “yes”.

Figure E.2 Perceived
chance of a return yes
(PartnerYesM) by male
decision (DecisionM)
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(b) The relevant statistics are the mean PartnerYesM score for two groups, the males
who said “yes” and those who said “no,” and the difference between those two
means. The sample mean PartnerYesM score among males who said yes to their
dates is xyes = 6.5, and among males who said no to their dates is xno = 4.9, so
the sample difference in means is xyes − xno = 1.6.

(c) The null and alternative hypotheses are

H0 ∶ 𝜇yes = 𝜇no

Ha ∶ 𝜇yes > 𝜇no

Using StatKey or other technology we create a randomization distribution such
as the one shown in Figure E.3. In those 1000 randomization samples there
were no statistics even close to as extreme as the observed sample statistic of
xyes − xno = 1.6, so the p-value ≈ 0. There is very strong evidence that males are
more optimistic about getting a return “yes” from females they say “yes” to than
those they choose not to date again. Females, perhaps playing hard to get may
not be the best strategy to get a return date, at least in speed dating.

(d) The relevant statistics are the mean PartnerYesF score for two groups, the
females who said “yes” and those who said “no,” and the difference between
those two means. The sample mean PartnerYesF score among females who said
yes to their dates is xyes = 6.68, and among females who said no to their dates is
xno = 5.11, so the sample difference in means is xyes − xno = 1.57.
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Figure E.3
Randomization
distribution
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The hypotheses are the same as (c), although pertaining to females instead
of males. The t-statistic is

t = Statistic −Null
SE

=
(xyes − xno) − 0√

s2yes
nyes

+ s2no
nno

= 6.68 − 5.11√
1.922

126
+ 2.242

146

= 1.57
0.25

= 6.28

We find the area above t = 6.28 in a t-distribution with 125 df to be approxi-
mately 0, so the p-value ≈ 0. There is very strong evidence that females are more
optimistic about getting a return “yes” from males they say “yes” to than those
they choose not to date again. Males, perhaps playing hard to get may not be the
best strategy to get a return date, at least in speed dating.

Example E.4 Do people tend to want a second date with people who actually also want a second
date?

In Example E.3 we see that males and females say yes more often to dates they think
will say yes back. Do they also say yes more often to dates that actually say yes back?
Table E.1 provides counts on the number of females and males who say yes or no to
each other.

(a) Visualize the relationship between whether or not the male says yes and whether
or not the female says yes, and comment on what you see.

Table E.1 Male and female decisions on
whether they want a second date

Second Date? Female Yes Female No

Male Yes 63 83
Male No 64 66
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Figure E.4 Male yes/no
answers by female yes/no
answers

80
60

40
20

0
C

o
un

t

No Yes

Female Decision

Side-by-Side Bar Chart

Male Decision
No
Yes

(b) Calculate the sample difference in proportions: proportion of male yes answers
to females who say yes back minus proportion of male yes answers to females
who say no back. (Note that there are several other interesting differences in
proportions you could also calculate from this table.)

(c) Perform a hypothesis test to see if the proportion of male yes answers is signifi-
cantly different between answers to females who say yes and answers to females
who say no.

Solution (a) This is a relationship between two categorical variables, which we can visualize
with a side-by-side bar chart, shown in Figure E.4. In this sample males say yes
about half the time to girls who say yes back, and say yes more than half the
time to girls who say no. This is quite interesting! Although in Example E.3 we
found males say yes more often to girls they think will say yes back, here we see
that they say yes more often to girls who actually say no back (at least in this
sample).

(b) The sample difference in proportions is

63
63 + 64

− 83
83 + 66

= 0.496 − 0.557 = −0.061

(c) Let pFyes and pFno denote the proportion of male yes answers to females who
say yes and no back, respectively. Our hypotheses are

H0 ∶ pFyes = pFno
Ha ∶ pFyes ≠ pFno

We can use StatKey or other technology to create a randomization distribu-
tion, shown in Figure E.5. The proportion of randomization statistics less than or
equal to the observed sample difference in proportions of −0.061 is 0.155, which
we double because of the two-sided alternative for a p-value of 0.155 ⋅ 2 = 0.31.

Because the counts are large enough, we could also use formulas and the
normal distribution to obtain a p-value. The pooled proportion of male yes
answers is

p̂ = 63 + 83
63 + 64 + 83 + 66

= 0.529

so the standard error is

SE =

√
p̂(1 − p̂)
nFyes

+
p̂(1 − p̂)
nFno

=
√

0.529(1 − 0.529)
127

+ 0.529(1 − 0.529)
149

= 0.0603

The z-statistic is then

z = Statistic −Null
SE

= −0.061 − 0
0.0603

= −1.01
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Figure E.5
Randomization
distribution
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The area below z = −1.01 in a normal distribution is 0.156, which we double
because of the two-sided alternative for a p-value of 2 ⋅ 0.156 = 0.312. This is
very similar to the p-value obtained by the randomization test.

The p-value is not small, so we do not have sufficient evidence against the
null hypothesis. From these data we cannot determine whether males are more
or less likely to say yes to females who say yes back.

Example E.5
Do opinions of partners differ by race?

Participants rated how much they like their partner overall, on a scale of 1 to 10
(1 = don’t like at all, 10 = like a lot), in the variables LikeM and LikeF. The sample
mean, sample standard deviation, and sample size19 are given in Tables E.2 and E.3
by the race of the rater, along with the proportion of “yes” decisions.

(a) Does how much males like their partners differ by race/ethnicity of the rater?
Use technology and the data in SpeedDating to construct the appropriate visu-
alization, conduct the appropriate test, and make a conclusion in context.

Table E.2 Male responses to females, by race of the male raters

MALES Asian Black Caucasian Latino Other Overall

x 6.61 6.44 6.66 6.94 6.95 6.68
s 1.85 1.74 1.78 1.68 1.77 1.78
p̂ 0.59 0.56 0.50 0.59 0.57 0.53
n 64 9 161 17 21 272

19The sample size after excluding cases with missing values for Like or Race.
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Table E.3 Female responses to males, by race of the female raters

FEMALES Asian Black Caucasian Latino Other Overall

x 6.47 7.36 6.27 6.02 6.6 6.37
s 1.66 1.28 1.77 1.96 1.88 1.76
p̂ 0.50 0.57 0.42 0.48 0.53 0.46
n 70 14 146 23 15 268

(b) Does the proportion of females who say yes to their partners differ by
race/ethnicity of the female? Construct the appropriate visualization, conduct
the appropriate test, and make a conclusion in context.

Solution (a) This is exploring the relationship between a quantitative variable, LikeM, and
a categorical variable, RaceM, which we visualize with side-by-side boxplots, as
shown in Figure E.6. We see that the boxplots all have the same median (7) and
are mostly symmetric with only a few mild outliers.

Figure E.6 Male Like
ratings of females, by
race of the male Asian
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Because race has more than two categories, we use analysis of variance
for difference in means to conduct our hypothesis test. The sample standard
deviations are approximately equal, and the distributions appear to be roughly
symmetric, so we can proceed with the F-distribution. Computer output is given
below:

Df Sum Sq Mean Sq F value Pr(>F)
RaceM 4 3.6 0.893 0.278 0.892
Residuals 267 856.2 3.207

The p-value of 0.892 indicates that the differences between races are not signif-
icant, so we cannot determine from these data whether mean LikeM differs by
race/ethnicity of the rater.

(b) This is exploring the relationship between two categorical variables, DecisionF
and RaceF, which we can visualize with side-by-side bar charts, as shown in
Figure E.7.

Because we are interested in a relationship between two categorical vari-
ables, one of which has multiple categories, we use a chi-square test for associa-
tion. We first create the relevant two-way table, Table E.4, based on the informa-
tion in Table E.3 (using p̂ ⋅ n to find the number of yes answers for each group)
or using technology and the data in SpeedDating.

To perform the chi-square test, we could calculate the expected count for
each cell using (Ro𝑤 total)(Column total)

Total
, and then calculate the 𝜒2 statistic using

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected
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Figure E.7 Proportion of
females who want a
second date, by race of
the female
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Table E.4 Counts for females who want or do not want a second date, by race

FEMALES Asian Black Caucasian Latino Other Total

Yes 35 8 62 11 8 124
No 35 6 84 12 7 144

Total 70 14 146 23 15 268

and compare this to a 𝜒
2-distribution with (2 − 1) ⋅ (5 − 1) = 4 degrees of free-

dom to find the p-value. Instead, we simply use a computer to calculate this
𝜒
2-statistic and p-value for us:

Pearson’s Chi-squared test

data: table(DecisionF, RaceF)
X-squared = 2.2308, df = 4, p-value = 0.6934

The p-value of 0.6934 does not provide enough evidence to reject the null. We
cannot determine whether the proportions of females who say yes to their dates
differ by race/ethnicity of the females.

Example E.6
Predicting a partner’s opinion

How well can you predict a male’s overall rating of a female, LikeM, based on the
female’s overall rating of the male, LikeF?

(a) Use technology to fit the appropriate model, and comment on pieces of the out-
put relevant to answering the question.

(b) Suppose you are a female participating in speed dating and you really like one
male, whom you gave a 10 (out of 10) for LikeF. Naturally, you want to predict
how much this male likes you! Use the model from part (a) to give a prediction,
and also generate and interpret a prediction interval.

Solution (a) We fit the simple linear regression model ̂LikeM = 𝛽0 + 𝛽1 ⋅ LikeF + 𝜖. Some
computer output is given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 5.61417 0.40305 13.93 < 2e-16 ***
LikeF 0.16781 0.06103 2.75 0.00637 **
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Residual standard error: 1.763 on 269 degrees of freedom
(5 observations deleted due to missingness)

Multiple R-squared: 0.02734, Adjusted R-squared: 0.02373
F-statistic: 7.562 on 1 and 269 DF, p-value: 0.006366

Figure E.8 Scatterplot of
female rating of male
against male rating of
female for each date
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The scatterplot with this regression line overlaid is shown in Figure E.8. It’s a
litle difficult to read the scatterplot since many of the integer ratings overlap at
the same point.

The low p-value of 0.006 (either from the test for slope or ANOVA) indi-
cates a significant association between LikeF and LikeM. Knowing how much
a female likes a male helps to predict how much the male will like the female.
However, the low R2 value of 2.7% indicates that only 2.7% of the variability in
LikeM can be explained by LikeF. Unfortunately, this is what makes romance
so hard! There are many factors which contribute to whether a male likes a
female, and sadly how much the female likes him back is only a small part of the
equation (at least initially).

(b) The predicted value for LikeM when LikeF = 10 is ̂LikeM= 5.61+ 0.168 ⋅ 10
= 7.29. (The average for all males is 6.68, so this is slightly above average.)
Using technology, we find the 95% prediction interval is (3.8, 10.8). In fact, the
upper bound doesn’t even make sense (the max score is 10). This interval is
very wide and so not very informative, but it tells us that we are 95% confident
that the male will give you a score between 3.8 and 10. However, looking at the
scatterplot, we see that in our sample of males to which females gave a 10 (the
right-most column of data points), no scores below 6 were given. Remember
that a prediction interval is based on the assumption of equal variability,
although in this case the variability seems to be greater for less extreme values
of LikeF, which would give an interval that is slightly too wide for extreme
values of LikeF such as 10.

Example E.7
Which attributes are most important for romantic interest?

Each participant rated each partner on a scale of 1 to 10 on the attributesAttractive,
Sincere, Intelligent, Fun, Ambitious, and SharedInterests. Which of these attributes
are most helpful for predicting how much each person likes his or her partner
overall? Answer this question separately for males and females, and compare the
results.
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Solution We have multiple explanatory variables and one response variable, so we fit a mul-
tiple regression model. First, some output from the model for males (males rating
females) is given below:

Response: LikeM
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) −0.175578 0.430784 −0.408 0.683965
AttractiveM 0.551738 0.054138 10.191 < 2e-16 ***
SincereM 0.188545 0.058899 3.201 0.001563 **
IntelligentM −0.006483 0.075537 −0.086 0.931678
FunM 0.174910 0.055365 3.159 0.001795 **
AmbitiousM −0.055786 0.055317 −1.008 0.314292
SharedInterestsM 0.151640 0.039938 3.797 0.000188 ***

Residual standard error: 1.075 on 229 degrees of freedom
(40 observations deleted due to missingness)

Multiple R-squared: 0.6563, Adjusted R-squared: 0.6473
F-statistic: 72.89 on 6 and 229 DF, p-value: < 2.2e-16

The attractiveness rating is by far the most significant in the model. Besides attrac-
tiveness, how sincere and fun the partner is perceived to be, as well as the extent to
which interests are shared, all seem to be helpful in this model for predicting how
much a male likes a female overall.

Similar output, but this time for females rating males, is given below:

Response: LikeF
Coefficients:

Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.06755 0.44106 0.153 0.8784
AttractiveF 0.28156 0.04476 6.290 1.58e-09 ***
SincereF 0.08820 0.05122 1.722 0.0864
IntelligentF 0.16064 0.06617 2.428 0.0160 *
FunF 0.24523 0.05009 4.896 1.84e-06 ***
AmbitiousF −0.01628 0.04910 −0.332 0.7405
SharedInterestsF 0.20264 0.03907 5.186 4.71e-07 ***

Residual standard error: 1.095 on 230 degrees of freedom
(39 observations deleted due to missingness)

Multiple R-squared: 0.6223, Adjusted R-squared: 0.6125
F-statistic: 63.16 on 6 and 230 DF, p-value: < 2.2e-16

As with males, attractiveness rating is the most significant explanatory variable. For
females, both shared interests and fun are also extremely significant. Intelligence is
significant with a p-value of 0.016 (this was nowhere near significant for males), and
sincerity is moderately significant with a p-value of 0.086.

Attractiveness, fun, and shared interests are very helpful in predicting romantic
interest for both males and females. For males rating females, sincerity is also signifi-
cant, while for females rating males, intelligence is significant. Keep in mind that just
because variables are insignificant in the multiple regression model does not mean
they are not important predictors individually. In fact, if you were to do a test for
correlation between Ambitious and Like for either males or females (try it!), you
would find that both correlations are positive and extremely significant.

It’s important to keep in mind the limitations with these data—always think
about how the data were collected when making conclusions! These are speed dates,
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and while it is easy to judge someone’s physical attractiveness in four minutes, it is
much more difficult to judge attributes such as ambition, sincerity, intelligence, etc.
Recognize that these results can only be generalized to speed dating, not dating in
general!

Also, if you have learned nothing else from this course, we hope you have
learned that observational data cannot be used to draw conclusions about causality!
Just because coefficients for Attracti𝑣e, Sincere, and SharedInterests are positive and
significant in both models does not necessarily imply that becoming more attrac-
tive, sincere, or having interests in common with the person you are speed dating
will raise the Like score. Perhaps the relationship actually works in reverse; maybe
if someone really likes a partner (for whatever reason), he or she tends to see that
person as more attractive, sincere, etc.

There are many other interesting questions to be asked and answered from this
SpeedDating data, and you now have the knowledge and tools to answer them on
your own! Do women prefer older men? Do men prefer younger women? Are peo-
ple of the same race more likely to result in a match? Are males or females more
selective? How are the attributes correlated with each other? For example, is attrac-
tiveness positively or negatively correlated with intelligence? Is this relationship
significant? You can make up your own questions and answer them. At this stage,
having completed an entire course in statistics, all you need is appropriately col-
lected data in order to answer many questions you may have, whether they pertain
to dating, your academic field of interest, your health, your future job, or almost
anything else!

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Unlock the power of data!

Exercises for the Big Picture: Essential Synthesis

AMERICAN COMMUNITY SURVEY
The American Community Survey,20 administered
by the US Census Bureau, is given every year to
a random sample of about 3.5 million households
(about 3% of all US households). It has been cru-
cial for government and policy decisions, and helps
to determine how over 400 billion dollars of gov-
ernment funds are distributed each year. Data on a
random sample of 1% of all US residents are made
public (after ensuring anonymity), and we have
selected a random sub-sample of n = 2000 from the
2017 data, stored in ACS.21 Exercises E.1 to E.10
pertain to this dataset.

20http://www.census.gov/acs.
21We have selected a small subset of cases and variables to
work with. Information from the full survey can be found at
https://www.census.gov/programs-surveys/acs/data/pums.html

E.1 Random Sample Daniel Webster, a first-term
Republican congressman from Florida, sponsored
legislation in 2012 to eliminate the American Com-
munity Survey. Part of his reasoning was that
“…this is not a scientific survey. It’s a random sur-
vey.” As you know, and as was pointed out by many,
including this quote in the New York Times,22 “the
randomness of the survey is precisely what makes
the survey scientific.” Write a short letter to Con-
gressman Daniel Webster explaining this concept to
him.

22See, for example, Rampell, C., “The Beginning of the End
of the Census,” http://www.nytimes.com/2012/05/20/sunday-
review/the-debate-over-the-american-community-survey
.html?_r=4&emc=eta1, May 19, 2012.
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E.2 Margin of Error The US Census Bureau pro-
vides a document23 to assist people with statistical
inference using the data from the American Com-
munity Survey. Below is an excerpt from this docu-
ment for the 2017 ACS. Use the information given
to fill in the value that goes in the two blanks.

Add and subtract 1.645 times the stan-
dard error of the estimate to yield the
lower and upper bounds of a ___%
confidence interval around the estimate
(EST).

LB = Lower bound =
EST − 1.645 ∗ SE(EST)

UB = Upper bound =
EST + 1.645 ∗ SE(EST)

The ___% confidence interval is the inter-
val (LB, UB).

E.3 What Percentage of Americans Have Health
Insurance? In our sample of 2000 people, 1825 have
health insurance and 175 do not.

(a) Use bootstrapping to generate a 90% confi-
dence interval for the proportion of US resi-
dents who do not have health insurance.

(b) Use the appropriate formula and distribution to
calculate a 90% confidence interval for the pro-
portion of US residents who do not have health
insurance. How does this answer compare to
your answer from part (a)?

(c) Interpret your answer to either (a) or (b) in con-
text.

(d) What is the sample statistic and corresponding
margin of error in part (b)?

(e) We can also use the website https://www.census.
gov/acs/www/data/data-tables-and-tools/ to find
the sample statistic and corresponding margin
of error based on the entire American Com-
munity Survey sample. There we find p̂ = 0.087
with a margin of error of 0.001 (for 90% confi-
dence). Why is this margin of error so different
from the one you computed in (d)?

(f) Use the information given in (e) to generate
and interpret a 90% confidence interval for the
proportion of US residents who do not have
health insurance, based on the entire American
Community Survey sample.

23https://www2.census.gov/programs-surveys/acs/tech_docs/pums/
accuracy/2017AccuracyPUMS.pdf?#

E.4 What Proportion of US Adults Are Married?
The Married variable in ACS codes whether each
respondent is married (1) or not (0). All 2000 of the
respondents in our sample are at least 15 years of
age and will be considered as adults.

(a) In the ACS dataset, the proportion of people
who are married is 0.52. Generate and interpret
a 90% confidence interval for the proportion of
US adults aged 15 and older who are married.

(b) While the American Community Survey sur-
veys a sample of US residents every year, the
decennial census surveys the entire US popu-
lation every 10 years. The American Commu-
nity Survey has been conducted in some form
yearly since 1850, and the decennial census has
been conducted in years ending in “0” since
1790, meaning that there have been 17 years of
overlap. Suppose we were to use the ACS from
each of these 17 years to create a 90% confi-
dence interval for the proportion of people aged
15 and older in the US who were married (as
of that year). If there were no sampling bias
and everyone responded to the census, approx-
imately how many of these intervals do you
think would have contained the true proportion
of married adults as obtained by the census?

(c) Based on the 2000 census, 54.5% of people aged
15 and older in theUSweremarried in 2000. Do
the data from our ACS sub-sample provide sig-
nificant evidence that the proportion of people
aged 15 and older in the US who were married
in 2017 is different than in 2000?

E.5 Income and Sex The dataset EmployedACS
contains just the subset of people in the dataset
ACS who were employed (n = 1287). Income gives
each person’s wages or salary income in the past 12
months (in thousands of dollars), and Sex is coded
with 1 for males, 0 for females.

(a) Produce a plot of the distribution of yearly
income for US residents and comment on the
distribution.

(b) Give relevant summary statistics for the yearly
income for US residents.

(c) Produce a plot showing the relationship
between Income and Sex and comment on what
you see.

(d) Summarize the relationship between Income
and Sex with appropriate summary statistics.

(e) Does theEmployedACS dataset provide signifi-
cant evidence that average yearly income differs
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for employed males and females in the US?
State hypotheses, use a randomization test to
calculate a p-value, and make a conclusion in
context.

E.6 Working Hours and Sex The dataset
EmployedACS contains just the subset of people
in the dataset ACS who were employed (n = 1287),
and includes HoursWk, the usual number of hours
worked per week in the past 12 months.

(a) Produce a plot to examine the relationship
between HoursWk and Sex (coded as 1 = male,
0 = female). Comment on what the plot shows.

(b) Summarize the relationship between HoursWk
and Sex with appropriate summary statistics.

(c) Does the EmployedACS dataset provide signif-
icant evidence that employed males work more
hours per week, on average, than employed
females in the US? State hypotheses, use the
appropriate formula and distribution to cal-
culate a p-value, and make a conclusion in
context.

E.7 Health Insurance and Race Of the n = 2000
people in ACS, 1520 are White, 199 are Black, 129
are Asian, and 152 are other races. The sample
proportion of people who have health insurance
for each racial group are p̂

𝑤hite = 0.9257, p̂black =
0.8945, p̂asian = 0.9147, and p̂other = 0.8026.

(a) Create the two-way table for counts of health
insurance status by race.

(b) Produce a graph to visualize the relationship
between health insurance status and race.

(c) Is there a significant association between
whether or not a person has health insurance
and race? State hypotheses, calculate a p-value,
and make a conclusion in context.

E.8 Age and Race

(a) Use the ACS dataset to create a plot for the
overall age distribution in the US, and comment
on the distribution.

(b) Give and interpret a 95% confidence interval
for the average age of a US resident.

(c) Create a plot for the age distribution in the US
by racial group, and comment on what you see.

(d) Does average age differ by racial group in the
US? State hypotheses, calculate a p-value, and
make a conclusion in context. Some relevant
sample statistics are given:

Race mean sd n
asian 42.97 17.50 129
black 46.07 18.42 199
other 40.46 16.93 152
white 49.81 19.55 1520

(e) After doing the analysis in (d), give a 95% con-
fidence interval for the average age of an Asian
US resident. How does this compare to your
answer for all US residents from (b)?

E.9 Income and Hours Worked Answer the fol-
lowing questions using EmployedACS, a subset of
ACS that only includes people who are employed.

(a) Construct a graph to visualize the relationship
between HoursWk and Income. Comment on
what you see.

(b) Is there a significant positive association
between hours worked per week and yearly
income?

(c) Fit a regression model regressing Income
on HoursWk. What is the fitted prediction
equation?

(d) What is the predicted salary for someone who
typically works a 40-hour work week?

(e) How much of the variability in yearly income is
explained by the number of hours worked per
week?

(f) Are the conditions met for performing infer-
ence based on this regression model?

E.10 Income, Hours per Week, and Sex In
Exercise E.5 we find that males have a higher aver-
age yearly income than females, in Exercise E.6 we
find that males work more hours per week than
females, on average, and in Exercise E.9 we find
that people who work more hours per week make
a higher yearly income. Using the EmployedACS
dataset:

(a) Explain why HoursWk is a confounding vari-
able in the relationship between Income and
Sex.

(b) Use multiple regression to see if Sex is a signifi-
cant predictor of Income, even after accounting
for the number of hours worked per week.

(c) What is the predicted yearly income for a male
who works 40 hours per week? For a female
who works 40 hours per week? What is the dif-
ference?
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Interval for a Proportion Test for a Proportion Chi-Square Goodness of Fit
Interval for a Mean Test for a Mean Chi-Square Test for Association
Interval for Difference in

Proportions
Test for Difference in

Proportions
ANOVA for Difference in

Means
Interval for Difference in Means Test for Difference in Means Simple Linear Regression
Interval for Correlation Test for Correlation Multiple Regression

WHICHMETHOD?
We have learned a lot of methods in this course,
some of which are given above. In Exercises E.11 to
E.27, state which statistical method would be most
appropriate for the given question or situation.

E.11 Anthropologists have found two burial
mounds in the same region. They know that sev-
eral different tribes lived in the region and that the
tribes have been classified according to different
lengths of skulls. They measure the skulls found in
each burial mound and wish to determine if the two
mounds were made by different tribes.

E.12 The Hawaiian Planters Association is devel-
oping three new strains of pineapple (call them A,
B, and C) to yield pulp with higher sugar content.
Twenty plants of each variety (60 plants in all) are
randomly distributed into a two acre field. After
harvesting, the resulting pineapples are measured
for sugar content and the yields are recorded for
each strain. Are there significant differences in aver-
age sugar content between the three strains?

E.13 Researchers were commissioned by the Vio-
lence In Children’s Television Investigative Moni-
tors (VICTIM) to study the frequency of depictions
of violent acts in Saturday morning TV fare. They
selected a random sample of 40 shows which aired
during this time period over a 12-week period. Sup-
pose that 28 of the 40 shows in the sample were
judged to contain scenes depicting overtly violent
acts. How should they use this information to make
a statement about the population of all Saturday
morning TV shows?

E.14 The Career Planning Office is interested in
seniors’ plans and how they might relate to their
majors. A large number of students are surveyed
and classified according to their major (Natural Sci-
ence, Social Science, Humanities) and future plans
(Graduate School, Job, Undecided). Are the type of
major and future plans related?

E.15 Every week during the Vietnam War, a body
count (number of enemy killed) was reported by
each army unit. The last digits of these numbers
should be fairly random. However, suspicions arose
that the counts might have been fabricated. To test

this, a large random sample of body count figures
was examined and the frequency with which the
last digit was a 0 or a 5 was recorded. Psycholo-
gists have shown that people making up their own
“random” numbers will use these digits less often
than random chance would suggest (i.e., 103 sounds
like a more“real” count than 100). If the data were
authentic counts, the proportion of numbers ending
in 0 or 5 should be about 0.20. Do these data show
evidence of fabrication?

E.16 In one of his adventures, Sherlock Holmes
found footprints made by the criminal at the scene
of a crime and measured the distance between
them. After sampling many people, measuring
their height and length of stride, he confidently
announced that he could predict the height of the
suspect. How?

E.17 Do people drive less (fewer miles) when gas
prices are higher?

E.18 How many times a day do humans urinate, on
average?

E.19 Is there an association between whether or
not a person is smiling and whether or not the sun
is shining?

E.20 Does average number of ounces of alcohol
consumed each week, per person, differ by class
year (First Year, Sophomore, Junior, Senior) among
college students?

E.21 What percentage of Americans support same-
sex marriage?

E.22 Is percentage of the national budget spent
on health care associated with life expectancy for
countries?

E.23 Common wisdom says that every dog year
corresponds to 7 human years, so the human equiv-
alent maturity level of a dog can be found by mul-
tiplying a dog’s age by 7. If the human maturity age
of many dogs were measured by dog experts, along
with their true age, how would the number 7 be
determined?

E.24 A student wants to predict his score on the
MCAT exam (which was revised to include sta-
tistical concepts in 2015) and wants to use all
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information available to him. He has anonymous
data on MCAT exam scores from previous students
at his school, as well as data on each student’s GPA,
number of science/math courses, and whether or not
the person graduated with honors.

E.25 People were recruited for a study on weight
loss, in which participants were randomly assigned
to one of four groups. Group 1 was given exercise
instructions but no dietary instructions, group 2 was
given dietary instructions but no exercise instruc-
tions, group 3 was given both exercise and dietary
instructions, and group 4 was given neither exercise
nor dietary instructions. The researchers have many
questions, but one goal is to estimate how much
more weight was lost on average by people who
were given exercise instructions, as opposed to
those who weren’t.

E.26 Ultimate Frisbee games often begin by flip-
ping two discs (tossing them as you would when
flipping a coin), while someone calls “Same” (both

face up or both face down) or “Different” (one face
up, one face down). Whichever team wins gets to
decide whether to start on offense or defense, or
which side to start on (which may matter if it is
windy). It would be advantageous to know if one
choice is more likely, so a team decides to spend
a practice repeating this flipping of the discs many
times, each time recording same or different. Once
the data are collected, they want to know whether
they have learned anything significant.

E.27 One of the authors of this book used to be a
professional figure skater. For her project when she
took introductory statistics (from another author of
this book), she was interested in which of two jumps
she landed more consistently. She did 50 double
loops (landed 47 successfully) and 50 double flips
(landed 48 successfully), and wanted to determine
whether this was enough evidence to conclude that
she had a higher success rate with one jump than
the other.
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C H A P T E R P

Probability
Basics

“Probability theory is nothing but common sense reduced to calculation.”

–Pierre-Simon Laplace∗

The material in this chapter is independent of the other chapters and
can be covered at any point in a course.

∗Pierre-Simon Laplace, Théorie Analytique des Probabilités, Ve. Courcier, Paris, 1814.
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P.2 Tree Diagrams and Bayes’ Rule 748

P.3 Random Variables and Probability
Functions 755

P.4 Binomial Probabilities 762

P.5 Density Curves and the Normal
Distribution 770

Here are some of the questions and issues we will discuss in this chapter:

• If a driver is involved in an accident, what is the chance he or she is under 25 years old?

• How does an insurance company estimate average losses to help price its policies?

• What percent of players in the Hockey Hall of Fame are Canadian?

• What percent of Americans are color-blind?

• If a man in the US lives until his 60th birthday, what is the probability that he lives to be at least 90
years old?

• Are changes in the stock market independent from day to day?

• If a person has a positive tuberculosis test, what is the probability that the person actually has
tuberculosis?

• How do filters identify spam emails and text messages?

• What is the probability that Stephen Curry of the Golden State Warriors makes two free throws
in a row?

• What percent of housing units in the US have only one person living there?

735
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P.1PROBABILITY RULES

A process is random if its outcome is uncertain. For example, when we flip a coin,
it is not known beforehand whether the coin will land heads or tails. Nevertheless,
if we flip a coin over and over and over again, the distribution is predictable: We
can expect that it will land heads about 50% of the time and tails about 50% of the
time. Given some random process, the probability of an event (e.g., a coin flip comes
up heads, a cancer patient survives more than five years, a poker hand contains all
hearts) is the long run frequency or proportion of times the event would occur if the
process were repeated many, many times.

Probability

The probability of an event is the long run frequency or proportion of
times the event occurs.

Probabilities are always between 0 and 1.

Throughout this book we often take advantage of computer technology to
estimate probabilities by simulating many occurrences of a random process and
counting how often the event occurs. In some situations we can determine a probabi-
lity theoretically. In this chapter we examine some theoretical methods to compute
probabilities for single events or combinations of events.

Equally Likely Outcomes
The easiest case to handle is when the process consists of selecting one outcome,
at random, from a fixed set of equally likely possible outcomes. For example, a fair
coin flip represents an equally likely choice between two outcomes, heads and tails.
Rolling a standard six-sided die gives a random selection from the outcomes 1, 2, 3,
4, 5, and 6. Putting the names of all students in your class in a hat, then drawing one
out to select a student to solve a homework problem is a random process that fits
this “equally likely outcomes” description.

For any single outcome, the probability of it occurring in such a random pro-
cess is just 1∕n, where n is the number of possible outcomes. In many situations
we are interested in combinations of several outcomes, for example, the result of
a die roll is an even number or the sex of the student chosen to solve a problem
is female. We call such a combination of one or more outcomes an event. When
the outcomes are equally likely, we can easily find the probability of any event as a
proportion:

Probabilities When Outcomes Are Equally Likely

When outcomes are equally likely, we have

Probability of an event = P(e𝑣ent) = Number of outcomes in the event
Total number of outcomes
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We use the notation P( ) as a shorthand for the “probability of” whatever
event is described inside the parentheses. For example, when flipping a fair coin,
P(Heads) = 1∕2.

Example P.1
Pick a Card

Suppose that we start with a standard deck of 52 playing cards. Each card shows
one of four suits (spades, hearts, diamonds, or clubs) and one of 13 denominations
(ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king). We shuffle the cards and draw one at
random. What is the probability that the card:

(a) Is a heart?

(b) Is a jack?

(c) Is the jack of hearts?

(d) Is a face card (jack, queen, or king) of any suit?

Solution Since the deck contains 52 cards and we are selecting one at random, we just need
to count how many cards satisfy each of these events and divide by 52 to get the
probability.

(a) There are 13 hearts in the deck (one of each denomination) so P(Heart) =
13∕52 = 1∕4.

(b) There are 4 jacks in the deck (one of each suit) so P(Jack) = 4∕52 = 1∕13.
(c) There is only 1 jack of hearts in the deck, so P(Jack of Hearts) = 1∕52.
(d) There are 12 face cards in the deck (4 jacks, 4 queens, and 4 kings) so

P(Face Card) = 12∕52.

In other random processes we have outcomes that are not equally likely. For
example, if we toss a tack onto a flat surface, it might land with the point up or
with the point down, but these outcomes may not be equally likely. We could esti-
mate P(Point Up) by tossing a tack many times, but it would be difficult to derive
this probability theoretically (without a deep understanding of the physics of tack
tossing). Similarly, we might be interested in the probability that a basketball player
makes a free throw, a stock goes up in price, or a surgical procedure relieves a symp-
tom. In each case we could observe many trials and estimate the probability of the
event occurring.

In other situations we may talk about the probability of an event, even though
repeated trials are not feasible. You might wonder, what’s the probability that I get
an A in this course? Or what’s the probability that it rains tomorrow? You might
have a reasonable estimate for the chance of getting an A in a course, even if it’s
impractical to take the course many times to see how often you get an A. We often
refer to such probabilities as subjective or personal probabilities.

Combinations of Events
Outcomes in events can be combined in various ways to form new events. For
example, we might be interested in the probability that two events occur simultane-
ously, at least one of the two events occurs, an event does not occur, or one of the
events occurs if the other one occurs. The next example illustrates several of these
possibilities.
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Example P.2
Sex and the US Senate

The United States Senate consists of two senators for each of the 50 states. Table P.1
shows a breakdown of the party affiliation (by caucus) and sex of the 100 senators
who were in office on October 9, 2019.

If we were to select one senator at random from the 2019 US Senate, what is the
probability that senator is:

(a) A woman?

(b) A Republican?

(c) A Republican woman?

(d) A woman if we know the senator is a Republican?

(e) A Republican if we know the senator is a woman?

(f) Either a woman or a Republican (or both)?

Table P.1 Sex and party caucus in the 2019
US Senate

Democrat Republican Total

Female 17 8 25
Male 30 45 75

Total 47 53 100

Solution Since we are choosing at random, we can find each of these probabilities by comput-
ing a proportion.

(a) There are 25 women out of the 100 senators, so the probability of selecting a
woman is 25∕100 = 0.25.

(b) There are 53 Republicans out of the 100 senators, so the probability of selecting
a Republican is 53∕100 = 0.53.

(c) There are only 8 senators who are both female and Republican, so the probabil-
ity of selecting a Republican woman is 8∕100 = 0.08.

(d) If we know the senator is a Republican, there are 53 possible choices. Of these
53, we see that 8 are women, so the probability of selecting a woman if the sen-
ator is a Republican is 8∕53 = 0.15.

(e) If we know the senator is a woman, there are only 25 possible choices. Of these
25, we see that 8 are Republicans, so the probability of selecting a Republican if
the senator is a woman is 8∕25 = 0.32.

(f) There are 17 + 8 + 45 = 70 senators who are either women or Republicans, so
the probability of selecting a woman or a Republican is 70∕100 = 0.70.

The questions and answers such as those in Example P.2 can be difficult to
discuss in ordinary prose. Phrases such as “Republican woman,” “Republican or
woman,” and “Republican if she is a woman” are easily confused with each other.
To help us express relationships involving probabilities, we often assign a letter to
denote the event of interest. For example, we might let F and M denote the sex
of the randomly chosen senator and use D or R to denote the party affiliation.
Based on the results of Example P.2, we have P(F) = 0.25 and P(R) = 0.53. More



P.1 Probability Rules 739

Table P.2 Common combinations of events

Notation Meaning Terminology

A and B The event must satisfy both conditions. joint or intersection
A or B The event can satisfy either of the two conditions (or both). union
not A The event A does not happen. complement
B ifA The event B happens if A also happens. conditional

complicated expressions typically involve one of four basic operations shown in
Table P.2.

Example P.3
Let F orM denote the sex of the randomly chosen senator and label the party caucus
with R or D. Write each of the events described in parts (c) to (f) of Example P.2 as
probability expressions.

Solution (c) A Republican woman ⇒ P(R and F).
(d) A woman if the senator is a Republican ⇒ P(F if R).
(e) A Republican if the senator is a woman ⇒ P(R if F).
(f) Either a woman or a Republican ⇒ P(F or R).

The various methods for combining events are shown schematically in
Figure P.1, where the desired probability is the shaded area as a fraction of the
box with a heavy border. For each of these combinations, we have rules to help us
compute the probability based on other probabilities.

Figure P.1 Common
combinations of events

A

B

(d) A if B

A

B

(e) B if A

A

B

(a) A and B

A

B

(b) A or B

A

(c) not A

Complement Rule
If an event A occurs on 1∕3 of all trials, P(A) = 1∕3, then it does not occur on the
other 2∕3 of the trials. This reasoning leads to the obvious rule for the complement
of an event:

P(not A) = 1 − P(A)

Example P.4
If we draw a single card at random from a standard deck, what’s the probability it’s
not a face card?
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Solution In Example P.1 we see that P(Face Card) = 12∕52, so P(not Face Card) = 1 −
12∕52 = 40∕52. We could also have counted how many non-face cards are in the
deck and divided by 52 to get this probability directly, but sometimes it is much
easier or more convenient to count how often something doesn’t happen than to
count how often it happens.

Additive Rule
In part (f) of Example P.2 we see that the probability a randomly chosen senator
is either a woman or a Republican, P(F or R), is 0.68. Note that this is not just the
sum of P(F) = 0.20 and P(R) = 0.54. The reason is that the six female senators who
are also Republicans are double counted if we compute P(F) + P(R) = 0.20 + 0.54 =
0.74. To adjust the sum to avoid the double count, we can subtract the overlap. This
gives the additive rule for the probability that an event A or an event B occurs:

P(A or B) = P(A) + P(B) − P(A and B)

For a senator being a woman or a Republican this means

P(F or R) = P(F) + P(R) − P(F and R)
= 0.20 + 0.54 + 0.06

= 0.68

Example P.5
ICU Admissions

Suppose that 35% of all patients admitted to a hospital’s intensive care unit have
high blood pressure, 42% have some sort of infection, and 12% have both prob-
lems.1 Find the probability that a randomly chosen patient in this ICU has either
high blood pressure or an infection.

Solution Let HBP = high blood pressure and INF = infection. From the given information we
have P(HBP) = 0.35, P(INF) = 0.42, and P(HBP and INF) = 0.12. We need to find
the chance of high blood pressure or infection, P(HBP or INF). Applying the addi-
tive rule gives

P(HBP or INF) = P(HBP) + P(INF) − P(HBP and INF)
= 0.35 + 0.42 − 0.12

= 0.65

Special Case: Disjoint Events
If two events have no outcomes in common, we say they are disjoint. For

example, it’s impossible for a standard playing card to be both a jack and a seven.
Therefore the events “jack” and “seven” are disjoint, as are “spade” and “heart,”
while “ace” and “spade” are not disjoint events. If events A and B have no outcomes
in common, P(A and B) must be zero—they both can’t happen at the same time.
This leads to a special case of the additive rule:

P(A or B) = P(A) + P(B) whenever A and B are disjoint

1Probabilities estimated from the data in ICUAdmissions.
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Conditional Probability
Part (d) of Example P.2 on page 738 asks for the probability of an event (senator is
female) when we assume that some other event (senator is a Republican) has also
occurred. This is known as a conditional probability. Note that in computing this
probability we divide the count of female Republican senators (6) by the number
of Republican senators (54), not the total number of senators. This same reasoning
applies if we have probabilities for the events rather than counts, that is, we divide
the probability of both occurring, P(R and F), by the probability of the condition,
P(R). In general, to find the conditional probability of an event B occurring if A
occurs, we use

P(B if A) = P(A and B)
P(A)

For the US senators this means the probability that a Republican senator is a
woman is

P(F if R) = P(R and F)
P(R)

= 0.08
0.53

= 0.15

Be careful to distinguish properly between the event you want the probability of and
the event that determines the condition. For example, part (e) of Example P.2 asks
for the probability that a female senator is Republican. This would be

P(R if F) = P(F and R)
P(F)

= 0.08
0.25

= 0.32

Example P.6
Refer to the probabilities of high blood pressure given in Example P.5. Find the
probability that a patient admitted to the ICU:

(a) With high blood pressure also has an infection.

(b) Has high blood pressure if an infection is present.

Solution From information in Example P.5 we have P(HBP) = 0.35, P(INF) = 0.42, and
P(HBP and INF) = 0.12.

(a) The conditional probability of infection given that the patient has high blood
pressure is

P(INF ifHBP) = P(HBP and INF)
P(HBP)

= 0.12
0.35

= 0.343

(b) The conditional probability of high blood pressure given that the patient has an
infection is

P(HBP if INF) = P(HBP and INF)
P(INF)

= 0.12
0.42

= 0.286

Multiplicative Rule
In some situations it is more natural or convenient to start with information on
conditional probabilities and use it to find the joint probability of two events. To
do so we merely rearrange the conditional probability rule to get the multiplicative
rule:

P(B if A) = P(A and B)
P(A)

⇒ P(A and B) = P(A) ⋅ P(B if A)
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Thus to find the probability that both A and B occur, we find the probability of A
occurring and multiply by the chance that B occurs if A does.

Example P.7
Suppose that we draw two cards (without replacement) from a standard 52 card
deck. What is the probability that both the first and second cards are aces?

Solution LetA1 andA2 be the respective events that the first and second cards are aces. From
Example P.1 we know that P(A1) = 4∕52. If the first card drawn is an ace, there are
3 aces remaining in 51 cards of the deck, so the probability the next card is also an
ace is P(A2 if A1) = 3∕51. The probability that both cards are aces is

P(A1 and A2) = P(A1) ⋅ P(A2 if A1) =
4
52

⋅
3
51

= 0.0045

Example P.8
Suppose that 37% of the students in an introductory statistics course are athletes on
one of the school’s sports teams. When asked to pick which award they would prefer
to win, 5% of the athletes chose an Academy Award, 22% picked a Nobel Prize,
and 73% wanted an Olympic Gold. Among non-athletes, the percentages were
15% for the Academy Award, 54% for the Nobel Prize, and 31% for the Olympic
Gold. If we pick a student at random from this class, what is the probability that
we get:

(a) An athlete who wants an Olympic Gold

(b) A non-athlete who wants an Academy Award

Solution We know that P(Athlete) = 0.37 and P(Non-athlete) = 1 − 0.37 = 0.63. The other
information gives conditional probabilities of the various awards (AA, NP, OG),
given the status of athlete or non-athlete:

(a) P(OG and Athlete) = P(Athlete) ⋅ P(OG if Athlete) = 0.37 ⋅ 0.73 = 0.27.

(b) P(AA and Non-athlete) = P(Non-athlete) ⋅ P(AA if Non-athlete) = 0.63 ⋅ 0.15 =
0.095.

Special Case: Independent Events
Notice in Example P.8 that the probabilities for the awards depend on the ath-

letic status of the students. In some special circumstances, as the next example illus-
trates, the conditional probabilities don’t depend on the condition.

Example P.9
Suppose that we draw a single card from a standard deck and are told the card is a
queen. What is the probability that the card is also a heart?

Solution We need to compute

P(Heart ifQueen) = P(Heart and Queen)
P(Queen)

=
1∕52
4∕52

= 1
4

Notice that the answer P(Heart ifQueen) = 1∕4 is the same as P(Heart) by itself
without the condition. In fact, if we were told any other denomination (say a “seven”
or an “ace”) for the selected card, the probability it is a heart remains 1∕4. When



P.1 Probability Rules 743

this happens, we say the events “Heart” and “Queen” are independent. The formal
definition is

Events A and B are independent whenever P(B if A) = P(B)

In many circumstances we can infer independence from the way the outcomes are
determined. For example, if we select a card from the deck, record its suit, put it
back in the deck, shuffle, and select a card at random, the suit of the second card is
independent of the first. Thus if we choose two cards with replacement, the chance
both are hearts is

P(H1 and H2) = P(H1) ⋅ P(H2 ifH1) = P(H1) ⋅ P(H2) =
1
4
⋅
1
4
= 1

16

This shows a special form of the multiplicative rule.

P(A and B) = P(A) ⋅ P(B) whenever A and B are independent

Example P.10
Traffic Lights

Suppose that a set of three traffic lights along one section of road operate indepen-
dently (i.e., no communication or special timing between the lights). Since this is a
fairly main road, the lights are green with a probability of 0.7 and red with probabil-
ity 0.3. As you go through this stretch of road, find the probability that:

(a) All three lights are green.

(b) The first two lights are green but the third is red.

(c) At least one of the lights is red.

Solution Since the lights operate independently, we can apply the special case of the mul-
tiplicative rule to find the probability of any sequence of red and green lights by
multiplying the probabilities for the individual lights:

(a) P(G1 and G2 and G3) = P(G1)P(G2)P(G3) = 0.7 ⋅ 0.7 ⋅ 0.7 = 0.343.

(b) P(G1 and G2 and R3) = P(G1)P(G2)P(R3) = 0.7 ⋅ 0.7 ⋅ 0.3 = 0.147.

(c) Note that “at least one red” is the same as “not all green,” so by the
complement rule and the result of part (a), we have P(At least one red) =
1 − P(All three green) = 1 − 0.343 = 0.657.

It is easy to confuse the concepts of “disjoint” events and “independent” events, but
they are very different. If A and B are disjoint, when A occurs we know that B can’t
possibly also occur on the same trial. However, if A and B are independent, when A
occurs it doesn’t change at all the probability that B occurs on the same trial. Thus,
independent events need common outcomes and disjoint events can’t have any.

Example P.11
In Exercise P.5, we learn that for one Intensive Care Unit, 35% of admitted patients
have high blood pressure (HPB), 42% have an infection (INF), and 12% have both
problems. Are the two events HPB and INF:

(a) Disjoint?

(b) Independent?
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Solution (a) Events A and B are disjoint if they cannot happen at the same time, whichmeans
P(A and B) = 0. In this case, HPB and INF can occur simultaneously, and in fact
these events do occur together in 12% of patients. We have P(HPB and INF) =
0.12. These events are not disjoint.

(b) Events A and B are independent if knowing one gives us no information
about the other. In symbols, this means P(A and B) = P(A) ⋅ P(B). In this case,
we see that P(HPB) ⋅ P(INF) = 0.35 ⋅ 0.42 = 0.147. Since this does not equal
P(HPB and INF) = 0.12, the events are not independent. (We could also have
used the conditional probabilities of Example P.6 to answer this question.)

Basic Probability Rules: Summary

If A and B represent any two events:

Complement: P(not A) = 1 − P(A)
Additive: P(A or B) = P(A) + P(B) − P(A and B)
Multiplicative: P(A and B) = P(A) ⋅ P(B if A)

Conditional: P(B if A) = P(A and B)
P(A)

Special cases:
If A and B are disjoint: P(A or B) = P(A) + P(B)
If A and B are independent: P(A and B) = P(A) ⋅ P(B)

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute the probability of events if outcomes are equally likely

• Identify when a probability question is asking for A and B, A or B, not
A, or A if B

• Use the complement, additive, multiplicative, and conditional rules to
compute probabilities of events

• Recognize when two events are disjoint and when two events are inde-
pendent

Exercises for Section P.1

SKILL BUILDER 1
In Exercises P.1 to P.7, use the information that, for
events A andB, we haveP(A) = 0.4,P(B) = 0.3, and
P(A and B) = 0.1.

P.1 Find P(not A).
P.2 Find P(not B).
P.3 Find P(A or B).
P.4 Find P(A if B).

P.5 Find P(B if A).
P.6 Are events A and B disjoint?

P.7 Are events A and B independent?

SKILL BUILDER 2
In Exercises P.8 to P.14, use the information that, for
events A andB, we haveP(A) = 0.8,P(B) = 0.4, and
P(A and B) = 0.25.

P.8 Find P(not A).



P.1 Probability Rules 745

P.9 Find P(not B).
P.10 Find P(A or B).
P.11 Find P(A if B).
P.12 Find P(B if A).
P.13 Are events A and B disjoint?

P.14 Are events A and B independent?

SKILL BUILDER 3
In Exercises P.15 to P.18, use the fact that we have
independent events A and B with P(A) = 0.7 and
P(B) = 0.6.

P.15 Find P(A if B).
P.16 Find P(B if A).
P.17 Find P(A and B).
P.18 Find P(A or B).

SKILL BUILDER 4
Table P.3 gives probabilities for various combina-
tions of events A, B, and their complements. Use
the information from this table in Exercises P.19
to P.26.

P.19 Find P(A).
P.20 Find P(not B).
P.21 Find P(A and B).
P.22 Find P(A or B).
P.23 Find P(A if B).
P.24 Find P(B if A).
P.25 Are events A and B disjoint?

P.26 Are events A and B independent?

Table P.3 Probability of being in
each cell of a two-way table

A not A

B 0.2 0.4
not B 0.1 0.3

DISJOINT, INDEPENDENT, AND
COMPLEMENT
For Exercises P.27 to P.30, state whether the two
events (A and B) described are disjoint, indepen-
dent, and/or complements. (It is possible that the
two events fall into more than one of the three cat-
egories, or none of them.)

P.27 Draw three skittles (possible colors: yellow,
green, red, purple, and orange) from a bag. Let A
be the event that all three skittles are green and B
be the event that at least one skittle is red.

P.28 South Africa plays Australia for the champi-
onship in the Rugby World Cup. Let A be the event

that Australia wins and B be the event that South
Africa wins. (The game cannot end in a tie.)

P.29 South Africa plays Australia for the cham-
pionship in the Rugby World Cup. At the same
time, Poland plays Russia for theWorld TeamChess
Championship. Let A be the event that Australia
wins their rugby match and B be the event that
Poland wins their chess match.

P.30 Roll two (six-sided) dice. Let A be the event
that the first die is a 3 and B be the event that the
sum of the two dice is 8.

P.31 Explain What Is Wrong Each of the following
statements demonstrate a common misuse of prob-
ability. Explain what is wrong with each statement:

(a) Approximately 10% of adults are left-handed.
So, if we take a simple random sample of 10
adults, 1 of them will be left-handed.

(b) A pitch in baseball can be called a ball or a strike
or canbehit by thebatter.As there are threepos-
sible outcomes, the probability of each is 1∕3.

(c) The probability that a die lands with a 1 face up
is 1∕6. So, since rolls of the die are independent,
the probability that two consecutive rolls land
with a 1 face up is 1∕6 + 1∕6 = 1∕3.

(d) The probability of surviving a heart attack is
2.35.

P.32 Studio and Genre of Movies About 20% of
movies coming out of Hollywood are comedies,
Warner Bros has been the lead studio for about
10.5% of recent movies, and about 2.5% of recent
movies are comedies from Warner Bros.2 Let C
denote the event a movie is a comedy andW denote
the event a movie is produced by Warner Bros.

(a) Write probability expressions for each of the
three facts given in the first sentence of the
exercise.

(b) What is the probability that a movie is either a
comedy or produced by Warner Bros?

(c) What is the probability that a Warner Bros
movie is a comedy?

(d) What is the probability that a comedy has
Warner Bros as its producer?

(e) What is the probability that a movie coming out
of Hollywood is not a comedy?

(f) In terms of movies, what would it mean to say
that C and W are disjoint events? Are they dis-
joint events?

2Probabilities based on data fromHollywoodMovies.



746 CHA P T E R P Probability Basics

(g) In terms of movies, what would it mean to say
that C andW are independent events? Are they
independent events?

P.33 Rock and Roll Hall of Fame From its founding
through 2019, the Rock and Roll Hall of Fame has
inducted 329 groups or individuals.3 Table P.4 shows
how many of the inductees have been female or
have included female members and also shows how
many of the inductees have been performers. (The
full dataset is available in RockandRoll2019.) Let-
ting F represent the event of having female mem-
bers (or being a female) andMP represent the event
of being a (music) performer, write each of the fol-
lowing questions as a probability expression and
find the probability.

What is the probability that an inductee chosen
at random:

(a) Is a performer?

(b) Does not have any female members?

(c) Has female members if it is a performer?

(d) Is not a performer if it has no female members?

(e) Is a performer with no female members?

(f) Is either not a performer or has female mem-
bers?

Table P.4 Members of the Rock and Roll Hall
of Fame

Female No female
members members Total

Performer 43 187 230
Not performer 9 90 99

Total 52 277 329

P.34 Hockey Hall of Fame From its founding
through 2019, the Hockey Hall of Fame has
inducted 281 players.4 Table P.5 shows the number
of players by place of birth and by position played.
If a player is chosen at random from all player
inductees into theHockeyHall of Fame, letC repre-
sent the event of being born in Canada andD repre-
sent the event of being a defenseman. Write each of
the following questions as a probability expression
and find the probability.

3Rock and Roll Hall of Fame website: http://www.rockhall.com/
inductees.
4Hockey Hall of Fame website: http://www.hhof.com.

Table P.5 Hockey Hall of Fame by place of
birth and position

Offense Defense Goal Total

Canada 133 75 34 242
USA 8 5 1 14
Europe 13 6 3 22
Other 2 1 0 3

Total 156 87 38 281

(a) What is the probability that an inductee chosen
at random is Canadian?

(b) What is the probability that an inductee chosen
at random is not a defenseman?

(c) What is the probability that a player chosen at
random is a defenseman born in Canada?

(d) What is the probability that a player cho-
sen at random is either born in Canada or a
defenseman?

(e) What is the probability that a Canadian
inductee plays defense?

(f) What is the probability that an inductee who
plays defense is Canadian?

P.35 Peanut M&M’s In a bag of peanut M&M’s,
there are 80 M&M’s, with 11 red ones, 12 orange
ones, 20 blue ones, 11 green ones, 18 yellow ones,
and 8 brown ones. They are mixed up so that each
candy piece is equally likely to be selected if we pick
one.

(a) If we select one at random, what is the proba-
bility that it is red?

(b) If we select one at random, what is the proba-
bility that it is not blue?

(c) If we select one at random, what is the proba-
bility that it is red or orange?

(d) If we select one at random, then put it back, mix
themupwell (so the selections are independent)
and select another one, what is the probability
that both the first and second ones are blue?

(e) If we select one, keep it, and then select a sec-
ond one, what is the probability that the first
one is red and the second one is green?

P.36 More Peanut M&M’s As in Exercise P.35, we
have a bag of peanut M&M’s with 80 M&M’s in it,
and there are 11 red ones, 12 orange ones, 20 blue
ones, 11 green ones, 18 yellow ones, and 8 brown
ones. They are mixed up so that each is equally
likely to be selected if we pick one.

(a) If we select one at random, what is the proba-
bility that it is yellow?
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(b) If we select one at random, what is the proba-
bility that it is not brown?

(c) If we select one at random, what is the proba-
bility that it is blue or green?

(d) If we select one at random, then put it back,
mix them up well (so the selections are inde-
pendent) and select another one, what is the
probability that both the first and second ones
are red?

(e) If we select one, keep it, and then select a sec-
ond one, what is the probability that the first
one is yellow and the second one is blue?

P.37 Free ThrowsDuring the 2015–16 NBA season,
Stephen Curry of the Golden State Warriors had
a free throw shooting percentage of 0.908. Assume
that the probability Stephen Curry makes any given
free throw is fixed at 0.908, and that free throws are
independent.

(a) If Stephen Curry shoots two free throws, what
is the probability that he makes both of them?

(b) If Stephen Curry shoots two free throws, what
is the probability that he misses both of them?

(c) If Stephen Curry shoots two free throws, what
is the probability that he makes exactly one of
them?

P.38 Color Blindness in Men and Women The most
common form of color blindness is an inability to
distinguish red from green. However, this particu-
lar form of color blindness is much more common
in men than in women (this is because the genes
corresponding to the red and green receptors are
located on the X-chromosome). Approximately 7%
of American men and 0.4% of American women
are red-green color-blind.5

(a) If an American male is selected at random,
what is the probability that he is red-green
color-blind?

(b) If an American female is selected at random,
what is the probability that she is NOT red-
green color-blind?

(c) If one man and one woman are selected at ran-
dom, what is the probability that neither are
red-green color-blind?

(d) If one man and one woman are selected at ran-
dom, what is the probability that at least one of
them is red-green color-blind?

5Montgomery, G., “Color Blindness: More Prevalent Among
Males,” in Seeing, Hearing, and Smelling the World, http://www.
hhmi.org/senses/b130.html, accessed April 27, 2012.

P.39 More Color Blindness in Men and Women
Approximately 7% of men and 0.4% of women are
red-green color-blind (as in Exercise P.38). Assume
that a statistics class has 15 men and 25 women.

(a) What is the probability that nobody in the class
is red-green color-blind?

(b) What is the probability that at least one person
in the class is red-green color-blind?

(c) If a student from the class is selected at random,
what is the probability that he or she will be red-
green color-blind?

P.40 Probabilities of Death The US Social Secu-
rity Administration collects information on the
life expectancy and death rates of the popula-
tion. Table P.6 gives the number of US men out of
100,000 born alive who will survive to a given age,
based on 2011 mortality rates.6

For example, 50,344 of 100,000 US males live to
their 80th birthday.

(a) What is the probability that a man lives to
age 60?

(b) What is the probability that a man dies before
age 70?

(c) What is the probability that a man dies at age 90
(after his 90th and before his 91st birthday)?

(d) If a man lives until his 90th birthday, what is the
probability that he will die at the age of 90?

(e) If a man lives until his 80th birthday, what is the
probability that he will die at the age of 90?

(f) What is the probability that a man dies between
the ages of 60 and 89?

(g) If a man lives until his 60th birthday, what is the
probability that he lives to be at least 90 years
old?

Table P.6 Life Table for US males, 2011

Age 60 70 80 90 91

Number of lives 85,995 73,548 50,344 17,429 14,493

P.41 Is the Stock Market Independent? The Stan-
dard and Poor 500 (S&P 500) is a weighted average
of the stocks for 500 large companies in the United
States. It is commonly used as ameasure of the over-
all performance of the US stock market. Between
January 1, 2009 and January 1, 2012, the S&P 500
increased for 423 of the 756 days that the stock mar-
ket was open. We will investigate whether changes

6Period Life Table 2011, http://www.ssa.gov/oact/STATS/table4c6
.html, accessed May 30, 2016.
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to the S&P 500 are independent from day to day.
This is important, because if changes are not inde-
pendent, we should be able to use the performance
on the current day to help predict performance on
the next day.

(a) What is the probability that the S&P 500
increased on a randomly selected market day
between January 1, 2009 and January 1, 2012?

(b) If we assume that daily changes to the S&P
500 are independent, what is the probability
that the S&P 500 increases for two consecutive
days? What is the probability that the S&P 500
increases on a day, given that it increased the
day before?

(c) Between January 1, 2009 and January 1, 2012
the S&P 500 increased on two consecutive

market days 234 times out of a possible 755.
Based on this information, what is the probabil-
ity that the S&P 500 increases for two consecu-
tive days? What is the probability that the S&P
500 increases on a day, given that it increased
the day before?

(d) Compare your answers to part (b) and part (c).
Do you think that this analysis proves that daily
changes to the S&P 500 are not independent?

P.42 Pancakes A friend makes three pancakes for
breakfast. One of the pancakes is burned on both
sides, one is burned on only one side, and the other
is not burned on either side. You are served one of
the pancakes at random, and the side facing you is
burned. What is the probability that the other side
is burned? (Hint:Use conditional probability.)

P.2TREE DIAGRAMS AND BAYES’ RULE

Example P.12
Automobile Accident Rates

According to data from the US Census Bureau’s 2012 Statistical Abstract, the prob-
ability a young person (under the age of 25) is involved as a driver in an automobile
accident during a given year is about 0.16. For a driver whose age is in the middle (25
to 54 years old), the probability drops to 0.08 and for older drivers (55 and older)
the rate is about 0.04.7 The US Census also tells us that about 13.2% of all licensed
drivers are young, 35.6% are between 25 and 54, and the remaining 51.2% are older.
What is the overall probability that a licensed driver has an accident during the year?

Solution If we let Y, M, and O represent the age groups (young, middle, and old) and A be
the event that a driver has an accident, the given information states that

P(A if Y) = 0.16 P(A ifM) = 0.08 P(A ifO) = 0.04

P(Y) = 0.132 P(M) = 0.356 P(O) = 0.512

We need to find P(A).
Using the multiplicative rule we can find the probability of having an accident

and being in each of the respective age groups:

P(A and Y) = P(Y) ⋅ P(A if Y) = 0.132 ⋅ 0.16 = 0.0211

P(A andM) = P(M) ⋅ P(A ifM) = 0.356 ⋅ 0.08 = 0.0285

P(A and O) = P(O) ⋅ P(A ifO) = 0.512 ⋅ 0.04 = 0.0205

Since the three age groups are disjoint and cover all possible ages, we get the overall
probability of an accident, P(A), by adding these three results:

P(A) = P(A and Y) + P(A andM) + P(A and O)
= 0.0211 + 0.0285 + 0.0205

= 0.0701

The probability a licensed driver has an accident during the year is about 0.0701, or
about a 7% chance.

7Based on accident rates given in the US Census Bureau’s 2012 Statistical Abstract, Table 1114, down-
loaded at http://www.census.gov/compendia/statab/cats/transportation/motor_vehicle_accidents_and
_fatalities.html.
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Total Probability
The last calculation of Example P.12 involves finding the probability of an event
(A) by adding the probabilities that it occurs along with each of a set of disjoint
events (Y, M, and O). This is an example of the total probability rule. As long as
the disjoint events include all the possible outcomes in the event of interest we can
find its probability this way. In particular, we can always use an event, A, and its
complement, not A, as a pair of disjoint events to help find the probability of some
other event. Depending on the types of probabilities we have, this can be done with
joint probabilities (and), or the multiplicative rule and conditional probabilities (if ).
These options are summarized in the formulas below.

Total Probability Rule

For any two events A and B,

P(B) = P(A and B) + P( not A and B)
= P(A)P(B if A) + P(not A)P(B if not A)

More generally if A, B, and C are disjoint events which contain all of
the outcomes of another event D, then

P(D) = P(A and D) + P(B and D) + P(C and D)
= P(A)P(D if A) + P(B)P(D if B) + P(C)P(D if C)

We can extend this in equivalent ways to more than three events.

Example P.13
Olympic Gold

Refer to Example P.8 on page 742 where we see that 73% of athletes in a statistics
course would prefer to win an Olympic Gold medal (over an Academy Award or
Nobel Prize) while 31% of non-athletes make that choice. If 37% of the students in
the class are athletes, what is the probability that a student chosen at random from
this class would pick the Olympic Gold?

Solution If we let A denote the event “athlete” and OG denote “Olympic Gold,” the
given probabilities are P(A) = 0.37, P(OG if A) = 0.73, and P(OG if not A) = 0.31.
Applying the total probability rule, we have

P(OG) = P(A)P(OG if A) + P(not A)P(OG if not A)
= 0.37(0.73) + (1 − 0.37)(0.31)
= 0.2701 + 0.1953 = 0.4654

Overall, about 46.5% of students in the class pick the Olympic Gold.

Tree Diagrams
When the given information is in terms of probabilities for one type of event and
conditional probabilities for another, such as in Examples P.12 and P.13, we can
often organize the calculation of the multiplicative rule with a tree diagram such as
those shown in Figure P.2. The initial set of “branches” show the probabilities from
one set of events and the second set of branches show conditional probabilities (with
the initial branch as the condition). Multiplying along any set of branches uses the
multiplicative rule to find the joint probability for that pair of events.
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Figure P.2 Tree
diagrams for Examples
P.12 to P.14
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Example P.14
An insurance company gets a report that one of its drivers was in an accident. Using
the probabilities given in Example P.12 and calculations shown in Figure P.2(a), what
is the probability that the driver is under 25 years old?

Solution We need to find the probability that a driver is young if we know he or she has had
an accident, that is, P(Y if A). By the conditional probability rule this is

P(Y if A) = P(Y and A)
P(A)

From the work in Example P.12 and the tree diagram in Figure P.2 we know that
P(Y and A) = 0.0211 and P(A) = 0.0211 + 0.0285 + 0.0205 = 0.0701, so

P(Y if A) = P(Y and A)
P(A)

= 0.0211
0.0701

= 0.301

The probability is 0.301. If the insurance company hears about an accident, there is
about a 30% chance that the driver was young.

A question such as the one posed in Example P.14 asks for a posterior proba-
bility, since we are given some information (the driver had an accident) and asked
to go back and revise our estimate of some initial probability (the driver is young).
Note that the information that the driver had an accident makes it more likely that
the driver is under 25 (30% compared to the original 13.2%), since younger drivers
are more prone to accidents. We can do a similar calculation for the other two age
groups:

P(M if A) = P(M and A)
P(A)

= 0.0285
0.0701

= 0.41

P(O if A) = P(O and A)
P(A)

= 0.0205
0.0701

= 0.29
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When restricted to drivers having an accident, the age distribution is 30% young,
41% middle, and 29% older.

Bayes’ Rule
In Examples P.12 and P.14 we know something about the probabilities for one type
of event (the driver age groups) and conditional probabilities for a different event
(having an accident) given each of those groups. When the latter event occurs, the
question of interest is often the chance it is associated with one of the initial events.
Put another way, if we know P(A if B), what can we say about P(B if A)?

Although the calculations are fairly intuitive from a tree diagram, we can also
use formulas to compute the conditional probability directly. This method is known
as Bayes’ rule.8 We give several equivalent formulas below for the case of two events,
but they can easily be generalized to more complicated situations. The form we
choose depends on the nature of the given information. If the formulas look a bit
intimidating, remember that we can also (or instead) use a tree diagram (as we did
in Example P.14).

Bayes’ Rule

If A and D are any two events,

P(A ifD) = P(A and D)
P(D)

= P(A)P(D if A)
P(D)

= P(A and D)
P(A and D) + P( not A and D)

= P(A)P(D if A)
P(A)P(D if A) + P( not A)P(D if not A)

The last two versions can easily be generalized using the total proba-
bility rule to handle more than two events.

Example P.15
Tuberculosis Tests

One of the common tests for tuberculosis (TB) is a skin test where a substance is
injected into a subject’s arm and we see if a rash develops in a few days. The test
is relatively accurate, but in a few cases a rash might be detected even when the
subject does not have TB (a false positive) or the rash may not be seen even when
the subject has TB (a false negative). Assume that the probability of the first event,
P(Rash if not TB), is about 5% and the chance of the other, P(not Rash if TB), is
about 1%. Suppose also that only about 4 in 10,000 people have TB. An applicant
for a teaching position is required to get a TB test and the test comes back positive
(shows a rash). What is the probability that the applicant really has TB?

8Reverend Thomas Bayes, a Presbyterian minister in England who also studied mathematics, was cred-
ited, after his death in 1761, with the discovery of this method for finding “inverse” probabilities.
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Solution Our initial information about an applicant is one of two possibilities,P(TB) = 0.0004
and P(not TB) = 1 − 0.0004 = 0.9996. How does this change when we include the
additional information of a positive TB test? Applying Bayes’ rule we have

P(TB if Rash) = P(TB)P(Rash if TB)
P(TB)P(Rash if TB) + P(not TB)P(Rash if not TB)

= 0.0004(0.99)
0.0004(0.99) + 0.9996(0.05)

= 0.000396
0.050376

= 0.00786

Although the TB test came back positive for the applicant, the probability that the
person actually has tuberculosis is only 0.00786.

You may be surprised that the probability found in Example P.15 is so small,
when it seems as if the test is pretty accurate. Note, however, that the initial prob-
ability of having TB (0.0004) is so small that, when picking a person at random, it
is far more likely that person does not have TB and thus an error to the test would
be a false positive. Figure P.3 shows a tree diagram attacking this problem, in which
case

P(TB if Rash) = P(TB and Rash)
P(Rash)

= 0.000396
0.050376

= 0.00786

Note that we get the same answer whether we use a visual display like the tree
diagram or the mathematical formulation of Bayes’ rule.

Figure P.3 Tree diagram
for TB tests
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S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute probabilities based on conditional probabilities using a tree
diagram

• Use the total probability rule to compute the probability of an event

• Apply Bayes’ rule to compute a conditional probability
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Exercises for Section P.2

SKILL BUILDER 1: INCOMPLETE TREE
DIAGRAMS
In Exercises P.43 to P.46, complete each tree dia-
gram by filling in the missing entries (marked with
a “?”).

P.43 0.0598

0.2002

0.3268

0.062

?

?

Case A

0.23

Case B0.77

Case A

?

Case B0.24

Case A

0.80

Case B0.20

Case III
0.31

Case II
0.43

Cas
e I

?

P.44
0.09

?

?

?

?

0.268

Case A

?
Case B

?

Case A

?

Case B0.45

Case A

0.67

Case B
?

Case III?

Case II
?

Cas
e I

0.1
8

P.45 ?

0.225

0.16

0.45

0.025

0.025

Case A

?
Case B

?Case C?

Case A

?
Case B

?Case C?

Case I

?

Case II?

P.46 ?

?

?

?

?

0.00

Case A

0.00

Case B
0.19Case C?

Case A

0.56

Case B
?Case C?

Case I

0.38

Case II?

SKILL BUILDER 2: FINDING PROBABILI-
TIES USING TREE DIAGRAMS
In Exercises P.47 to P.54, find the requested proba-
bilities using the tree diagram in Figure P.4.

P.47 P(B and R)
P.48 P(A and S)
P.49 P(R if A)
P.50 P(S if B)
P.51 P(R)
P.52 P(S)
P.53 P(A if S)
P.54 P(B if R)
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R
0.9

S
0.1

R
0.2

S
0.8

A
0.6

B
0.4

Figure P.4 Tree diagram for Exercises P.47 to P.54

P.55 Housing Units in the US According to the US
Census, 65% of housing units in the US are owner-
occupied while the other 35% are renter-occupied.9

Table P.7 shows the probabilities of the number of
occupants in a housing unit under each of the two
conditions. Create a tree diagram using this infor-
mation and use it to answer the following questions:

(a) What is the probability that a US housing unit
is rented with exactly two occupants?

(b) What is the probability that a US housing unit
has three or more occupants?

(c) What is the probability that a unit with one
occupant is rented?

Table P.7 Conditional probabilities of number
of occupants in US housing units

Condition 1 2 3 or more

Owner-occupied 0.217 0.363 0.420
Renter-occupied 0.362 0.261 0.377

P.56 Restless Leg Syndrome and Fibromyalgia
People with restless leg syndrome have a strong
urge to move their legs to stop uncomfortable sen-
sations. People with fibromyalgia suffer pain and
tenderness in joints throughout the body. A recent
study indicates that people with fibromyalgia are
muchmore likely to have restless leg syndrome than
people without the disease.10 The study indicates
that, for people with fibromyalgia, the probability

9http://www.census.gov.
10“Fibromyalgia, Restless Legs Linked in New Study,”
http://www.healthcentral.com/chronic-pain/news-540062-98
.html, 2010.

is 0.33 of having restless leg syndrome, while for
people without fibromyalgia, the probability is 0.03.
About 2% of the population has fibromyalgia. Cre-
ate a tree diagram from this information and use it
to find the probability that a person with restless leg
syndrome has fibromyalgia.

P.57 Mammograms and Breast Cancer The mam-
mogram is helpful for detecting breast cancer in
its early stages. However, it is an imperfect diag-
nostic tool. According to one study,11 86.6 of every
1000 women between the ages of 50 and 59 that
do not have cancer are wrongly diagnosed (a “false
positive”), while 1.1 of every 1000 women between
the ages of 50 and 59 that do have cancer are not
diagnosed (a “false negative”). One in 38 women
between 50 and 59 will develop breast cancer. If a
woman between the ages of 50 and 59 has a positive
mammogram, what is the probability that she will
have breast cancer?

P.58 What’s the Pitch? Slippery Elum is a baseball
pitcher who uses three pitches, 60% fastballs, 25%
curveballs, and the rest spitballs. Slippery is pretty
accurate with his fastball (about 70% are strikes),
less accurate with his curveball (50% strikes), and
very wild with his spitball (only 30% strikes). Slip-
pery ends one game with a strike on the last pitch
he throws. What is the probability that pitch was a
curveball?

IDENTIFYING SPAM TEXT MESSAGES
Bayes’ rule can be used to identify and filter spam
emails and text messages. Exercises P.59 to P.62
refer to a large collection of real SMS text messages
from participating cellphone users.12 In this collec-
tion, 747 of the 5574 total messages (13.40%) are
identified as spam.

P.59 The word “free” is contained in 4.75% of all
messages, and 3.57% of all messages both contain
the word “free” and are marked as spam.

(a) What is the probability that a message contains
the word “free”, given that it is spam?

(b) What is the probability that a message is spam,
given that it contains the word “free”?

11Nelson, H., et al., “Screening for Breast Cancer: Systematic
Evidence Review Update for the U.S. Preventive Services Task
Force,” Evidence ReviewUpdate No. 74, AHRQPublication No.
10-05142-EF-1, Rockville, MD, Agency for Healthcare Research
and Quality, 2009.
12Almeida, T., Hidalgo, J., and Yamakami, A., “Contributions to
the Study of SMS Spam Filtering: New Collection and Results,”
Proceedings of the 2011 ACM Symposium on Document Engi-
neering (DOCENG’11), Association for Computing Machinery,
Mountain View, CA, 2011.
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P.60 The word “text” (or “txt”) is contained in
7.01% of all messages, and in 38.55% of all spam
messages. What is the probability that a message
is spam, given that it contains the word “text” (or
“txt”)?

P.61 Of all spam messages, 17.00% contain both the
word “free” and the word “text” (or “txt”). For
example, “Congrats!! You are selected to receive a
free camera phone, txt ******* to claim your prize.”

Of all non-spam messages, 0.06% contain both the
word “free” and the word “text” (or “txt”). Given
that a message contains both the word “free” and
the word “text” (or “txt”), what is the probability
that it is spam?

P.62 Given that a message contains the word “free”
but does NOT contain the word “text” (or “txt”),
what is the probability that it is spam? (Hint: Use
the information in Exercises P.59 to P.61.)

P.3RANDOM VARIABLES AND PROBABILITY FUNCTIONS

Random Variables
A random variable denotes a numeric quantity that changes from trial to trial in
a random process. We often use a capital letter, like X or Y, to denote a random
variable. Here are some examples:

X = number showing when a six-sided die is rolled

Y = sum of the numbers shown on two dice rolls

Z = number of girls among three children in a family

W = weight change after six months in an exercise program

T = time needed to read this section of the text

C = cost to repair damage to a car after an accident

We would like answers to probability questions about events determined by a ran-
dom variable. For example, what is the probability that the sum of two dice rolls is
eight (Y = 8), a family has three children who are all girls (Z = 3), or the cost to
repair a car is more than $2000 (C > 2000)?

Discrete vs Continuous
We say a random variable is discrete if it has a finite set of possible values. The

result of a die roll {1, 2, 3, 4, 5, or 6}, the sum of two dice {2, 3, . . . , or 12}, and the
number of girls among three children {0, 1, 2, or 3} are all discrete random variables.

A variable that can take any value within some interval is called continuous.
The amount of weight change and time needed to read the text are examples of
continuous random variables.

In some cases a variable might technically be discrete (like the cost in dollars to
repair a car), but there are so many possible values that we may decide to treat it
as if it were continuous. In other situations, we might compress/round a continuous
variable to a relatively few discrete values.

The distinction between discrete and continuous random variables is important
for determining howwe express their probabilities. For continuous random variables
we use a density curve, as described in Section P.5, where the probability of being in
some region is found as the area under the density curve.

For the rest of this section we assume that a random variable is discrete with
a relatively small set of possible values. In that case we determine probabilities by
specifying a probability for each possible value of the random variable.
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Probability Functions
For a discrete random variable, a probability function gives the probability for each
of its possible values. We often use notation such as p(2) as shorthand to denote the
probability of the event, P(X = 2). In some cases (see Exercises P.93 and P.94), the
probability function may be given as a mathematical expression, but often we simply
give a table of the probabilities for each possible value.

Probability Function for a Discrete Random Variable

A probability function assigns a probability, between 0 and 1, to every
value of a discrete random variable. The sum of all of these probabili-
ties must be one. In symbols,

∑
p(x) = 1.

Example P.16
Roll a Die

Suppose that we roll a fair six-sided die and let the random variable X be the value
showing at the top of the die. Find the probability function for X.

Solution There are six possible values, {1, 2, 3, 4, 5, 6}, that are all equally likely, so the prob-
ability of each is 1∕6. We can express this as a table:

x 1 2 3 4 5 6

p(x) 1
6

1
6

1
6

1
6

1
6

1
6

or simply write p(x) = 1∕6 for x = 1, 2,… , 6.

Example P.17
Sum of Two Dice

Suppose that we roll two six-sided dice and let a random variableX measure the sum
of the two rolls. There are 6 possible outcomes for each die, so 6 × 6 = 36 possible
pairs of rolls. The possible sums are values from 2 to 12, but they are not all equally
likely. For example, there is only one pair, 6 + 6, that gives a sum of 12, but three
ways, 4 + 6, 5 + 5, and 6 + 4, to get a sum of 10. The probability function for X is
shown in Table P.8.

Use the probability function to find:

(a) P(X = 7 or X = 11)
(b) P(X > 8)

Solution (a) The events X = 7 and X = 11 are disjoint so we find the probability that one or
the other occurs by adding the individual probabilities:

P(X = 7 or X = 11) = p(7) + p(11) = 6
36

+ 2
36

= 8
36

= 0.222

Table P.8 Probability function for sum of two dice

x 2 3 4 5 6 7 8 9 10 11 12

p(x) 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36
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(b) To find the probability that the sum is greater than 8, we add the individual
probabilities from the probability function for the values of X that satisfy this
condition:

P(X > 8) = p(9) + p(10) + p(11) + p(12) = 4
36

+ 3
36

+ 2
36

+ 1
36

= 10
36

= 0.278

Mean of a Random Variable

Example P.18
Raffle Winnings

A charitable organization is running a raffle as a fundraiser. They offer a grand prize
of $500, two second prizes of $100, and ten third prizes of $20 each. They plan to sell
1000 tickets at $2 per ticket. What is the average amount of money won with each
ticket in the lottery?

Solution The total amount of prize money is $500 ⋅ 1 + $100 ⋅ 2 + $20 ⋅ 10 = $900. Since there
are 1000 tickets sold, the average amount won per ticket is $900∕1000 = $0.90, or
about 90 cents.

We can formalize the process of Example P.18 to find the mean of any random
variable if we know its probability function. Letting X represent the amount won
with a raffle ticket, the probability function is shown in Table P.9.

Table P.9 Probability function for raffle
winnings

x 500 100 20 0

p(x) 1
1000

2
1000

10
1000

987
1000

The process of calculating the total winnings and dividing by the number of
tickets sold is equivalent to multiplying each value of the random variable by its
corresponding probability and adding the results:

500 ⋅ 1
1000

+ 100 ⋅ 2
1000

+ 20 ⋅ 10
100

+ 0 ⋅ 987
1000

= 0.90

We call this the mean or expected value of the random variable X. Since this re-
presents the average value over the “population” of all tickets, we use the notation
𝜇 = 0.90 to represent this mean.

In general, we find the mean for a random variable from its probability function
by multiplying each of the possible values by the probability of getting that value
and summing the results.

Mean of a Random Variable

For a random variableX with probability function p(x), the mean, 𝜇, is

𝜇 =
∑

x ⋅ p(x)



758 CHA P T E R P Probability Basics

Example P.19
Find the mean of the sum of two dice rolls using the probability function given in
Example P.17 on page 756.

Solution We multiply each of the possible values from the sum of two dice rolls by its corre-
sponding probability given in Table P.8, and add up the results:

𝜇 = 2 ⋅ 1
36

+ 3 ⋅ 2
36

+ 4 ⋅ 3
36

+ 5 ⋅ 4
36

+ 6 ⋅ 5
36

+ 7 ⋅ 6
36

+ 8 ⋅ 5
36

+ 9 ⋅ 4
36

+ 10 ⋅ 3
36

+ 11 ⋅ 2
36

+ 12 ⋅ 1
36

= 7.0

The average sum on a roll of two dice is 7. This is not very surprising based on the
symmetry of this variable.

Example P.20
Actuarial Analysis

An actuary is a person who assesses various forms of risk. For example, suppose that
past data indicate that the holder of an automobile insurance policy has a 5% chance
of an accident causing $1000 of damage, 2% chance of $5000 damage, 1% chance of
totaling the car ($25,000), and a 92% chance of making it through the year with no
accidents.13 If the insurance company charges $1200 for such a policy, are they likely
to make or lose money?

Solution The mean of the damages according to the given probabilities is

𝜇 = $1000 ⋅ 0.05 + $5000 ⋅ 0.02 + $25,000 ⋅ 0.01 + $0 ⋅ 0.92 = $400

So, on average, the insurance company will make about $800 per policy under these
circumstances, if they charge a $1200 premium.

Standard Deviation of a Random Variable
In Section 2.3 on page 87 we introduce the notion of standard deviation as a way to
measure the variability in a sample:

s =

√∑
(x − x)2

n − 1

We apply similar reasoning to measure the standard deviation in a population that
is defined by a random variable with probability function p(x). To do this, we find
the average squared deviation from the mean, 𝜇, and then take a square root.

Standard Deviation of a Random Variable

For a random variable X with probability function p(x) and mean 𝜇,
the variance, 𝜎2, is

𝜎
2 =

∑
(x − 𝜇)2 ⋅ p(x)

and the standard deviation is 𝜎 =
√
𝜎
2.

13In reality, actuaries use much more extensive data than the few values shown here.
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Example P.21
Find the standard deviation of the random variable X = the sum of two dice rolls.

Solution In Example P.19 we find that the mean of X is 𝜇 = 7. To find the variance, 𝜎2, we
compute the mean of the squared deviations from 𝜇 = 7:

𝜎
2 = (2 − 7)2 1

36
+ (3 − 7)2 2

36
+ (4 − 7)2 3

36
+ · · · + (11 − 7)2 2

36
+ (12 − 7)2 1

36

= 25 ⋅ 1
36

+ 16 ⋅ 2
36

+ 9 ⋅ 3
36

+ · · · + 16 ⋅ 2
36

+ 25 ⋅ 1
36

= 5.8333

The standard deviation of X is

𝜎 =
√
5.833 = 2.42

The value 𝜎 = 2.42 is the population standard deviation for the sums of all pos-
sible throws of two dice. If you were to roll a sample pair of dice many times, record
the sums, and compute the sample standard deviation, s, you should get a number
fairly close to 2.42. Try it!

Example P.22
Find the standard deviation of the damage amounts for the auto insurance situation
described in Example P.20.

Solution Given the mean damage, 𝜇 = 400, the variance is

𝜎
2 = (1000 − 400)2 ⋅ 0.05 + (5000 − 400)2 ⋅ 0.02

+ (25,000 − 400)2 ⋅ 0.01 + (0 − 400)2 ⋅ 0.92
= 6,640,000

The standard deviation of damage amounts is 𝜎 =
√
6,640,000 = $2576.82.

Note that we need to be sure to include the deviation from $0 (no accidents) as
part of this calculation.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Compute probabilities for a random variable using a probability
function

• Compute the mean of a random variable from a probability function

• Compute the variance and standard deviation of a random variable
from a probability function
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Exercises for Section P.3

SKILL BUILDER 1: DISCRETE OR
CONTINUOUS?
In Exercises P.63 to P.67, state whether the process
described is a discrete random variable, is a contin-
uous random variable, or is not a random variable.

P.63 Draw 10 cards from a deck and count the num-
ber of hearts.

P.64 Draw 10 cards from a deck and find the pro-
portion that are hearts.

P.65 Deal cards one at a time from a deck. Keep
going until you deal an ace. Stop and count the total
number of cards dealt.

P.66 Draw one M&M from a bag. Observe whether
it is blue, green, brown, orange, red, or yellow.

P.67 Observe the average weight, in pounds, of
everything you catch during a day of fishing.

SKILL BUILDER 2: A PROBABILITY
FUNCTION
Exercises P.68 to P.73 refer to the probability func-
tion given in Table P.10 for a random variableX that
takes on the values 1, 2, 3, and 4.

P.68 Verify that the values given in Table P.10 meet
the conditions for being a probability function. Jus-
tify your answer.

P.69 Find P(X = 3 or X = 4).
P.70 Find P(X > 1).
P.71 Find P(X < 3).
P.72 Find P(X is an odd number).
P.73 Find P(X is an even number).

Table P.10 Probability function
for Exercises P.68 to P.73

x 1 2 3 4

p(x) 0.4 0.3 0.2 0.1

SKILL BUILDER 3: MORE PROBABILITY
FUNCTIONS
In Exercises P.74 to P.77, fill in the ? to make p(x) a
probability function. If not possible, say so.

P.74 x 1 2 3 4

p(x) 0.1 0.1 0.2 ?

P.75 x 10 20 30 40

p(x) 0.2 0.2 ? 0.2

P.76
x 1 2 3

p(x) 0.5 0.6 ?

P.77 x 1 2 3 4 5

p(x) 0.3 ? 0.3 0.3 0.3

SKILL BUILDER 4: MEAN AND STANDARD
DEVIATION
In Exercises P.78 to P.81, use the probability func-
tion given in the table to calculate:

(a) The mean of the random variable

(b) The standard deviation of the random variable

P.78 x 1 2 3

p(x) 0.2 0.3 0.5

P.79 x 10 20 30

p(x) 0.7 0.2 0.1

P.80 x 20 30 40 50

p(x) 0.6 0.2 0.1 0.1

P.81 x 10 12 14 16

p(x) 0.25 0.25 0.25 0.25

P.82 Owner-Occupied Household Size Table P.11
gives the probability function for the random
variable14 giving the household size for an owner-
occupied housing unit in the US.15

(a) Verify that the sum of the probabilities is 1 (up
to round-off error).

(b) What is the probability that a unit has only one
or two people in it?

(c) What is the probability that a unit has five or
more people in it?

14The largest category is actually “7 or more” but we have cut it
off at 7 to make it a random variable. Can you explain why this
was necessary?
15http://www.census.gov.
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Table P.11 Household size in owner-occupied
units

x 1 2 3 4 5 6 7

p(x) 0.217 0.363 0.165 0.145 0.067 0.026 0.018

(d) What is the probability that more than one per-
son lives in a US owner-occupied housing unit?

P.83 Renter-Occupied Household Size Table P.12
gives the probability function for the random vari-
able giving the household size for a renter-occupied
housing unit in the US.

(a) Verify that the sum of the probabilities is 1 (up
to round-off error.)

(b) What is the probability that a unit has only one
or two people in it?

(c) What is the probability that a unit has five or
more people in it?

(d) What is the probability that more than one per-
son lives in a US renter-occupied housing unit?

Table P.12 Household size in renter-occupied
units

x 1 2 3 4 5 6 7

p(x) 0.362 0.261 0.153 0.114 0.061 0.027 0.022

P.84 Average Household Size for Owner-Occu-
pied Units Table P.11 in Exercise P.82 gives the
probability function for the random variable giving
the household size for an owner-occupied housing
unit in the US.

(a) Find the mean household size.

(b) Find the standard deviation for household size.

P.85 Average Household Size for Renter-Occu-
pied Units Table P.12 in Exercise P.83 gives the
probability function for the random variable giv-
ing the household size for a renter-occupied housing
unit in the US.

(a) Find the mean household size.

(b) Find the standard deviation for household size.

P.86 Fruit Fly Lifetimes Suppose that the probabil-
ity function in Table P.13 reflects the possible life-
times (in months after emergence) for fruit flies.

(a) What proportion of fruit flies die in their second
month?

(b) What is the probability that a fruit fly lives more
than four months?

Table P.13 Fruit fly lifetimes (in months)

x 1 2 3 4 5 6

p(x) 0.30 ? 0.20 0.15 0.10 0.05

(c) What is the mean lifetime for a fruit fly?

(d) What is the standard deviation of fruit fly life-
times?

P.87 Used Car SalesAused car dealership uses past
data to estimate the probability distribution for the
number of cars they sell in a day,X. The probability
distribution of X is given in Table P.14.

(a) What is P(X = 4)?
(b) What is the probability that the dealership sells

less than two cars during a day?

(c) What is the expected number (mean) of cars
sold in a day?

(d) What is the standard deviation of the number of
cars sold in a day?

Table P.14 Cars sold in a day

x 0 1 2 3 4

p(x) 0.29 0.3 0.2 0.17 ?

P.88 More Fruit Fly Lifetimes Refer to Table P.13
in Exercise P.86 that gives probabilities for fruit fly
lifetimes.

(a) If we know a fruit fly died before the end of its
second month, what is the probability it died in
its first month?

(b) If a fruit fly makes it past its second month,
what is the probability it will live more than four
months?

P.89 More Used Car Sales Refer to Table P.14 in
Exercise P.87 that gives probabilities for the num-
ber of used cars a dealer sells in a day. What is
the probability that the dealership sells no cars on
three consecutive days? (Assume daily sales are
independent.)

P.90 Stephen Curry’s Free Throws As we see
in Exercise P.37 on page 747, during the 2015–16
NBA season, Stephen Curry of the Golden State
Warriors had a free throw shooting percentage of
0.908. Assume that the probability Stephen Curry
makes any given free throw is fixed at 0.908, and that
free throws are independent. Let X be the number
of free throws StephenCurrymakes in two attempts.

(a) What is the probability distribution of X?

(b) What is the mean of X?
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P.91 Life InsuranceAnon-profit organization plans
to offer a life insurance service. Participants agree to
a five-year contract in which they pay the organiza-
tion a yearly fee. The fee does not change over the
course of the contract. If the policy holder dies dur-
ing the five-year period, the organization will pay
$100,000 to her family and there will be no more
yearly fee. The probabilities of death at ages 60, 61,
62, 63, and 64 for a US woman on her 60th birthday
are given in Table P.15.16 For example, on her 60th
birthday a woman will have a 0.76% chance of dying
at the age of 62.

(a) Let X be the organization’s total profit, in dol-
lars, five years after selling a contract to a
woman on her 60th birthday. Write the proba-
bility distribution of X, where the values of X
are given in terms of the yearly fee c.

(b) Write the mean of X in terms of c.

(c) What yearly fee should the organization charge
60-year-old women if they hope to break even?
(The organization can expect to break even if
they have a mean profit of $0.)

Table P.15 Probabilities of death for a US
woman on her 60th birthday

Age 60 61 62 63 64

Probability 0.00648 0.00700 0.00760 0.00829 0.00908

P.92 Internet Pricing An Internet Service Provider
(ISP) offers its customers three options:

• Basic: Standard internet for everyday needs, at
$23.95 per month.

• Premium: Fast internet speeds for streaming
video and downloading music, at $29.95 per
month.

• Ultra: Super-fast internet speeds for online gam-
ing, at $39.95 per month.

Ultra is the company’s least popular option; they
have twice as many Premium customers, and three
times as many Basic customers:

16Period Life Table 2011, http://www.ssa.gov/oact/STATS/table
4c6.html, accessed June 8, 2016.

(a) Let X be the monthly fee paid by a randomly
selected customer. Give the probability distri-
bution of X.

(b) What is the mean of X? (This is the company’s
average monthly revenue per customer.)

(c) What is the standard deviation of X?

P.93 Benford’s Law Frank Benford, a physicist
working in the 1930s, discovered an interesting
fact about some sets of numbers. While you might
expect the first digits of numbers such as street
addresses or checkbook entries to be randomly
distributed (each with probability 1∕9), Benford
showed that in many cases the distribution of lead-
ing digits is not random, but rather tends to have
more ones, with decreasing frequencies as the dig-
its get larger. If a random variable X records the
first digit in a street address, Benford’s law says the
probability function for X is

P(X = k) = log10(1 + 1∕k)

(a) According to Benford’s law, what is the proba-
bility that a leading digit of a street address is 1?
What is the probability for 9?

(b) Using this probability function, what proportion
of street addresses begin with a digit greater
than 2?

P.94 Getting to the Finish In a certain board game
participants roll a standard six-sided die and need to
hit a particular value to get to the finish line exactly.
For example, if Carol is three spots from the finish,
only a roll of 3 will let her win; anything else and she
must wait another turn to roll again. The chance of
getting the number she wants on any roll is p = 1∕6
and the rolls are independent of each other. We let
a random variable X count the number of turns
until a player gets the number needed to win. The
possible values of X are 1, 2, 3, . . . and the probabil-
ity function for any particular count is given by the
formula

P(X = k) = p(1 − p)k−1

(a) Find the probability a player finishes on the
third turn.

(b) Find the probability a player takes more than
three turns to finish.

P.4BINOMIAL PROBABILITIES

It is not always necessary to start from basic principles when computing probabilities
for a random variable. Sometimes the probability function is already well known.
For example, a normal distribution (see Section P.5) can be used to find probabilities
in many applications that require a continuous random variable. In this section we
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describe a binomial probability function, which can be used to find probabilities for
an important class of discrete random variables.

Conditions for a Binomial Random Variable
A binomial random variable counts the number of times that something occurs in a
fixed number of independent trials. What that “something” is, and what each “trial”
represents, depends on the context. For example, the number of times that a coin
lands heads in a series of 10 tosses is a binomial random variable. On each trial the
outcome that is counted by the random variable (the coin lands heads) is often called
a success, while anything else is often called a failure. This does not necessarily mean
that one is good and the other is bad; we just use these terms to distinguish between
the two outcomes. The conditions that define a binomial random variable are given
in detail below.

Conditions for a Binomial Random Variable

For a process to give a binomial random variable we need the follow-
ing characteristics:

• A number of trials, n, that is fixed in advance

• A probability of success, p, that does not change from trial to trial

• Independence of the outcomes from trial to trial

A binomial random variable counts the number of successes in the n
independent trials.

Consider the coin-tossing example above. The number of trials is fixed (n =
10 tosses), the trials are independent (the outcome of one toss will not influence
another toss), and the probability of success is fixed at p = P(Head) = 1∕2 (assuming
a fair coin). This satisfies the conditions for a binomial random variable.17

Example P.23
In each of the following cases, state whether or not the process describes a binomial
random variable. If it is binomial, give the values of n and p.

(a) Count the number of times a soccer player scores in five penalty shots against
the same goalkeeper. Each shot has a 1∕3 probability of scoring.

(b) Count the number of times a coin lands heads before it lands tails.

(c) Draw 10 cards from the top of a deck and record the number of cards that
are aces.

(d) Conduct a simple random sample of 500 registered voters, and record whether
each voter is Republican, Democrat, or Independent.

(e) Conduct a simple random sample of 500 registered voters, and count the number
that are Republican.

(f) Randomly select one registered voter from each of the 50 US states, and count
the number that are Republican.

Solution (a) Binomial (assuming shots are independent), with n = 5 and p = 1∕3.
(b) Not binomial, since the number of trials n is not fixed.

17We sometimes use B(n, p) as shorthand to denote a binomial, so the number of heads in 10 flips is
B(10, 1∕2).
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(c) Not binomial, since the trials are not independent (if the first card is an ace, it is
less likely that the next card is an ace because there are less of them remaining
in the deck).

(d) Not binomial, because it is not clear what defines a success.

(e) Binomial, with n = 500 and p is the population proportion of registered voters
who are Republican.

(f) Not binomial, because the probability of selecting a Republican can vary from
state to state.

Each trial for a binomial random variable must result in an outcome we call a
success or a failure. In Example P.23(e), a success means a selected voter is Repub-
lican and a failure means a selected voter is not Republican (remember, a success
does not imply “good” or “bad”!) However, each trial need not have only two possi-
ble outcomes. In Example P.23(e), a selected voter could be Republican, Democrat,
or Independent.

When sampling from a finite population, the outcomes are not completely inde-
pendent. This is illustrated in Example P.23(b), where the population is a deck of 52
cards. However, if the population is much larger than the sample size (as a rule of
thumb, 10 times bigger), then the outcomes are very close to being independent and
the binomial distribution is appropriate. This is the case in Example P.23(e).

Calculating Binomial Probabilities

Example P.24
Roulette

A European roulette wheel contains 37 colored pockets. One of the pockets is col-
ored green, 18 are colored red, and 18 are colored black. A small ball spins around
the inside of the wheel before eventually falling into one of the colored pockets.
Each pocket has an equal probability, and gamblers often bet on which color pocket
the ball will fall into.

A gambler decides to place four bets at the roulette wheel, with all four bets
on black. Let X be the number of times the participant bets correctly. What is the
probability function of X?

Solution With each bet, the participant is interested in whether the ball lands on black (a
success: S) or not on black (a failure: F). The probability of success is P(S) = 18

37
and

the probability of failure is P(F) = 19
37
. As each bet is independent, we can multiply

their probabilities. So, the probability of success on all four bets is

P(X = 4) = P(SSSS) = P(S)P(S)P(S)P(S) =
(
18
37

)4

= 0.0560

and the probability of failure on all four bets is

P(X = 0) = P(FFFF) = P(F)P(F)P(F)P(F) =
(
19
37

)4

= 0.0695

There are four possible outcomes in which the participant wins just one bet:
{SFFF, FSFF, FFSF, FFFS}. These outcomes are disjoint and each has probability
18
37

×
(
19
37

)3
, so

P(X = 1) = 4 × 18
37

×
(
19
37

)3

= 0.2635
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Similarly, there are four possible outcomes in which the participant wins three bets

{SSSF, SSFS, SFSS, FSSS}, each with probability
(
18
37

)3
× 19

37
, so

P(X = 3) = 4 ×
(
18
37

)3

× 19
37

= 0.2365

There are six possible outcomes in which the participant wins two bets {SSFF, SFSF,
SFFS, FSSF, FSFS, FFSS}, each with probability

(
18
37

)2
×
(
19
37

)2
, so

P(X = 2) = 6 ×
(
18
37

)2

×
(
19
37

)2

= 0.3745

Note that the number of wins (black) in the previous example is a binomial
random variable with n = 4 and p = 18∕37. Calculating these probabilities can be
time consuming, and are even more complicated for larger n. Luckily, there is a
shortcut to calculate binomial probabilities. Before we get there, though, we need to
introduce some notation to ease the computation:

• Factorials: The factorial of a number, n!, is the product of all positive integers less
than or equal to n:

n! = n × (n − 1) × (n − 2) × · · · × 1

For example, 5! = 5 × 4 × 3 × 2 × 1 = 120. By convention, 0! = 1.

• Binomial Coefficients: The binomial coefficient
(n
k

)
, read “n choose k,” is

given by (
n
k

)
= n!
k!(n − k)!

The binomial coefficient gives the number of possible ways to arrange k suc-
cesses in n trials. In Example P.24 we see there are six possible ways for the partici-
pant to win 2 bets in 4 trials, and a quick calculation shows

(
4
2

)
= 4!

2!(4 − 2)!
= 4 × 3 × 2 × 1

(2 × 1)(2 × 1)
= 6

Although they look similar, the binomial coefficient
(n
k

)
is not the same as the

fraction
(
n
k

)
.

We are now ready for the formula to compute binomial probabilities.

Binomial Probabilities

If a random variable X is binomial with n trials and probability of
success p, the probability of getting exactly k successes is

P(X = k) =
(
n
k

)
pk(1 − p)n−k

for k = 0, 1,… ,n.
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Example P.25
Roulette (continued)

In Example P.24, let X represent the number of times a gambler wins with four
consecutive bets on black. Use the binomial formula to find the probability distribu-
tion of X.

Solution Standard calculations give
(4
0

)
= 1,

(4
1

)
= 4,

(4
2

)
= 6,

(4
3

)
= 4, and

(4
4

)
= 1. Using the

binomial formula,

P(X = 0) = 1 ×
(
18
37

)0

×
(
19
37

)4

= 0.0695

P(X = 1) = 4 ×
(
18
37

)1

×
(
19
37

)3

= 0.2635

P(X = 2) = 6 ×
(
18
37

)2

×
(
19
37

)2

= 0.3745

P(X = 3) = 4 ×
(
18
37

)3

×
(
19
37

)1

= 0.2365

P(X = 4) = 1 ×
(
18
37

)4

×
(
19
37

)0

= 0.0560

These agree with our raw calculations in Example P.24.

For the binomial coefficients it is always the case that
(n
k

)
=
( n
n−k

)
. However,

unless p = 1∕2, it is not the case that P(X = k) = P(X = n − k).

Example P.26
Norwegian Coffee Consumption

Norwegians drink the most coffee in the world (it must be the cold winters). In one
survey18 of 389,624 Norwegians in their early 40s, more than half claimed to drink
five or more cups of coffee per day! Furthermore, 89.4% drink at least one cup of
coffee per day. Assume that the overall proportion of Norwegian adults who drink at
least five cups of coffee per day is 50%, and the proportion of all Norwegian adults
who drink at least one cup of coffee per day is 89.4%.

(a) In a random sample of 10 Norwegian adults, what is the probability that exactly
6 drink at least five cups of coffee per day?

(b) In a random sample of 10 Norwegian adults, what is the probability that exactly
6 drink at least one cup of coffee per day?

(c) In a random sample of 50 Norwegian adults, what is the probability that more
than 45 will drink at least one cup of coffee per day?

Solution (a) Using the formula for binomial probabilities with p = 0.5 and n = 10,

P(X = 6) =
(
10
6

)
0.56(1 − 0.5)4 = 210 ⋅ 0.56 ⋅ 0.54 = 0.205

18Tverdal, A., Hjellvik, V., and Selmer, R., “Coffee intake and oral-oesophageal cancer: Follow-up of
389,624 Norwegian men and women 40–45 years,” British Journal of Cancer, 2011; 105:157–161.
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(b) Using the formula for binomial probabilities with p = 0.894 and n = 10,

P(X = 6) =
(
10
6

)
× 0.8946 × (1 − 0.894)4 = 210 ⋅ 0.8946 ⋅ 0.1064 = 0.014

(c) For “more than 45” we need to find probabilities for X = 46, . . . , 50. Using the
formula for binomial probabilities with p = 0.894 and n = 50,

P(X = 46) =
(
50
46

)
× 0.89446 × (1 − 0.894)4 = 0.1679

Similar calculations show that P(X = 47) = 0.1205, P(X = 48) = 0.0635,
P(X = 49) = 0.0219, and P(X = 50) = 0.0037. So,

P(X > 45) = 0.1679 + 0.1205 + 0.0635 + 0.0219 + 0.0037 = 0.3775

We can also use technology to further automate the computation of binomial
probabilities.

Mean and Standard Deviation of a Binomial
Random Variable

Example P.27
Roulette (continued)

In Example P.24, X represents the number of times a gambler wins with four con-
secutive bets on black. Find the mean 𝜇 and standard deviation 𝜎 of X.

Solution Here is the probability function found in Example P.24:

x 0 1 2 3 4

p(x) 0.0695 0.2635 0.3745 0.2365 0.0560

Using the formulas from Section P.3,

𝜇 =
∑

x ⋅ p(x)
= 0 ⋅ 0.0695 + 1 ⋅ 0.2635 + 2 ⋅ 0.3745 + 3 ⋅ 0.2365 + 4 ⋅ 0.0560

= 1.946

and

𝜎
2 =

∑
(x − 𝜇)2 ⋅ p(x)

= (0 − 1.946)2 ⋅ 0.0695 + (1 − 1.946)2 ⋅ 0.2635 + · · · + (4 − 1.946)2 ⋅ 0.0560
= 0.99908

so 𝜎 =
√
0.99908 = 0.99954.

Just as recognizing that a random variable is binomial can make it easier to
compute probabilities, it can also make it easier to compute the mean and standard
deviation. We do not need to go through the tedious calculations in Example P.27.
Shortcuts for the mean and standard deviation of a binomial random variable are
given below.



768 CHA P T E R P Probability Basics

Mean and Standard Deviation of a Binomial Random Variable

If a random variable X is binomial with n trials and probability of
success p, then its mean 𝜇 and standard deviation 𝜎 are given by

𝜇 = np and 𝜎 =
√
np(1 − p)

Example P.28
Roulette (continued)

Find the mean 𝜇 and standard deviation 𝜎 of X from Example P.27, using the short-
cuts for a binomial random variable.

Solution In this case n = 4 and p = 18∕37, so

𝜇 = 4 ⋅ 18
37

= 1.946

and

𝜎 =

√
4 ⋅ 18

37
⋅
(
1 − 18

37

)
= 0.9996

which agree with our answers in Example P.27.

Example P.29
Norwegian Coffee Drinkers

In Example P.26 we see that the proportion of Norwegians in their early 40s who
drink at least one cup of coffee per day is about p = 0.894. Suppose that we take
random samples of 50 Norwegians from this age group. Find the mean and standard
deviation for the number of regular (at least a cup per day) coffee drinkers in such
samples. Would you be surprised to find fewer than 35 coffee drinkers in such a
sample?

Solution The mean and standard deviation for the number of regular coffee drinkers in sam-
ples of size 50 when p = 0.894 are

𝜇 = np = 50 ⋅ 0.894 = 44.7 and 𝜎 =
√
50 ⋅ 0.894 ⋅ (1 − 0.894) = 2.18

We see that 35 is almost 4.5 standard deviations below 𝜇 = 44.7, so it would be very
surprising for a random sample of 50 Norwegians in this age group to contain fewer
than 35 regular coffee drinkers.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Identify when a discrete random variable is binomial

• Compute probabilities for a binomial random variable

• Compute the mean and standard deviation for a binomial random
variable
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Exercises for Section P.4

SKILL BUILDER 1: BINOMIAL OR NOT?
In Exercises P.95 to P.99, determine whether the
process describes a binomial random variable. If it
is binomial, give values for n and p. If it is not bino-
mial, state why not.

P.95 Count the number of sixes in 10 dice rolls.

P.96 Roll a die until you get 5 sixes and count the
number of rolls required.

P.97 Sample 50 students who have taken Intro
Stats and record the final grade in the course for
each.

P.98 Suppose 30% of students at a large univer-
sity take Intro Stats. Randomly sample 75 students
from this university and count the number who have
taken Intro Stats.

P.99 Worldwide, the proportion of babies who are
boys is about 0.51. We randomly sample 100 babies
born and count the number of boys.

SKILL BUILDER 2: FACTORIALS AND BINO-
MIAL COEFFICIENTS
In Exercises P.100 to P.107, calculate the requested
quantity.

P.100 4!
P.101 7!
P.102 8!
P.103 6!

P.104
(
8
3

)

P.105
(
5
2

)

P.106
(
10
8

)

P.107
(
6
5

)

SKILL BUILDER 3: COMPUTING BINOMIAL
PROBABILITIES
In Exercises P.108 to P.111, calculate the requested
binomial probability.

P.108 Find P(X = 2) if X is a binomial random
variable with n = 6 and p = 0.3.

P.109 Find P(X = 7) if X is a binomial random
variable with n = 8 and p = 0.9.

P.110 Find P(X = 3) if X is a binomial random
variable with n = 10 and p = 0.4.

P.111 Find P(X = 8) ifX is a binomial random vari-
able with n = 12 and p = 0.75.

SKILL BUILDER 4: MEAN AND STANDARD
DEVIATION OF A BINOMIAL
In Exercises P.112 to P.115, calculate the mean and
standard deviation of the binomial random variable.

P.112 A binomial random variable with n = 6 and
p = 0.4

P.113 A binomial random variable with n = 10 and
p = 0.8

P.114 A binomial random variable with n = 30 and
p = 0.5

P.115 A binomial random variable with n = 800
and p = 0.25

P.116 Boys or Girls? Worldwide, the proportion of
babies who are boys is about 0.51. A couple hopes
to have three children and we assume that the sex
of each child is independent of the others. Let the
random variable X represent the number of girls in
the three children, so X might be 0, 1, 2, or 3. Give
the probability function for each value of X.

P.117 Class Year Suppose that undergraduate stu-
dents at a university are equally divided between
the four class years (first-year, sophomore, junior,
senior) so that the probability of a randomly chosen
student being in any one of the years is 0.25. If we
randomly select four students, give the probability
function for each value of the random variable X =
the number of seniors in the four students.

P.118 College Graduates From the US Census, we
learn that 27.5% of US adults have graduated from
college. If we take a random sample of 12 US adults,
what is the probability that exactly 6 of them are
college graduates?

P.119 Senior Citizens In the US Census, we learn
that 13% of all people in the US are 65 years old
or older. If we take a random sample of 10 peo-
ple, what is the probability that 3 of them are 65 or
older? That 4 of them are 65 or older?

P.120 Owner-Occupied Housing Units In the US
Census, we learn that 65% of all housing units are
owner-occupied while the rest are rented. If we take
a random sample of 20 housing units, find the prob-
ability that:

(a) Exactly 15 of them are owner-occupied

(b) 18 or more of them are owner-occupied
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P.121 Mean and Standard Deviation of Boys or
Girls In Exercise P.116, we discuss the random vari-
able counting the number of girls in three babies,
given that the proportion of babies who are girls is
about 0.49. Find the mean and standard deviation
of this random variable.

P.122 Mean and Standard Deviation of Class Year
In Exercise P.117, we discuss the random variable
counting the number of seniors in a sample of four
undergraduate students at a university, given that
the proportion of undergraduate students who are
seniors is 0.25. Find the mean and standard devia-
tion of this random variable.

P.123 Mean and Standard Deviation of College
Graduates Exercise P.118 describes a random vari-
able that counts the number of college graduates in
a sample. Use the information in that exercise to
find the mean and standard deviation of this ran-
dom variable.

P.124 Mean and Standard Deviation of Senior Cit-
izens Exercise P.119 describes a random variable
that counts the number of senior citizens in a sam-
ple. Use the information in that exercise to find the
mean and standard deviation of this random vari-
able.

P.125 Mean and Standard Deviation of Owner-
Occupied Housing Units Exercise P.120 describes a
random variable that counts the number of owner-
occupied units in a sample of housing units. Use the
information in that exercise to find the mean and
standard deviation of this random variable.

P.126 Stephen Curry’s Free Throws As we see in
Exercise P.37 on page 747, during the 2015-16 NBA
season, Stephen Curry of theGolden StateWarriors
had a free throw shooting percentage of 0.908.
Assume that the probability Stephen Curry makes
any given free throw is fixed at 0.908, and that free
throws are independent.

(a) If Stephen Curry shoots 8 free throws in a game,
what is the probability that he makes at least 7
of them?

(b) If Stephen Curry shoots 80 free throws in the
playoffs, what is the probability that he makes
at least 70 of them?

(c) If Stephen Curry shoots 8 free throws in a game,
what are the mean and standard deviation for
the number of free throws he makes during the
game?

(d) If Stephen Curry shoots 80 free throws in the
playoffs, what are the mean and standard devi-
ation for the number of free throws he makes
during the playoffs?

P.127 Airline Overbooking Suppose that past expe-
rience shows that about 10% of passengers who are
scheduled to take a particular flight fail to show up.
For this reason, airlines sometimes overbook flights,
selling more tickets than they have seats, with the
expectation that they will have some no shows. Sup-
pose an airline uses a small jet with seating for
30 passengers on a regional route and assume
that passengers are independent of each other in
whether they show up for the flight. Suppose that
the airline consistently sells 32 tickets for every one
of these flights.

(a) On average, how many passengers will be on
each flight?

(b) How often will they have enough seats for all of
the passengers who show up for the flight?

P.128 Mean and Standard Deviation of a Propor-
tion To find the proportion of times something
occurs, we divide the count (often a binomial ran-
dom variable) by the number of trials n. Using the
formula for the mean and standard deviation of
a binomial random variable, derive the mean and
standard deviation of a proportion resulting from n
trials and probability of success p.

P.5DENSITY CURVES AND THE NORMAL DISTRIBUTION

In Section P.3 we introduce the idea of discrete and continuous random variables.
In that section we use a probability function to assign probabilities to each value
of a discrete random variable. This is not feasible for a continuous random variable
where the values can occur anywhere within some range of possible values—far too
many to let us give separate probabilities to every possible result. In this section we
introduce a method for describing the distribution of continuous random variables
and use it to work with one of the most important continuous random variables, the
normal distribution.19

19Chapter 5 discusses using a normal distribution to find confidence intervals and p-values. In this section
we consider more general uses of the normal distribution to describe any population.
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Figure P.5 Histogram of
Atlanta commute
distances with density
curve Commute Distance

0 10 20 30 40 50 60

Density Curves
A theoretical model for the distribution of a continuous random variable is called
a density curve. A density curve is a curve that reflects the location, spread, and
general shape of the distribution over the range of possible values. Figure P.5 shows
a histogram representing the distances of commutes for workers in the city of
Atlanta.20 We add a rough density curve to smooth out the sharp edges of the
histogram. This density curve is a relatively simple curve that follows the general
pattern of the data, thus providing a model for the underlying distribution.

Density Curves

A density curve is scaled to have two important properties:

• The total area under the curve is equal to one, to correspond to
100% of the distribution.

• The area over any interval is the proportion of the distribution in
that interval.

The density curve represents the entire distribution and regions under the curve
correspond to portions of the distribution.

Example P.30
The density curve in Figure P.6 is a model for the distribution of commute distances
in Atlanta, without the underlying histogram of Figure P.5. Three regions of com-
mute distances are given. Match the proportion in each region with one of the
following values:

0.05 0.15 0.40 0.50 0.80 1.0 30

(a) Between 30 and 40 miles (the shaded region)

(b) Less than 30 miles

(c) More than 40 miles

20The histogram is based roughly on distances for a sample of Atlanta commutes in CommuteAtlanta.
We assume that the general shape is representative of the population.
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Figure P.6 Density curve
for Atlanta commute
distances

0 10 20 30 40 50 60 70
Commute Distance

Solution The proportions correspond to the area under the curve over that region. All three
areas are less than the total area that is 1.0, so all three proportions are less than 1.

(a) The shaded area of the region between 30 and 40 miles is well less than half of
the total area, so the area is definitely less than 0.5. A guess between 10% and
25% would be reasonable, so we estimate that the proportion is about 0.15.

(b) The area below 30 miles is clearly more than half of the total area. A guess
between 70% and 85% would be reasonable, so we match this proportion
with 0.80.

(c) There’s not much area above 40 miles. Since the three areas need to add up to
the total of 100%, a guess of 5% for the tail area to the right of 40 miles would
be consistent with the previous estimates of 15% and 80% for the other two
regions. We match this proportion with 0.05.

In practice, specifying the exact form of a density curve and finding the exact
areas of regions such as those shown in Figure P.6 require tools (such as calculus)
that are beyond the scope of this text. However, one general type of density curve
occurs in many common applications. In the rest of this section, we focus on working
with this important distribution.

Normal Distributions
While a density curve can have almost any shape, a normal density curve has the
special form of a bell-shaped curve. The actual equation of this curve is fairly com-
plicated, but the general shape is readily recognized.

Normal Density Curve

A normal distribution follows a bell-shaped curve. We use the two
parametersmean, 𝜇, and standard deviation, 𝜎, to distinguish one nor-
mal curve from another.

For shorthand we often use the notationN(𝜇, 𝜎) to specify that a distri-
bution is normal (N) with some mean (𝜇) and standard deviation (𝜎).

We use the population parameters 𝜇 and 𝜎 when specifying a normal density.
The reason is that the normal curve is a model for the population, even if that
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Figure P.7 Normal
density curve

σ σ
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“population” is a bootstrap or randomization distribution for some sample statis-
tic. In practice, we often use sample values (x and s) or a hypothesized value of
a parameter to estimate or specify the mean or standard deviation for a normal
distribution.

Figure P.7 shows a normal density curve centered at somemean, 𝜇. The standard
deviation helps determine the horizontal scale. Recall that roughly 95% of data fall
within two standard deviations of the mean. This amount corresponds to the area
within 𝜇 ± 2𝜎.

Graph of a Normal Density Curve

The graph of the normal density curve N(𝜇, 𝜎) is a bell-shaped curve
which:

• Is centered at the mean 𝜇

• Has a horizontal scale such that 95% of the area under the curve
falls within two standard deviations of the mean (within 𝜇 ± 2𝜎)

Figure P.8 shows how the normal distribution changes as the mean 𝜇 is shifted
to move the curve horizontally or the standard deviation 𝜎 is changed to stretch or
shrink the curve. Remember that the area under each of these curves is equal to one.

(a) Different means
–4 –2 0 2

N(0,1) N(2,1)

4 –4 –2 0 2 4
(b) Different standard deviations

N(0,0.5)

N(0,1)

N(0,2)

Figure P.8 Comparing normal curves
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Example P.31
Drawing Normal Curves

Sketch a normal density curve for each of the following situations:

(a) Scores on an exam which have a N(75, 10) distribution.
(b) Heights of college students if the distribution is bell-shaped with a mean of

68 inches and standard deviation of 4 inches.

(c) Grade point average (GPA) of students taking introductory statistics that follow
a normal distribution centered at 3.16 with a standard deviation of 0.40. 21

Solution (a) The normal density curve N(75, 10) is a bell-shaped curve centered at the mean
of 75 and with a scale on the horizontal axis so that 95% of the area under the
curve is within the range 𝜇 ± 2𝜎 = 75 ± 2(10) = 75 ± 20, or between 55 and 95.
See Figure P.9(a).

(b) The normal density curve N(68, 4) is a bell-shaped curve centered at the mean
of 68 and with a scale so that 95% of the area is within the range 𝜇 ± 2𝜎 = 68 ±
2(4) = 68 ± 8, or between 60 and 76. See Figure P.9(b).

(c) The normal density curve N(3.16, 0.40) is a bell-shaped curve centered at the
mean of 3.16 and with a scale so that 95% of the area is within the range 𝜇 ± 2𝜎 =
3.16 ± 2(0.40) = 3.16 ± 0.80, or between 2.36 and 3.96. See Figure P.9(c).

Note that the shapes of the three curves in Figure P.9 are the same; only the scaling
on the horizontal axis changes in each case. The mean locates the center of the
distribution and the standard deviation on either side controls the spread.

105 56 60 64 68 72 76 80 2.36 2.76 3.16 3.56 3.9645 55 65 75
Exam Scores Height GPA

85 95

(a) Exam scores ~ N(75, 10) (b) Student heights ~ N(68, 4) (c) Grade Point Average ~ N(3.16, 0.40)

Figure P.9 Three normal curves

Finding Normal Probabilities and Percentiles
We find probabilities of intervals using the area under the density curve, but no con-
venient formulas exist for computing areas with a normal density.22 For this reason
we rely on technology, such as StatKey, statistical software, or a calculator, to com-
pute probabilities for normal distributions. In most of these applications we need to
specify:

• The mean and standard deviation for the normal distribution

• The endpoint(s) of the interval

• The direction (above, below, or between) the endpoint(s)

21Distribution of student heights and GPA approximated from the data in StudentSurvey.
22Even those of you with a calculus background will find that there is no antiderivative to help find areas
under a normal density function.
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Istock.com/style-photographs

Will scores on this exam follow a normal curve?

Example P.32
Exam Scores

Suppose that scores on an exam follow a normal distribution with mean 𝜇 = 75 and
standard deviation 𝜎 = 10. What proportion of the scores are above 90 points?

Solution Figure P.10 shows the results using StatKey, a TI-83 calculator, and the R statistical
package to find the area above 90 for a N(75, 10) density. The probability of getting
an exam grade above 90 is about 0.067.

(b) TI-83 calculator and R package

TI-83:

normalcdf(90,1000,75,10)

> 1-pnorm(90,75,10)

[1] 0.0668072

0.0668072287

R:

Theoretical Distribution

Normal Distribution
Mean

75 10
Standard Deviation

(a) StatKey

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000
40 50 60 70 80 100 110

90.000

Two-Tail Right TailLeft Tail

90

Statkey

0.067

Figure P.10 Technologies for computing a normal probability

In addition to finding probabilities of regions as areas under a normal density,
we are also often interested in going in the other direction and finding a region
with a specific proportion. Again, we generally rely on technology to handle the
computational details.
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Example P.33
Still assuming that the distribution of scores for an exam is N(75, 10), suppose that
an instructor determines that students with scores in the lowest 20% of the distribu-
tion need to see a tutor for extra help. What is the cutoff for scores that fall in this
category?

Solution Notice now that the given information is the area under the normal curve (20%)
and the goal is to find the endpoint that has that amount of area below it. Figure P.11
shows the results, again using several different technologies. The instructor should
ask students with exam grades below 66.6 to sign up for the extra tutoring.

(b) TI-83 calculator and R package

TI-83:

invNorm(0.2,75,10)

66.58378767

> qnorm(0.2,75,10)

[1] 66.58379

R:

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Normal Distribution
Mean

75 10
Standard Deviation

Two-Tail Right TailLeft Tail

(a) StatKey

40 50 60 70 80 100 110
66.584

90

Theoretical DistributionStatkey

0.200

Figure P.11 Technologies for finding a normal endpoint

Standard Normal N(0,1)
Because all the normal distributions look the same except for the horizontal scale,
another common way to deal with normal calculations is to convert problems to one
specific standard normal scale. The standard normal has a mean of 0 and a standard
deviation of 1, so 𝜇 = 0 and 𝜎 = 1. We often use the letter Z to denote a standard
normal, so that Z ∼ N(0, 1).

To convert a value from a N(𝜇, 𝜎) scale to a standard normal scale, we subtract
themean 𝜇 to shift the center to zero, then divide the result by the standard deviation
𝜎 to stretch (or shrink) the difference to match a standard deviation of one. If X is
a value on the N(𝜇, 𝜎) scale, then Z = (X − 𝜇)∕𝜎 is the corresponding point on the
N(0, 1) scale.23 You should recognize this as the z-score from page 91, because the
standardized value just measures how many standard deviations a value is above or
below themean. The process of converting from the standard normal back toN(𝜇, 𝜎)
just reverses the process of finding a z-score. Namely, we multiply the z-value by the
standard deviation and then add the mean.

23When technology is not available, a printed table with probabilities for certain standard normal end-
points can be used.
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Standard Normal

The standard normal distribution has mean zero and standard devia-
tion equal to one, Z ∼ N(0, 1).
To convert from any X ∼ N(𝜇, 𝜎) to Z ∼ N(0, 1), we standardize
values with the z-score:

Z = X − 𝜇

𝜎

To convert from Z ∼ N(0, 1) to any X ∼ N(𝜇, 𝜎), we reverse the stan-
dardization with:

X = 𝜇 + Z ⋅ 𝜎

Example P.34
Example P.31(b) on page 774 uses a N(68, 4) distribution to describe the heights (in
inches) of college students. Suppose we are interested in finding the proportion of
students who are at least six feet (72 inches) tall.

(a) Convert the endpoint (72 inches) to a standard normal scale.

(b) Sketch both distributions, shade the corresponding regions of interest, and com-
pare the probabilities.

Solution (a) We compute the z-score for the original endpoint.

z = X − 𝜇

𝜎

= 72 − 68
4

= 1.0

The region above 72 in the N(68, 4) scale translates to a region above 1.0 in the
N(0, 1) scale.

(b) The regions in both the original and standardized scales are shown in Figure P.12.
Notice that they look identical except for the horizontal scale and show that
about 16% of students should be at least 72 inches tall.

(a) N (68, 4) (b) N (0, 1)

55 –4 –3 –2 –1 0 1 2 3 460 65 70 75 80
72.000 1.000

0.1590.159

Two-Tail Right TailLeft Tail Two-Tail Right TailLeft Tail

Figure P.12 Converting heights above 72 to a standard normal
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What about getting percentiles using a standard normal distribution? For that
wemust reverse the process.We first find an endpoint (or endpoints) on the standard
normal curve that has the desired property, then convert that value to the given
normal distribution.

Example P.35
More Exam Scores

Use the standard normal distribution to find a point in aN(75, 10) exam distribution
that has 20% of the scores below it.

Solution This is the same question as in Example P.33 on page 776. The difference now is that
we illustrate the use of the standard normal distribution. Using technology, we find
that the lowest 20% of a standard normal distribution is all of the values below z =
−0.842. Thus we need to find the point on a N(75, 10) curve that is −0.842 standard
deviations from its mean. The relevant calculation is

x = 𝜇 + z ⋅ 𝜎 = 75 − 0.842 ⋅ 10 = 66.58

This answer, recommending tutors for students with exam grades below 66.6, is con-
sistent with what we found without standardizing in Example P.33.

S E C T I O N L E A R N I N G G O A L S

You should now have the understanding and skills to:

• Estimate probabilities as areas under a density function

• Recognize how the mean and standard deviation relate to the center
and spread of a normal distribution

• Use technology to compute probabilities of intervals for any normal
distribution

• Use technology to find endpoint(s) of intervals with a specified proba-
bility for any normal distribution

• Convert in either direction between a general N(𝜇, 𝜎) distribution and a
standard N(0,1) distribution

Exercises for Section P.5

SKILL BUILDER 1
Exercises P.129 to P.131 refer to the density func-
tion shown in Figure P.13. In each exercise, use the
density function to choose the best estimate for the
proportion of the population found in the specified
region.

P.129 The percentage of the population that is less
than 25 is closest to:

10% 28% 50% 62% 95%
P.130 The percentage of the population that is more
than 30 is closest to:

4% 27% 50% 73% 95%
5 10 15 20 25 30 35

Figure P.13 Density curve for Exercises P.129 to P.131
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0.0
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Figure P.14 Two density curves and one that isn’t

P.131 The percentage of the population that is
between 10 and 30 is closest to:

3% 33% 50% 67% 95%

SKILL BUILDER 2
P.132 Two of the curves shown in Figure P.14 are
valid density curves and one is not. Identify the one
that is not a density. Give a reason for your choice.

SKILL BUILDER 3
In Exercises P.133 to P.136, find the specified areas
for a N(0, 1) density.
P.133 (a) The area below z = 1.04

(b) The area above z = −1.5
(c) The area between z = 1 and z = 2

P.134 (a) The area below z = 0.8

(b) The area above z = 1.2

(c) The area between z = −1.75 and z = −1.25
P.135 (a) The area above z = −2.10
(b) The area below z = −0.5
(c) The area between z = −1.5 and z = 0.5

P.136 (a) The area above z = 1.35

(b) The area below z = −0.8
(c) The area between z = −1.23 and z = 0.75

SKILL BUILDER 4
In Exercises P.137 to P.140, find endpoint(s) on a
N(0, 1) density with the given property.

P.137 (a) The area to the left of the endpoint is
about 0.10

(b) The area to the right of the endpoint is about
0.80

(c) The area between ±z is about 0.95

P.138 (a) The area to the left of the endpoint is
about 0.70

(b) The area to the right of the endpoint is about
0.01

(c) The area between ±z is about 0.90
P.139 (a) The area to the right of the endpoint is

about 0.90

(b) The area to the left of the endpoint is about 0.65

P.140 (a) The area to the right of the endpoint is
about 0.02

(b) The area to the left of the endpoint is about 0.40

SKILL BUILDER 5
In Exercises P.141 to P.144, find the specified areas
for a normal density.

P.141 (a) The area below 80 on a N(75, 10) distri-
bution

(b) The area above 25 on a N(20, 6) distribution
(c) The area between 11 and 14 on a N(12.2, 1.6)

distribution

P.142 (a) The area above 6 on a N(5, 1.5)
distribution

(b) The area below 15 on a N(20, 3) distribution
(c) The area between 90 and 100 on a N(100, 6)

distribution

P.143 (a) The area above 200 on a N(120, 40)
distribution

(b) The area below 49.5 on a N(50, 0.2) distribution
(c) The area between 0.8 and 1.5 on a N(1, 0.3)

distribution

P.144 (a) The area below 0.21 on a N(0.3, 0.04)
distribution
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(b) The area above 472 on a N(500, 25) distribution
(c) The area between 8 and 10 on a N(15, 6)

distribution

SKILL BUILDER 6
In Exercises P.145 to P.148, find endpoint(s) on the
given normal density curve with the given property.

P.145 (a) The area to the right of the endpoint on a
N(50, 4) curve is about 0.01.

(b) The area to the left of the endpoint on a
N(2, 0.05) curve is about 0.70.

(c) The symmetric middle area on a N(100, 20)
curve is about 0.95.

P.146 (a) The area to the right of the endpoint on a
N(25, 8) curve is about 0.25.

(b) The area to the left of the endpoint on a
N(500, 80) curve is about 0.02.

(c) The symmetric middle area on a N(10, 3) curve
is about 0.95.

P.147 (a) The area to the left of the endpoint on a
N(100, 15) curve is about 0.75.

(b) The area to the right of the endpoint on aN(8, 1)
curve is about 0.03.

P.148 (a) The area to the left of the endpoint on a
N(5, 2) curve is about 0.10.

(b) The area to the right of the endpoint on a
N(500, 25) curve is about 0.05.

SKILL BUILDER 7
Exercises P.149 to P.156 ask you to convert an area
from one normal distribution to an equivalent area
for a different normal distribution. Draw sketches
of both normal distributions, find and label the end-
points, and shade the regions on both curves.

P.149 The area below 40 for a N(48, 5) distribution
converted to a standard normal distribution

P.150 The upper 30% for a N(48, 5) distribution
converted to a standard normal distribution

P.151 The upper 5% for a N(10, 2) distribution con-
verted to a standard normal distribution

P.152 The area above 13.4 for aN(10, 2) distribution
converted to a standard normal distribution

P.153 The lower 10% for a standard normal distri-
bution converted to a N(500, 80) distribution
P.154 The area above 2.1 for a standard normal dis-
tribution converted to a N(500, 80) distribution
P.155 The area between 1 and 2 for a stan-
dard normal distribution converted to a N(100, 15)
distribution

P.156 The middle 80% for a standard normal distri-
bution converted to a N(100, 15) distribution
P.157 SAT scores The Scholastic Aptitude Test
(SAT)24 has two parts: Reading and Writing and
Mathematics. Scores on both parts range from 200
to 800. The means and standard deviations for the
two tests are shown in Table P.16. Assuming that the
Reading and Writing scores follow a normal distri-
bution, draw a sketch of the normal distribution and
label at least 3 points on the horizontal axis.

Table P.16 SAT scores for the class of 2019

Mean St. Dev.

Reading and Writing 531 104
Mathematics 528 117

P.158 Reading and Writing on the SAT Exam In
Table P.16 with Exercise P.157, we see that scores
on the Reading and Writing portion of the SAT
(Scholastic Aptitude Test) exam are normally dis-
tributed with mean 531 and standard deviation 104.
Use the normal distribution to answer the following
questions:

(a) What is the estimated percentile for a student
who scores 700 on Critical Reading?

(b) What is the approximate score for a student who
is at the 30th percentile for Critical Reading?

P.159 Mathematics on the SAT Exam In Table P.16
with Exercise P.157, we see that scores on the Math-
ematics portion of the SAT (Scholastic Aptitude
Test) exam are normally distributed with mean 528
and standard deviation 117. Use the normal distri-
bution to answer the following questions:

(a) What is the estimated percentile for a student
who scores 450 on Mathematics?

(b) What is the approximate score for a student
who is at the 90th percentile for Mathematics?

P.160 Boys Heights Heights of 10-year-old boys
(5th graders) follow an approximate normal dis-
tribution with mean 𝜇 = 55.5 inches and standard
deviation 𝜎 = 2.7 inches.25

(a) Draw a sketch of this normal distribution and
label at least three points on the horizontal axis.

24https://blog.prepscholar.com/sat-standard-deviation.
25Centers for Disease Control and Prevention growth chart,
http://www.cdc.gov/growthcharts/html_charts/statage.htm.
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(b) According to this normal distribution, what pro-
portion of 10-year-old boys are between 4 ft 4 in
and 5 ft tall (between 52 inches and 60 inches)?

(c) A parent says his 10-year-old son is in the 99th
percentile in height. How tall is this boy?

P.161 Heights of Men in the US Heights of adult
males in the US are approximately normally dis-
tributed with mean 70 inches (5 ft 10 in) and stan-
dard deviation 3 inches.

(a) What proportion of US men are between 5 ft
8 in and 6 ft tall (68 and 72 inches, respectively)?

(b) If a man is at the 10th percentile in height, how
tall is he?

P.162 What Proportion Have College Degrees?
According to the US Census Bureau,26 about 32.5%
of US adults over the age of 25 have a bachelor’s
level (or higher) college degree. For random sam-
ples of n = 500 US adults over the age of 25, the
sample proportions, p̂, with at least a bachelor’s
degree follow a normal distribution withmean 0.325
and standard deviation 0.021. Draw a sketch of this
normal distribution and label at least three points
on the horizontal axis.

P.163 Quartiles for GPA In Example P.31 on page
774 we see that the grade point averages (GPA) for
students in introductory statistics at one college are
modeled with a N(3.16, 0.40) distribution. Find the
first and third quartiles of this normal distribution.
That is, find a value (Q1) where about 25% of the
GPAs are below it and a value (Q3) that is larger
than about 75% of the GPAs.

P.164 Random Samples of College Degree Propor-
tions In Exercise P.162, we see that the distribu-
tion of sample proportions of US adults with a

26From the 2015 Current Population Survey at http://www.census
.gov/hhes/socdemo/education/data/cps/.

20.0 20.5 21.0 21.5 22.0
xbar

22.5 23.0 23.5 24.0

Figure P.15 Bootstrap means for commute times in CommuteStLouis

college degree for random samples of size n = 500
isN(0.325, 0.021). How often will such samples have
a proportion, p̂, that is more than 0.35?

P.165 Commuting Times in St. Louis A bootstrap
distribution of mean commute times (in minutes)
based on a sample of 500 St. Louis workers stored
in CommuteStLouis is shown in Figure P.15. The
pattern in this dotplot is reasonably bell-shaped so
we use a normal curve to model this distribution
of bootstrap means. The mean for this distribution
is 21.97 minutes and the standard deviation is 0.65
minutes. Based on this normal distribution, what
proportion of bootstrap means should be in each of
the following regions?

(a) More than 23 minutes

(b) Less than 20 minutes

(c) Between 21.5 and 22.5 minutes

P.166 Randomization Slopes A randomization dis-
tribution is created to test a null hypothesis that the
slope of a regression line is zero. The randomiza-
tion distribution of sample slopes follows a normal
distribution, centered at zero, with a standard devi-
ation of 2.5.

(a) Draw a rough sketch of this randomization dis-
tribution, including a scale for the horizontal
axis.

(b) Under this normal distribution, how likely are
we to see a sample slope above 3.0?

(c) Find the location of the 5%-tile in this normal
distribution of sample slopes.

P.167 ExamGradesExam grades across all sections
of introductory statistics at a large university are
approximately normally distributed with a mean of
72 and a standard deviation of 11. Use the normal
distribution to answer the following questions.

(a) What percent of students scored above a 90?
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(b) What percent of students scored below a 60?

(c) If the lowest 5% of students will be required
to attend peer tutoring sessions, what grade is
the cutoff for being required to attend these
sessions?

(d) If the highest 10% of students will be given a
grade of A, what is the cutoff to get an A?

P.168 Curving Grades on an Exam A statistics
instructor designed an exam so that the grades
would be roughly normally distributed with mean
𝜇 = 75 and standard deviation 𝜎 = 10. Unfortu-
nately, a fire alarm with ten minutes to go in the
exam made it difficult for some students to finish.
When the instructor graded the exams, he found
they were roughly normally distributed, but the
mean grade was 62 and the standard deviation was
18. To be fair, he decides to “curve” the scores
to match the desired N(75, 10) distribution. To do
this, he standardizes the actual scores to z-scores
using the N(62, 18) distribution and then “unstan-
dardizes” those z-scores to shift to N(75, 10). What

is the new grade assigned for a student whose orig-
inal score was 47? How about a student who origi-
nally scores a 90?

P.169 Empirical Rule for Normal Distributions
Pick any positive values for the mean and the stan-
dard deviation of a normal distribution. Use your
selection of a normal distribution to answer the
questions below. The results of parts (a) to (c) form
what is often called the Empirical Rule for the stan-
dard deviation in a normal distribution.

(a) Verify that about 95% of the values fall within
two standard deviations of the mean.

(b) What proportion of values fall within one stan-
dard deviation of the mean?

(c) What proportion of values fall within three stan-
dard deviations of the mean?

(d) Will the answers to (b) and (c) be the same
for any normal distribution? Explain why or
why not.
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Guide to choosing the appropriate method based on the variables and number of
categories:

Variables Visualization Number of
Categories

Appropriate Inference

One Categorical
Two Categories

Single Proportion or
Bar chart, Chi-Square Goodness of Fit
Pie chart

More Categories Chi-Square Goodness of Fit

One Quantitative
Histogram,

— Single Mean
Dotplot, Boxplot

Two Categorical
Two Categories

Difference in Proportions or
Side-by-Side or
Segmented Bar
Chart

Chi-Square Test for
Association

More Categories
Chi-Square Test for
Association

One Quantitative Two Categories
Difference in Means or

One Categorical, Side-by-Side Plots
Analysis of Variance

More Categories Analysis of Variance

Two Quantitative Scatterplot —
Correlation,
Simple Regression

Quantitative Response,
— — Multiple Regression

Multiple Explanatory

Categorical Response,
— — Take STAT2!

Multiple Explanatory

783
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Chapter 1: Collecting Data
In Chapter 1, we learn about appropriate ways to collect data. A dataset consists
of values for one or more variables that record or measure information for each
of the cases in a sample or population. A variable is generally classified as either
categorical, if it divides the data cases into groups, or quantitative, if it measures
some numerical quantity.

What we can infer about a population based on the data in a sample depends on
the method of data collection. We try to collect a sample that is representative of the
population and that avoids sampling bias. The most effective way to avoid sampling
bias is to select a random sample. Also, we try to avoid other possible sources of
bias by considering things like the wording of a question. The key is to always think
carefully about whether the method used to collect data might introduce any bias.

Data collected to analyze a relationship between variables can come from an
observational study or a randomized experiment. In an observational study, we need
to be wary of confounding variables. A randomized experiment allows us to avoid
confounding variables by actively (and randomly) manipulating the explanatory
variables. The handling of different treatment groups in an experiment should be
as similar as possible, with the use of blinding and/or a placebo treatment when
appropriate.

The only way to infer a causal association between variables statistically is
through data obtained from a randomized experiment.One of the most common and
serious mistakes in all of statistics comes from a failure to appreciate the importance
of this statement.

There are many questions to ask involving how data are collected, but two stand
out, both involving randomness. These questions, and their simplified conclusions,
are summarized in the diagram below.

Possible to 
generalize from
the sample to
the population

Cannot 
generalize from
the sample to
the population

Possible to 
make

conclusions
about causality

Cannot make
conclusions

about causality

Yes No

Was the sample
randomly selected?

Was the explanatory variable 
randomly assigned?

Yes No

Two fundamental questions about data collection
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Chapter 2: Describing Data
In Chapter 2, we learn about methods to display and summarize data. We use statis-
tical plots to display information and summary statistics to quantify aspects of that
information. The type of visualization or statistic we use often depends on the types
of variables (quantitative or categorical), as summarized below:

Describing a Single Variable
• Quantitative variable

– Graphical display: dotplot, histogram, boxplot

– Summary statistics:

* Center: mean, median

* Other locations: maximum, minimum, first quartile, third quartile

* Spread: standard deviation, interquartile range, range

• Categorical variable

– Graphical display: bar chart, pie chart

– Summary statistics: frequency, relative frequency, proportion

Describing a Relationship between Two Variables
• Categorical vs Categorical

– Graphical display: segmented or side-by-side bar chart

– Summary statistics: two-way table, row/column proportions, difference in
proportions

• Categorical vs Quantitative

– Graphical display: side-by-side boxplots, dotplots, or histograms

– Summary statistics: quantitative statistics within each category, difference in
means

• Quantitative vs Quantitative

– Graphical display: scatterplot

– Summary statistics: correlation, regression line

Visualizing Multiple Variables
In Section 2.7, we discuss a variety of creative and effective ways to display data with
multiple variables and/or data that include geographic or time variables.
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Chapter 3: Confidence Intervals
We estimate a population parameter using a sample statistic. Since such statistics
vary from sample to sample, we need an idea for how far the population parameter
could be from the sample statistic, amargin of error. An interval estimate is a range of
plausible values for the population parameter. When we construct this interval using
a method that has some predetermined chance of capturing the true parameter, we
get a confidence interval.

We assess the variability in sample statistics with a bootstrap distribution, cre-
ated using the key idea that if the sample is representative of the population, then
the population can be approximated by many copies of the sample. To construct a
bootstrap distribution we:

• Generate bootstrap samples with replacement from the original sample, using the
same sample size

• Compute the statistic of interest for each of the bootstrap samples

• Collect the statistics from many (usually at least 1000) bootstrap samples into a
bootstrap distribution

From a symmetric bootstrap distribution, we have twomethods to construct an inter-
val estimate:

Method 1: Estimate SE, the standard error of the statistic, as the standard deviation
of the bootstrap distribution. The roughly 95% confidence interval for the
parameter is then Sample statistic ±2 ⋅ SE.

Method 2: Use percentiles of the bootstrap distribution to chop off the tails of the
bootstrap distribution and keep a specified percentage (determined by the
confidence level) of the values in the middle.

A bootstrap distribution is shown for mean body temperature. The bootstrap
distribution is centered around the sample statistic, x = 98.26, with SE = 0.109, so a
95% confidence interval is Statistic ± 2 ⋅ SE = 98.26 ± 2 ⋅ 0.109 = (98.042, 98.478). A
95% confidence interval can also be found as the middle 95% of bootstrap statistics,
shown in the figure to be (98.044, 98.476). We are 95% confident that mean body
temperature is between 98.04∘F and 98.48∘F.

98.044 98.47698.257
97.8 97.9 98.0 98.1 98.2 98.3 98.4 98.5 98.6
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20
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100

120

MeanBootstrap Dotplot of

Left Tail Two Tail Right Tail

0.025 0.95 0.025

# samples = 3000
mean = 98.257
st. dev. = 0.109

Bootstrap distribution of sample means
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Chapter 4: Hypothesis Tests
Hypothesis tests are used to investigate claims about population parameters. We
use the question of interest to determine the two competing hypotheses: The null
hypothesis (H0) is generally that there is no effect or no difference while the alter-
native hypothesis (Ha) is the claim for which we seek evidence. We conclude in favor
of the alternative hypothesis if the sample supports the alternative hypothesis and
provides strong evidence against the null hypothesis. We measure the strength of
evidence a sample shows against the null hypothesis with a p-value.

The p-value is the probability of obtaining a sample statistic as extreme as (or
more extreme than) the observed sample statistic, when the null hypothesis is true.

A small p-value means that the observed sample results would be unlikely to
happen, when the null hypothesis is true, just by random chance. When making for-
mal decisions based on the p-value, we use a pre-specified significance level, 𝛼.

• If p-value < 𝛼, we reject H0 and have statistically significant evidence forHa.

• If p-value ≥ 𝛼, we do not rejectH0, the test is inconclusive, and the results are not
statistically significant.

The key idea is: The smaller the p-value, the stronger the evidence against the null
hypothesis and in support of the alternative hypothesis. Rather than making a formal
reject/do not reject decision, we sometimes interpret the p-value as a measure of
strength of evidence.

One way to estimate a p-value is to construct a randomization distribution of
sample statistics that we might see by random chance, if the null hypothesis were
true. The p-value is the proportion of randomization statistics that are as extreme as
the observed sample statistic. If the original sample falls out in the tails, then a result
that extreme is unlikely to occur if the null hypothesis is true, providing evidence
against the null.

A randomization distribution for difference in mean memory recall between
sleep and caffeine groups for data in SleepCaffeine is shown. Each dot is a difference
in means that might be observed just by random assignment to treatment groups, if
there were no difference in terms of mean (memory) response. We see that 0.042 of
the simulated statistics are as extreme as the observed statistic (xs − xc = 3), so the p-
value is 0.042. This p-value is less than 0.05, so the results are statistically significant
at 𝛼 = 0.05, giving moderately strong evidence that sleeping is better than drinking
caffeine for memory.
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Chapter 5: Approximating with a Distribution
In Chapter 5 we see that the familiar bell-shape we encounter repeatedly in boot-
strap and randomization distributions is predictable, and is called the normal distri-
bution. Although a normal distribution can have any mean and standard deviation,
X ∼ N(𝜇, 𝜎), we often work with a standard normal, Z ∼ N(0, 1), by converting to a
z-score:

Z = X − 𝜇

𝜎

We generally rely on technology (such as the StatKey figures shown below) to com-
pute areas or endpoints for normal distributions.

The Central Limit Theorem tells us that, when the sample size is large
enough, sample means, proportions, and other statistics are approximately normally
distributed and centered at the value of the corresponding population parameter.

When sample statistics are normally distributed we can utilize the following gen-
eral formulas:

Confidence Interval ∶ Sample Statistic ± z∗ ⋅ SE

Hypothesis Test ∶ Test Statistic =
Sample Statistic −Null Parameter

SE

The z∗ in the confidence interval is based on a threshold keeping the desired
level of confidence in the middle of a standard normal distribution. The test statistic
has a standard normal distribution if the null hypothesis is true, so should be com-
pared to a standard normal distribution to find the p-value. In general we can find
the standard error, SE, from a bootstrap or randomization distribution. In the next
chapter we see a number of shortcut formulas for estimating SE in common situa-
tions and replace the standard normal z with a t-distribution for inference involving
means.
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Chapter 6: Inference for Means and Proportions
Under general conditions we can find formulas for the standard errors of sample
means, proportions, or their differences. This leads to formulas for computing confi-
dence intervals or test statistics based on normal or t-distributions.

Distribution Conditions Standard Error

Proportion Normal
np ≥ 10 and
n(1 − p) ≥ 10

√
p(1 − p)

n

Mean t, df = n − 1
n ≥ 30 or reasonably
normal

s√
n

Difference in
Proportions

Normal
n1p1 ≥ 10, n1(1 − p1)
≥ 10, and n2p2 ≥ 10,
n2(1 − p2) ≥ 10

√
p1(1 − p1)

n1
+
p2(1 − p2)

n2

Difference in
Means

t, df = the
smaller of n1 − 1
and n2 − 1

n1 ≥ 30 or reasonably
normal, and n2 ≥ 30 or
reasonably normal

√
s21
n1

+
s22
n2

Paired Difference
in Means

t, df = nd − 1
nd ≥ 30 or reasonably
normal

sd√
nd

Confidence Interval Test Statistic

General Sample statistic ± z∗ ⋅ SE
Sample statistic −Null parameter

SE

Proportion p̂ ± z∗ ⋅

√
p̂(1 − p̂)

n
p̂ − p0√
p0(1−p0)

n

Mean x ± t∗ ⋅ s∕
√
n

x − 𝜇0

s∕
√
n

Difference in
Proportions

(p̂1 − p̂2) ± z∗ ⋅

√
p̂1(1 − p̂1)

n1
+
p̂2(1 − p̂2)

n2

(p̂1 − p̂2) − 0√
p̂(1−p̂)
n1

+ p̂(1−p̂)
n2

Difference in
Means

(x1 − x2) ± t∗ ⋅

√
s21
n1

+
s22
n2

(x1 − x2) − 0√
s2
1

n1
+ s2

2

n2

Paired Diff.
in Means

xd ± t∗ ⋅
sd√
nd

xd − 0

sd∕
√
nd
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Chapter 7: Chi-Square Tests for Categorical Variables
Chi-square tests are used for testing hypotheses about one or two categorical vari-
ables, and are appropriate when the data can be summarized by counts in a table.
The variables can have multiple categories. The type of chi-square test depends on
whether there are one or two categorical variables:

• One Categorical Variable: Chi-Square Goodness-of-Fit Test

• Two Categorical Variables: Chi-Square Test for Association

Chi-square tests compare observed counts to expected counts (if the null hypothesis
were true). If the observed counts are farther away from the expected counts than
can be explained just by random chance, we have evidence against the null hypoth-
esis and in favor of the alternative. The distance between observed and expected
counts is quantified with the 𝜒

2-statistic, which is compared to a 𝜒
2-distribution to

calculate the p-value. The details are laid out below:

1. State hypotheses

• For one categorical variable:

– Null hypothesis: The proportions match an assumed set of proportions.

– Alternative hypothesis: At least one category has a different proportion.

• For two categorical variables:

– Null hypothesis: There is no association between the two variables.

– Alternative hypothesis: There is an association between the two variables.

2. Calculate the expected counts for each cell (as if the null hypothesis were true)

• For one categorical variable: Expected count for a cell = n ⋅ pi, where pi is
given inH0

• For two categorical variables:

Expected count for a cell = Row total ⋅ Column total
Total sample size

3. Compute the 𝜒
2-statistic:

𝜒
2 =

∑ (Obser𝑣ed − Expected)2

Expected

4. Find the p-value as the upper tail in a 𝜒2 distribution

• For one categorical variable: df = k − 1, where k is the number of categories.

• For two categorical variables: df = (r − 1) ⋅ (c − 1), where r is the number of
categories in one variable and c is the number of categories in the other.

5. Make a conclusion

• If the results are significant, we have evidence in favor of the alternative
hypothesis. A more informative conclusion can be given by comparing the
relative sizes of observed and expected counts of individual cells, and the
relative contribution of cells to the chi-square statistic.

With only two categories the chi-square goodness-of-fit test is equivalent to a
test for a single proportion, and the chi-square test for association is equivalent to a
test for a difference in two proportions.
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Chapter 8: ANOVA to Compare Means
Analysis of variance is used to test for an association between one quantitative vari-
able and one categorical variable or, equivalently, to test for a difference in means
across categories of a categorical variable. The categorical variable can have mul-
tiple categories. This method is appropriate when the summary statistics include
sample means calculated within groups.

Analysis of variance compares variability within groups to variability between
groups. If the ratio of variability between groups to variability within groups is higher
than we would expect just by random chance, we have evidence of a difference in
means. This ratio is called the F-statistic, which we compare to an F-distribution to
find the p-value. The details are laid out below.

1. State hypotheses

• Null hypothesis: 𝜇1 = 𝜇2 = · · · = 𝜇k (no difference in means by category).

• Alternative hypothesis: Some 𝜇i ≠ 𝜇j (difference in means between
categories).

2. Compute the F-statistic, using an ANOVA table:

Source d.f. SS MS F-statistic p-value

Groups k − 1 SSG MSG = SSG
k − 1 F = MSG

MSE
Upper tail Fk−1,n−k

Error n − k SSE MSE = SSE
n − k

Total n − 1 SSTotal

The sums of squares SSTotal = SSG + SSE are obtained by technology or
formula.

3. Find the p-value as the upper tail in an F-distribution

• Use df for Groups and df for Error from the ANOVA table.

4. Make a conclusion

• If the results are significant, we have evidence of an association between the
variables (and a difference in means between the groups defined by the
categorical variable). A more informative conclusion can be given if desired
by using the methods of pairwise comparison presented in Section 8.2.

If the categorical variable has only two categories, analysis of variance is equiv-
alent to a test for a difference in means between two groups.

Inference after ANOVA: Confidence Intervals or Pairwise
Tests

• Use a t-distribution with Error df and
√
MSE from ANOVA to estimate

variability. Use technology or see formulas on page 606.

One-way ANOVA: Ants versus Filling

Source DF SS MS F P
Filling 2 1561 781 5.63 0.011
Error 21 2913 139
Total 23 4474
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Chapter 9: Inference for Regression
Simple linear regression predicts a quantitative response variable, Y, based on a
quantitative explanatory variable, X. In order to use regression, both variables
need to bemeasured on the same set of cases. The simple linear regressionmodel
is introduced in Section 2.6, and Chapter 9 extends this to include inference.

The simple linear regression model is Y = 𝛽0 + 𝛽1 ⋅X + 𝜖. For prediction we
use the estimated coefficients: ̂Y = b0 + b1 ⋅X.

There are three different ways to test for an association between two quan-
titative variables:

• Test for Correlation

∗ Null hypothesis: There is no linear relationship (𝜌 = 0).

∗ Test statistic: t = r
√
n − 2√
1 − r2

.

∗ Distribution: t-distribution with df = n − 2.

• Test for Slope

∗ Null hypothesis: The variable is not significant in the model (𝛽1 = 0).

∗ Test statistic t =
b1 − 0
SE

, where SE is the standard error of the slope.

∗ Distribution: t-distribution with df = n − 2.

• Analysis of Variance for Regression

∗ Null hypothesis: The model is not effective at predicting the response.

∗ Test statistic: F-statistic from an ANOVA table (see details on page 635).

∗ Distribution: Upper tail of F-distribution with df Model and df Error.

A scatterplot should always be checked to make sure the trend is approxi-
mately linear, the variability of points around the line is relatively constant for
different x values, and there are not major outliers.

R2 gives the percent of variability in the response variable that is explained
by the explanatory variable in the model, and is equivalent to the squared cor-
relation between y and x.

Confidence intervals for the mean response value at a specific x value, or
prediction intervals for an individual response value at a specific x value, can be
created with technology or the formulas on page 647.

The regression equation is Tip = −0.292 + 0.182 Bill

Predictor Coef SE Coef T P
Constant −0.2923 0.1662 −1.76 0.081
Bill 0.182215 0.006451 28.25 0.000

S = 0.979523 R-Sq = 83.7% R-Sq(adj) = 83.6%
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Chapter 10: Multiple Regression
Multiple regression extends simple linear regression to includemultiple explana-
tory variables. It allows us to incorporate multiple variables in a single analysis.
Multiple regression is used to predict a quantitative response variable based on
multiple explanatory variables, and to model relationships between explanatory
variable(s) and a quantitative response variable.

Many concepts introduced for simple linear regression also apply tomultiple
regression:

• Test for Slope Coefficient

∗ Null hypothesis: The variable is not significant in the model (𝛽i = 0).

∗ Test statistic: t =
bi − 0
SE

, where SE is the standard error of the slope.

∗ Distribution: t-distribution with df = n − k − 1, where k is the number of
explanatory variables.

• Analysis of Variance for Regression (check overall model fit)

∗ Null hypothesis: The model is not effective at predicting the response.

∗ Test statistic: F-statistic from an ANOVA table (see details on page 660).

∗ Distribution: Upper tail of F-distribution with df Model and df Error.

• R2 gives the percent of variability in the response variable that is explained by
the explanatory variables in the model.

Each slope coefficient is interpreted as the amount that the predicted response
changes for a unit increase in that explanatory variable, if all the other explanatory
variables in the model are held constant.

In simple linear regression we can assess the conditions by looking at a scatter-
plot. In multiple regression we need to look at a plot of residuals versus fitted values.
We should watch out for curvature (or any nonlinear trend), increasing or decreas-
ing variability, or outliers. We also watch out for obvious skewness or outliers on a
histogram or dotplot of the residuals.

More variables are not always better; consider pruning insignificant variables
from the model. There are many ways of deciding between competing models; for
details see the box on page 681.

With multiple explanatory variables, it is very important to remember the coef-
ficient and significance of each explanatory variable depend on the other explanatory
variables included in the model.

Multiple regression output for predicting percent body fat is given below:

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) −24.94157 20.77414 −1.201 0.2329
Weight −0.08434 0.05891 −1.432 0.1555
Height 0.05177 0.23849 0.217 0.8286
Abdomen 0.96762 0.13040 7.421 5.15e-11 ***
Age 0.07740 0.04868 1.590 0.1152
Wrist −2.05797 0.72893 −2.823 0.0058 **

Residual standard error: 4.074 on 94 degrees of freedom
Multiple R-squared: 0.7542, Adjusted R-squared: 0.7411
F-statistic: 57.67 on 5 and 94 DF, p-value: < 2.2e-16
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Selected
Dataset
Descriptions

Descriptions of Variables for Selected
Larger Datasets

There are more than 130 datasets to accompany this text, all described and available
in the web resources. We offer additional descriptions here of a few of the ones with
many variables:

AllCountries
BaseballHits2019
Cars2020
CollegeScores
DietDepression
FloridaLakes
GSWarriors2019
HappyPlanetIndex
HollywoodMovies
ICUAdmissions
MindsetMatters
NBAPlayers2019
NutritionStudy
PASeniors
SleepStudy
SpeedDating
StudentSurvey
SynchronizedMovement
USStates
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AllCountries
Information about individual countries as determined by the World Bank in 2018
(or most recent available year).
Source: www.worldbank.org

Country Name of the country
Code Three-letter code for country
LandArea Size in 1000 sq. kilometers
Population Population in millions
Density Number of people per square kilometer
GDP Gross Domestic Product (per capita in US$)
Rural Percentage of population living in rural areas
CO2 CO2 emissions (metric tons per capita)
PumpPrice Price for a liter of gasoline (in US$)
Military Percentage of government expenditures directed toward the

military
Health Percentage of government expenditures directed towards

healthcare
ArmedForces Number of active duty military personnel (in 1000s)
Internet Percentage of the population with access to the Internet
Cell Cell phone subscriptions (per 100 people)
HIV Percentage of the population with HIV
Hunger Percent of the population considered undernourished
Diabetes Percent of the population diagnosed with diabetes
BirthRate Births per 1000 people
ElderlyPop Percentage of the population at least 65 years old
LifeExpectancy Average life expectancy (years)
FemaleLabor Percent of females 15–64 in the labor force
Unemployment Percent of labor force unemployed
EnergyUse Energy usage (kilotons of oil)
Electricity Electric power consumption (kWh per capita)
Developed Categories for kilowatt hours per capita, 1 = under 2500,

2 = 2500 to 5000, 3 = over 5000

BaseballHits2019
Team level data for 30 major league baseball teams from the 2019 regular season.
Source: www.baseball-reference.com/leagues/MLB/2019-standard-batting.shtml

Team Name of baseball team (three-letter code)
League Either AL (American League) or NL (National League)
Wins Number of wins for the season
Runs Number of runs scored
Hits Number of hits
Doubles Number of doubles
Triples Number of triples
HomeRuns Number of home runs
RBI Number of runs batted in
StolenBases Number of stolen bases
CaughtStealing Number of times caught stealing
Walks Number of walks
Strikeouts Number of strikeouts
BattingAvg Team batting average
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Cars2020
Information about new car models in 2020
Source: Consumer Reports website https://www.consumerreports.org/cars/

Make Manufacturer
Model Car model
Type Vehicle category (Hatchback, Minivan, Sedan, Sporty,

SUV, or Wagon)
LowPrice Lowest suggested retail price (in $1000s)
HighPrice Highest suggested retail price (in $1000s)
CityMPG City miles per gallon (EPA)
HwyMPG Highway miles per gallon (EPA)
Seating Seating capacity
Drive Type of drive (front = FWD, rear = RWD, both = AWD)
Acc030 Time (in seconds) to go from 0 to 30 mph
Acc060 Time (in seconds) to go from 0 to 60 mph
QtrMile Time (in seconds) to go 1/4 mile
Braking Distance to stop from 60 mph (dry pavement)
FuelCap Fuel capacity (in gallons)
Length Length (in inches)
Width Width (in inches)
Height Height (in inches)
Wheelbase Wheelbase (in inches)
UTurn Diameter (in feet) needed for a U-turn
Weight Curb weight (in pounds)
Size Small, Midsized, Large

CollegeScores
The US Department of Education maintains a database through its College Score-
card project of demographic information from all active postsecondary educational
institutions that participate in Title IV. This dataset contains a subset of the hun-
dreds of variables in the full College Scorecard. The datasets Collegescores2yr and
CollegeScores4yr are subsets of this dataset for colleges that primarily offer Asso-
ciates and Bachelors degrees, respectively.
Source: Data downloaded from the US Department of Education’s College Score-
card at https://collegescorecard.ed.gov/data/ (November 2019)

Name Name of the school
State State where school is located
ID ID number for school
Main Main campus? (1 = yes, 0 = branch campus)
Accred Accreditation agency
MainDegree Predominant undergrad degree (0 = not classified, 1 = certifi-

cate, 2 = associate, 3 = bachelors, 4 = graduate)
HighDegree Highest degree (0 = no degrees, 1 = certificate, 2 = associate,

3 = bachelors, 4 = graduate)
Control Control of school (Public, Private, or Profit)
Region Region of country (Northeast, Midwest, Southeast,

West, Territory)
Locale Locale (City, Suburb, Town, Rural)
Latitude Latitude
Longitude Longitude
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AdmitRate Admission rate
MidACT Median of ACT scores
AvgSAT Average combined SAT scores
Online Only online (distance) programs
Enrollment Undergraduate enrollment
White Percent of undergraduates who report being white
Black Percent of undergraduates who report being black
Hispanic Percent of undergraduates who report being Hispanic
Asian Percent of undergraduates who report being Asian
Other Percent of undergraduates who don’t report one of the above
PartTime Percent of undergraduates who are part-time students
NetPrice Average net price (cost minus aid)
Cost Average total cost for tuition, room, board, etc.
TuitionIn In-state tuition and fees
TuitionOut Out-of-state tuition and fees
TuitionFTE Net tuition revenue per FTE student
InstructFTE Instructional spending per FTE student
FacSalary Average monthly salary for full-time faculty
FullTimeFac Percent of faculty that are full-time
Pell Percent of students receiving Pell grants
CompRate Completion rate (percent who finish program within 150% of

normal time)
Debt Average debt for students who complete program
Female Percent of female students
FirstGen Percent of first-generation students
MedIncome Median family income (in $1000s)

DietDepression
A group of researchers in Australia conducted a short (three-week) dietary
intervention in a randomized controlled experiment. In the study, 75 college-age
students with elevated depression symptoms and relatively poor diet habits were
randomly assigned to either a healthy diet intervention group or a control group.
The researchers recorded the change over the three-week period on two different
numeric scales of depression (the CESD scale and the DASS scale). The CESD
(Centre for Epidemiological Studies Depression) score is based more on clinical
observations, while the DASS (Depression, Anxiety, and Stress Scale) depends
more on self-reported information. They also recorded body mass index (BMI) at
the start and end of the 21 day period.
Source: Francis HM, et al., “A brief diet intervention can reduce symptoms of
depression in young adults - A randomised controlled trial,” PLoS ONE, 14(10),
October 2019.

Group Diet or Control
CESD1 CESD depression score on Day 1
CESD21 CESD depression score on Day 21
CESDDiff Change in CESD depression score
DASS1 DASS depression score on Day 1
DASS21 DASS depression score on Day 21
DASSDiff Change in DASS depression score
BMI1 Body Mass Index on Day 1
BMI21 Body Mass Index on Day 21
BMIDiff Change in Body Mass Index
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FloridaLakes
This dataset describes characteristics of water and fish samples from 53 Florida lakes.
Some variables (e.g., Alkalinity, pH, and Calcium) reflect the chemistry of the water
samples. Mercury levels were recorded for a sample of large mouth bass selected at
each lake.
Source: Lange, Royals, and Connor, Transactions of the American Fisheries Society
(1993)

ID An identifying number for each lake
Lake Name of the lake
Alkalinity Concentration of calcium carbonate (in mg/L)
pH Acidity
Calcium Amount of calcium in water
Chlorophyll Amount of chlorophyll in water
AvgMercury Average mercury level for a sample of fish (large mouth bass)

from each lake
NumSamples Number of fish sampled at each lake
MinMercury Minimum mercury level in a sampled fish
MaxMercury Maximum mercury level in a sampled fish
ThreeYrStdMercury Adjusted mercury level to account for the age of the fish
AgeData Mean age of fish in each sample

GSWarriors2019
Information from online boxscores for all 82 regular season games payed by the
Golden State Warrior basketball team during the 2018–2019 regular season.
Source: Downloaded from http://www.basketball-reference.com/teams/GSW/2019/gamelog/

Game ID number for each game
Date Date the game was played
Location Away or Home
Opp Opponent team
Win Game result: L or W
Points Number of points scored
FG Field goals made
FGA Field goals attempted
FG3 Three-point field goals made
FG3A Three-point field goals attempted
FT Free throws made
FTA Free throws attempted
Rebounds Total rebounds
OffReb Offensive rebounds
Assists Number of assists
Steals Number of steals
Blocks Number of shots blocked
Turnovers Number of turnovers
Fouls Number of fouls
OppPoints Opponent’s points scored
OppFG Opponent’s field goals made
OppFGA Opponent’s field goals attempted
OppFG3 Opponent’s three-point field goals made
OppFG3A Opponent’s three-point field goals attempted
OppFT Opponent’s free throws made
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OppFTA Opponent’s free throws attempted
OppOffReb Opponent’s total rebounds
OppRebounds Opponent’s offensive rebounds
OppAssists Opponent’s assists
OppSteals Opponent’s steals
OppBlocks Opponent’s shots blocked
OppTurnovers Opponent’s turnovers
OppFouls Opponent’s fouls

HappyPlanetIndex
Data for 143 countries from theHappy Planet Index Project, http://www.happyplanetindex.org,
that works to quantify indicators of happiness, well-being, and ecological footprint
at a country level. Region of the world is coded as: 1 = Latin America, 2 = Western
nations, 3 = Middle East, 4 = Sub-Saharan Africa, 5 = South Asia, 6 = East Asia,
7 = former Communist countries.
Source: Downloaded from http://www.happyplanetindex.org/data/

Country Name of country
Region Code for region of the world, with code given in the descrip-

tion above.
Happiness Score on a 0–10 scale for average level of happiness (10 is

happiest)
LifeExpectancy Average life expectancy (in years)
Footprint Ecological footprint—ameasure of the (per capita) ecological

impact, with higher numbers indicating greater environmen-
tal impact

HLY Happy Life Years—combines life expectancy with
well-being

HPI Happy Planet Index (0–100 scale)
HPIRank HPI rank for the country
GDPperCapita Gross Domestic Product (per capita)
HDI Human Development Index
Population Population (in millions)

HollywoodMovies
Information for 1295 movies released from Hollywood between 2012 and 2018.
Sources: Movie data obtained from https://www.boxofficemojo.com/, https://www.
the-numbers.com/, and https://www.rottentomatoes.com/

Movie Title of movie
LeadStudio Studio that released the movie (in the US)
RottenTomatoes Rotten Tomatoes rating (reviewers)
AudienceScore Audience rating (via Rotten Tomatoes)
Genre One of 14 possible genres
TheatersOpenWeek Number of screens for opening weekend
OpeningWeekend Opening weekend gross (in millions)
BOAverageOpenWeek Average box office income per theater—opening weekend
Budget Production budget (in millions)
DomesticGross Gross income for domestic viewers (in millions)
WorldGross Gross income for all viewers (in millions)
ForeignGross Gross income for foreign viewers (in millions)
Profitability WorldGross as a percentage of Budget
OpenProfit Percentage of budget recovered on opening weekend
Year Year the movie was released
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ICUAdmissions
Data from a sample of 200 patients following admission to an adult intensive care
unit (ICU).
Source: DASL dataset downloaded from http://lib.stat.cmu.edu/DASL/Datafiles/ICU.html

ID Patient ID number
Status Patient status: 0 = lived or 1 = died
Age Patient’s age (in years)
Sex 0 = male or 1 = female
Race Patient’s race: 1 = white, 2 = black, or 3 = other
Service Type of service: 0 = medical or 1 = surgical
Cancer Is cancer involved? 0 = no or 1 = yes
Renal Is chronic renal failure involved? 0 = no or 1 = yes
Infection Is infection involved? 0 = no or 1 = yes
CPR Patient gets CPR prior to admission? 0 = no or 1 = yes
Systolic Systolic blood pressure (in mm Hg)
HeartRate Pulse rate (beats per minute)
Previous Previous admission to ICU within 6 months? 0 = no or

1 = yes
Type Admission type: 0 = elective or 1 = emergency
Fracture Fractured bone involved? 0 = no or 1 = yes
PO2 Partial oxygen level from blood gases under 60? 0 = no or

1 = yes
PH pH from blood gas under 7.25? 0 = no or 1 = yes
PCO2 Partial carbon dioxide level from blood gas over 45? 0 = no

or 1 = yes
Bicarbonate Bicarbonate from blood gas under 18? 0 = no or 1 = yes
Creatinine Creatinine from blood gas over 2.0? 0 = no or 1 = yes
Consciousness Level: 0 = conscious, 1 = deep stupor, or 2 = coma

MindsetMatters
In 2007 a Harvard psychologist recruited 75 female maids working in different
hotels to participate in a study. She informed 41 maids (randomly chosen) that
the work they do satisfies the Surgeon General’s recommendations for an active
lifestyle (which is true), giving them examples showing that their work is good
exercise. The other 34 maids were told nothing (uninformed). Various character-
istics (weight, body mass index, ...) were recorded for each subject at the start of
the experiment and again four weeks later. Maids with missing values for weight
change have been removed.
Source: Crum, A.J. and Langer, E.J. (2007). Mind-Set Matters: Exercise and
the Placebo Effect, Psychological Science; 18:165–171. Thanks to the authors for
supplying the data.

Cond Treatment condition: 0 = uninformed or 1 = informed
Age Age (in years)
Wt Original weight (in pounds)
Wt2 Weight after 4 weeks (in pounds)
BMI Original body mass index
BMI2 Body mass index after 4 weeks
Fat Original body fat percentage
Fat2 Body fat percentage after 4 weeks
WHR Original waist to hip ratio
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WHR2 Waist to hip ratio after 4 weeks
Syst Original systolic blood pressure
Syst2 Systolic blood pressure after 4 weeks
Diast Original diastolic blood pressure
Diast2 Diastolic blood pressure after 4 weeks

NBAPlayers2019
Data for 193 NBA basketball players from the 2018–2019 regular season. Includes
all players who averaged more than 24 minutes per game that season.
Source: http://www.basketball-reference.com/leagues/NBA_2019_stats.html

Player Name of player
Pos Position (PG = point guard, SG = shooting guard, PF = power

forward, SF = small forward, C = center)
Age Age (in years)
Team Team name
Games Games played (out of 82)
Starts Games started
Mins Minutes played
MinPerGame Minutes per game
FGMade Field goals made
FGAttempt Field goals attempted
FGPct Three-point field goal percentage
FG3Made Three-point field goals made
FG3Attempt Three-point field goals attempted
FG3Pct Field goal percentage
FTMade Free throws made
FTAttempt Free throws attempted
FTPct Free throw percentage
OffRebound Offensive rebounds
DefRebound Defensive rebounds
Rebounds Total rebounds
Assists Number of assists
Steals Number of steals
Blocks Number of blocked shots
Turnovers Number of turnovers
Fouls Number of personal fouls
Points Number of points scored

NutritionStudy
Data on 315 patients undergoing elective surgery from a cross-sectional study to
investigate the relationship between personal characteristics and dietary factors,
and plasma concentrations of retinol, beta-carotene and other carotenoids. Study
subjects were patients who had an elective surgical procedure during a three-year
period to biopsy or remove a lesion of the lung, colon, breast, skin, ovary or uterus
that was found to be non-cancerous.
Source: http://lib.stat.cmu.edu/datasets/Plasma_Retinol Original source: Nierenberg,
D., Stukel, T., Baron, J., Dain, B., and Greenberg, E., “Determinants of plasma lev-
els of beta-carotene and retinol,” American Journal of Epidemiology, 1989, 130(3):
511–521.
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ID ID number for each subject in this sample
Age Subject’s age (in years)
Smoke Does the subject smoke: Yes or No
Quetelet Weight∕(Height2)
Vitamin Vitamin use coded as: 1 = Regularly, 2 = Occasionally, or 3 = No
Calories Number of calories consumed per day
Fat Grams of fat consumed per day
Fiber Grams of fiber consumed per day
Alcohol Number of alcoholic drinks consumed per week
Cholesterol Cholesterol consumed (mg per day)
BetaDiet Dietary beta-carotene consumed (mcg per day)
RetinolDiet Dietary retinol consumed (mcg per day)
BetaPlasma Concentration of beta-carotene (ng∕ml) in the blood
RetinolPlasma Concentration of retinol (ng∕ml) in the blood
Gender Female or Male
VitaminUse Coded as No, Occasional, or Regular
PriorSmoke Smoking status coded as: 1 = Never, 2 = Former, or 3 = Current

PASeniors
The dataset gives responses for a random sample of high school seniors in Pennsyl-
vania who participated in the Census at Schools project.
Source: U.S. Census at School (https://www.amstat.org/censusatschool) downloaded
and used with the permission of the American Statistical Association.

Year Year student submitted data
Gender Female or Male
Age Age (in years)
Hand Dominant hand (Right, Left, or Both)
Height Height (in cm)
Foot Foot length (in cm)
Armspan Armspan (in cm)
Languages Languages spoken
GetToSchool Main mode of transportation to school (Bus, Car,

Walk-includes bicycle)
TravelTime Travel time to school (in minutes)
ReactionTime Time (in seconds) to click when a color changes
MemoryScore Score in an online memory game
Activity Favorite physical activity
Music Favorite genre of music
BirthMonth Birth month
Season Favorite season
Allergies Have allergies? (Yes or No)
Vegetarian Vegetarian? (Yes or No)
FavFood Favorite food
Drink Beverage used most often during the day
FavSubject Favorite subject in school
Sleep1 Typical hours of sleep on a school night
Sleep2 Typical hours of sleep on a non-school night
Occupants Number of occupants at home
Communicate Most often method to communicate with friends
TextsSent Number of texts sent (previous day)
HangHours Hours last week spent hanging out with friends
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HWHours Hours last week spent doing homework
SportsHours Hours last week spent playing sports or outdoor activities
VideoGameHours Hours last week spent playing computer/video games
ComputerHours Hours last week spent using a computer
TVHours Hours last week spent watching TV
WorkHours Hours last week spent working at a paid job
SchoolPressure Amount of pressure due to schoolwork
Superpower Most desired superpower (Invisibility, Super

Strength, Telepathy, Fly, or Freeze Time)
Preference Prefers Happy, Rich, Healthy, or Famous

SleepStudy
The data were obtained from a sample of students who did skills tests to measure
cognitive function, completed a survey that asked many questions about attitudes
and habits, and kept a sleep diary to record time and quality of sleep over a two-
week period.
Source: Onyper, S., Thacher, P., Gilbert, J., Gradess, S., “Class start times, sleep, and
academic performance in college: A path analysis,” Chronobiology International,
April 2012; 29(3):318–335. Thanks to the authors for supplying the data.

Gender 1 = male, 0 = female
ClassYear Year in school, 1 = first year, ..., 4 = senior
LarkOwl Early riser or night owl? Lark, Neither, or Owl
NumEarlyClass Number of classes per week before 9 am
EarlyClass Indicator for any early classes
GPA Grade point average (0–4 scale)
ClassesMissed Number of classes missed in a semester
CognitionZscore Z-score on a test of cognitive skills
PoorSleepQuality Measure of sleep quality (higher values are poorer sleep)
DepressionScore Measure of degree of depression (higher values mean more

depression)
AnxietyScore Measure of amount of anxiety (higher values mean more anx-

iety)
StressScore Measure of amount of stress (higher values mean more stress)
DepressionStatus Coded depression score: normal, moderate, or severe
AnxietyStatus Coded anxiety score: normal, moderate, or severe
Stress Coded stress score: normal or high
DASScore Combined score for depression, anxiety and stress
Happiness Measure of degree of happiness
AlcoholUse Self-reported: Abstain, Light, Moderate, or Heavy
Drinks Number of alcoholic drinks per week
WeekdayBed Average weekday bedtime (24.0 = midnight)
WeekdayRise Average weekday rise time (8.0 = 8 am)
WeekdaySleep Average hours of sleep on weekdays
WeekendBed Average weekend bedtime (24.0 = midnight)
WeekendRise Average weekend rise time (8.0 = 8 am)
WeekendSleep Average hours of sleep on weekend days
AverageSleep Average hours of sleep for all days
AllNighter Had an all-nighter this semester? 1 = yes, 0 = no
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SpeedDating
Participants were students at Columbia’s graduate and professional schools,
recruited by mass email, posted fliers, and fliers handed out by research assistants.
Each participant attended one speed dating session, in which they met with each
participant of the opposite sex for four minutes. Order and session assignments
were randomly determined. After each four minute “speed date,” participants filled
out a form rating their date on a scale of 1–10 on various attributes. Only data from
the first date in each session is recorded here—for a total of 276 dates.
Source: Gelman, A. and Hill, J., Data analysis using regression and multi-
level/hierarchical models, Cambridge University Press: New York, 2007

DecisionM Would the male like another date? 1 = yes 0 = no
DecisionF Would the female like another date? 1 = yes 0 = no
LikeM How much the male likes his partner (1–10 scale)
LikeF How much the female likes her partner (1–10 scale)
PartnerYesM Male’s estimate of chance the female wants another date

(1–10 scale)
PartnerYesF Female’s estimate of chance the male wants another date

(1–10 scale)
AgeM Male’s age (in years)
AgeF Female’s age (in years)
RaceM Male’s race: Asian, Black, Caucasian, Latino, or Other
RaceF Female’s race: Asian, Black, Caucasian, Latino, or

Other
AttractiveM Male’s rating of female’s attractiveness (1–10 scale)
AttractiveF Female’s rating of male’s attractiveness (1–10 scale)
SincereM Male’s rating of female’s sincerity (1–10 scale)
SincereF Female’s rating of male’s sincerity (1–10 scale)
IntelligentM Male’s rating of female’s intelligence (1–10 scale)
IntelligentF Female’s rating of male’s intelligence (1–10 scale)
FunM Male’s rating of female as fun (1–10 scale)
FunF Female’s rating of male as fun (1–10 scale)
AmbitiousM Male’s rating of female’s ambition (1–10 scale)
AmbitiousF Female’s rating of male’s ambition (1–10 scale)
SharedInterestsM Male’s rating of female’s shared interests (1–10 scale)
SharedInterestsF Female’s rating of male’s shared interests (1–10 scale)

StudentSurvey
Data on 362 introductory statistics students from an in-class survey given over sev-
eral years. All values are self-reported.
Source: Authors

Year Year in school: FirstYear, Sophomore, Junior, or
Senior

Sex Student’s sex: F or M
Smoke Smoker? No or Yes
A𝑤ard Preferred award: Academy, Nobel, or Olympic
HigherSAT Which SAT is higher? Math or Verbal
Exercise Hours of exercise per week
TV Hours of TV viewing per week
Height Height (in inches)
Weight Weight (in pounds)
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Siblings Number of siblings
BirthOrder Birth order, 1 = oldest, 2 = second oldest, etc.
VerbalSAT Verbal SAT score
MathSAT Math SAT score
SAT Combined Verbal + Math SAT
GPA College grade point average
Pulse Pulse rate (beats per minute)
Piercings Number of body piercings

SynchronizedMovement
A study of 264 high school students in Brazil examined the effects of doing syn-
chronized movements (such as marching in step or doing synchronized dance steps)
and the effects of exertion on variables, such as pain tolerance and attitudes towards
others. Students were randomly assigned to activities that involved synchronized or
non-synchronized movements involving high or low levels of exertion. Pain toler-
ance was measured with a blood pressure cuff, going to a maximum possible reading
of 300 mmHg.
Source: Tarr, B., Launay, J., Cohen, E., and Dunbar,R., “Synchrony and exertion
during dance independently raise pain threshold and encourage social bonding,”
Biology Letters, 11(10), October 2015

Sex f = Female or m = Male
Group Type of activity. Coded as

HS+HE, HS+LE, LS+HE, LS+LE for High/Low Synchronizaton
+ High/Low Exertion

Synch Synchronized activity? yes or no
Exertion Exertion level: high or low
PainToleranceBefore Measure of pain tolerance (mm HG) before activity
PainTolerance Measure of pain tolerance (mm Hg) after activity
PainTolDiff Change in pain tolerance ((PaintTolerance −

PainToleranceBefore)
MaxPressure Reached the maximum pressure (300 mm Hg) when testing

pain tolerance (after)
CloseBefore Rating of closeness to the group before activity (1 = least

close to 7 = most close)
CloseAfter Rating of closeness to the group after activity (1 = least close

to 7 = most close)
CloseDiff Change on closeness rating (CloseBefore − CloiseAfter)

USStates
Data for all 50 US states. Years vary from 2013 to 2018 depending on data
availability.
Source: Various online sources, mostly at www.census.gov

State Name of state
HouseholdIncome Median household income (in dollars)
Region Area of the country: MW = Midwest, NE = Northeast,

S = South, or W = West
Population Number of residents (in millions)
EighthGradeMath Average score on NAEP Mathematics test for 8th graders
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HighSchool Percentage of residents (ages 25–34) who are high school
graduates

College Percentage of residents (ages 25–34) with college degrees
IQ Mean IQ score of residents
GSP Gross State Product ($1000s per capita)
Vegetables Percentage of residents who eat vegetables at least once per

day
Fruit Percentage of residents who eat fruit at least once per day
Smokers Percentage of residents who smoke
PhysicalActivity Percentage of residents who do 150+ minutes of aerobic phys-

ical activity per week
Obese Percentage of residents classified as obese
NonWhite Percentage of residents who are not white
HeavyDrinkers Percentage of residents who drink heavily
Electoral Number of votes in the presidential electoral college
ClintonVote Proportion of votes for Democrat Clinton in 2016 US Presi-

dential election
Elect2016 Which 2016 Presidential candidate won state? D = Clinton or

R = Trump
TwoParents Percentage of children living in two parent households
StudentSpending School spending (in $1000s per pupil)
Insured Percentage of adults (ages 18–64) with health coverage
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UNIT A: Data
CHAPTER 1
Section 1.1 Partial Answers

1.1 (a) The people who are asked
(b) Support the law or not; Categorical

1.3 (a) The teenagers in the sample
(b) At least five servings or not; Categorical

1.5 (a) The 10 beams
(b) Force at which each beam broke;

Quantitative
1.7 Explanatory: Years smoking;

Response: Lung capacity
1.9 Explanatory: Number of drinks;

Response: Blood alcohol content
1.11 (a) Year and HigherSAT are categorical;

Other six are quantitative although Siblings
might be either

(b) Answers will vary
(c) Answers will vary

1.13 (a) Format of story; categorical
(b) Brain connectivity; quantitative
(c) 27 cases

1.15 (a) Students in a college physics class
(b) Three variables:

Class assignment (categorical),
Measure of feelings of learning (quantitative),
Measure of actual learning (quantitative)

(c) Explanatory: class assignment;
Response: Measure of feeling of learning and
measure of actual learning

(d) 296 rows and 3 columns
1.17 Lakes; Estrogen and fertility level;

Both quantitative
1.19 (a) 10 cases; 2 variables: Population (quantitative);

Hemisphere (categorical)
(b) Short answer not appropriate

1.21 (a) 1412
(b) 4; 2; 2
(c) 1412 rows and 4 columns

1.23 Explanatory: enriched or not (categorical);
Response: offspring time to learn
(quantitative)

1.25 (a) Quantitative
(b) Not a variable
(c) Categorical
(d) Quantitative
(e) Quantitative
(f) Not a variable

1.27 (a) 6
(b) 1 categorical; 5 quantitative
(c) 6 columns, 859 rows

1.29 (a) The 40 people with insomnia
(b) Which group (categorical);

Sleep improvement or not (categorical)
(c) 2 columns and 40 rows

1.31 Cases: people eligible to vote
Variables: political party and voted or not

1.33 Answers will vary

Section 1.2 Partial Answers

1.35 Population
1.37 Sample
1.39 Sample: 500 Canadian adults;

Population: All Canadian adults
1.41 Sample: The 1000 households

Population: All US households with TV
1.43 (a) The 10 selected twitter accounts

(b) All twitter accounts
(c) The author’s followers’ twitter accounts

1.45 (a) Girls on the selected basketball teams
(b) All female high school students
(c) Female HS students on a basketball team

1.47 Yes
1.49 No
1.51 No
1.53 Biased; wording biases the results
1.55 Not biased
1.57 All parents in Kansas City
1.59 (a) Yes

(b) Yes
1.61 (a) The 800 participants; All US smartphone

users
(b) Cases: The people answering the survey

Variables: Used food delivery app (yes or no);
Which app
Both variables are categorical

1.63 (a) Wording bias
(b) Ask: OptionW or OptionQ?

1.65 (a) Cases: 6000 restroom patrons
observed;
3 categorical variables: Wash, Gender, Location

(b) People not always honest in self-reporting
1.67 No, volunteer sample is biased
1.69 (a) No, non-random selection

(b) How the questions were worded
1.71 The sample of planes that return is biased

809
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1.73 (a) All US residents
(b) All US emergency room patients

i. NHANES ii. NHAMCS
iii. NHAMCS iv. NHANES

1.75 Answers will vary

Section 1.3 Partial Answers

1.77 Neither
1.79 Association
1.81 Association and causation
1.83 Population
1.85 Snow
1.87 Gender
1.89 Experiment
1.91 Observational study
1.93 Experiment
1.95 Amount of snow and ice on the roads
1.97 (a) Cases: people;

Variables: Golfing or not, how long one lives
(b) Observational study
(c) Answers will vary

1.99 Yes
1.101 (a) Yes

(b) No
1.103 (a) Amount of iron in soil;

Amount of potassium in spinach;
Both are quantitative

(b) Amount of iron in soil
(c) Observational study
(d) No
(e) Answers will vary

1.105 (a) Observational study
(b) Answers will vary
(c) (i) Yes (ii) Yes (iii) No (iv) No
(d) No

1.107 (a) The 2,623 schoolchildren
(b) Amount of greenery
(c) Test scores
(d) Yes
(e) Observational study
(f) No!
(g) Short answer not appropriate

1.109 (a) Explanatory: time spent sitting; Response:
cancer

(b) Observational study
(c) No
(d) No

1.111 (a) Observational study
(b) No
(c) Many possible answers

1.113 (a) Yes
(b) -
(c) Yes

1.115 (a) Explanatory: sleep or not; Response: ability to
recognize facial expressions

(b) Randomized experiment; matched pairs
(c) Yes
(d) No

1.117 (a) Observational study
(b) No
(c) Observational study
(d) Explanatory: city or country; categorical;

Response: brain activity; quantitative
(e) No

1.119 (a) Explanatory: amount of rest;
Response: attractiveness rating

(b) Matched pairs experiment
(c) Yes, this is an experiment

1.121 (a) Explanatory: amount of sleep;
Response: growth in height

(b) Short answer not appropriate
(c) Not ethical to deprive children of sleep

1.123 Short answer not appropriate

CHAPTER 2
Section 2.1 Partial Answers

2.1 0.4669, or 46.69%
2.3 0.1972, or 19.72%
2.5 p = 0.124
2.7 p̂ = 0.571
2.9 Academy Award: 0.086;

Nobel Prize: 0.412;
Olympic gold medal: 0.503

2.11 (a) 80∕200 = 0.40
(b) 100∕200 = 0.5
(c) 80∕100 = 0.80
(d) 60∕80 = 0.75

2.13 p = 0.817
2.15 Population; 66,000 soccer games;

Whether the home team wins; Categorical;
p = 0.624

2.17 (a) Relative frequency table
(b) 0.084

2.19 (a) Sample: 119 players;
Population: All RPS players;
Variable: the option played

(b) 0.555 (Rock), 0.328 (Paper), 0.118
(Scissors)

(c) Paper
(d) Scissors

2.21 (a) Short answer not appropriate
(b) HS: 38.6%; Some college: 26.3%; College:

19.3%
As education goes up, percent agreeing goes
down

(c) 38.7%
(d) 30.7%
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2.23 (a) p̂1 = 0.097
(b) p̂2 = 0.046
(c) High social media use
(d) p̂1 − p̂2 = 0.051
(e) 0.059
(f) Observational study
(g) No

2.25 (a) 438∕616 = 0.711
(b) 181∕616 = 0.294
(c) 144∕438 = 0.329
(d) 37∕178 = 0.208
(e) p̂A − p̂N = 0.329 − 0.208 = 0.121
(f) 144∕181 = 0.796

2.27 pH − pC = 0.045
2.29 (a) Observational study; Two variables:

Dyslexia or not and Gene break or not
(b) 304 rows; 2 columns
(c) Short answer not appropriate
(d) Dyslexia: 0.092; Control: 0.026
(e) There appears to be an association
(f) No, since not from an experiment

2.31 (a) Experiment
(b) Single-blind
(c) Two variables, both categorical
(d) Short answer not appropriate
(e) 75%
(f) p̂E − p̂S = 0.60 − 0.20 = 0.40
(g) Yes

2.33 (a) 68.6%
(b) 58.0%
(c) 15.7%
(d) 7.2%

2.35 (a) Females; Graph (a)
(b) Approximately equal; Graph (a)
(c) Males; Graph (b)
(d) Females; Graph (b)

2.37 Proportion who accepted in Reward = 0.899 vs
Deposit = 0.139

2.39 (a) B
(b) A

2.41 Short answer not appropriate
2.43 (a) FY 94, Soph 195, Jr 35, Sr 36

(b) Soph 54.2%
2.45 Short answer not appropriate
2.47 Short answer not appropriate
2.49 Profit: 2333 (37.99%)
2.51 Private: bachelor (3) at 67.85%

Profit: certificate (1) at 81.70%
Public: associate (2) at 37.90%

2.53 Graph (b)

Section 2.2 Partial Answers

2.55 F
2.57 B, C, E

2.59 E, G: Mean ≈ Median; F: Mean >Median;
H: Mean <Median

2.61 Answers will vary
2.63 Answers will vary
2.65 (a) x = 11.2

(b) m = 12
(c) No outliers

2.67 (a) x = 24.5
(b) m = 20
(c) 58 is a likely outlier

2.69 x = 2386
2.71 𝜇 = 41.5
2.73 (a) Mean

(b) Mean = 7.2 mg/kg; Median = 3.65 mg/kg
2.75 (a) Mean

(b) Greater than
2.77 (a) Population

(b) Skewed to the right, with one outlier
(c) Rough estimate is about 5 million
(d) Rough estimate is about 6-7 million

2.79 (a) Skewed to the left
(b) About 74
(c) Less than the median

2.81 Speed: Mean=632; Median=575
Distance: Mean=409; Median=429

2.83 (a) xY = 56.76 minutes
(b) xO = 34.69 minutes
(c) xY − xO = 22.07 minutes

Mice getting young blood ran 22 minutes more,
on average

(d) Experiment
(e) Yes

2.85 mH −mC = −399
2.87 Answers will vary
2.89 Strongly right skewed
2.91 (a) Strong right skew

(b) Mean=4050; median=1748
(c) Right skew =⇒ mean>median

2.93 (a) Married women; Never married women
(b) m = 2 for married women;

m = 0 for never married women

Section 2.3 Partial Answers

2.95 (a) x = 15.09; s = 13.30
(b) (1, 4, 10, 25, 42)

2.97 (a) x = 59.73; s = 17.89
(b) (25, 43, 64, 75, 80)

2.99 (a) x = 6.50; s = 5.58
(b) (0, 3, 5, 9.5, 40)

2.101 (a) V
(b) III
(c) IV
(d) I
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(e) VI
(f) II

2.103 (a) W
(b) X
(c) Y
(d) Z

2.105 About 460; About 540
2.107 x ≈ 68; s ≈ 4.5
2.109 (58, 65, 68, 70, 77)
2.111 Skewed right
2.113 Symmetric
2.115 -0.8, standard deviations below mean
2.117 1.55, standard deviations above

the mean
2.119 4 to 16
2.121 900 to 2100
2.123 (a) (119, 162, 171, 180, 210)

(b) Range = 91; IQR = 18
(c) Between 162 and 171;

Between 180 and 210
2.125 (a) 𝜇 = 31.43; 𝜎 = 3.82

(b) 2.11; −2.21
(c) Between 23.79% and 39.07%

2.127 (a) Positive
(b) 0.87
(c) 11.0
(d) 1.85

2.129 (a) 4, 0, 3, -2, -17
(b) Mean −2.4; StDev 8.5

2.131 (a) About 2.6; About 3.4
(b) 2.0

2.133 Mean: 427.8 billion dollars
StDev: 61.0 billion dollars
Interval: 305.8 to 549.8 billion dollars

2.135 (a) Mean: 37.0; StDev: 34.2
(b) (0, 16, 28, 45, 199)
(c) Part (b): Five number summary
(d) Skewed to the right
(e) No, not bell-shaped

2.137 (a) Reading and Writing: 0.627
Math: 0.605

(b) Reading and Writing
(c) Reading and Writing

2.139 (a) 6217; 772
(b) 1796
(c) 680

2.141 Short answer not appropriate
2.143 Short answer not appropriate
2.145 Mean = 57.58; StDev = 28.06

5 Number: (0, 33, 61, 84, 99)
2.147 n = 1412; x = 408.7; s = 78.1;

(137, 375, 429, 448, 577)
(Quartile values may differ slightly.)

2.149 (a) City: range=18, IQR=6, s=3.74
Hwy: range=33; IQR=11; s=7.19

(b) HwyMPG is more variable
2.151 Short answer not appropriate

Section 2.4 Partial Answers

2.153 (a) S
(b) R
(c) Q
(d) T

2.155 (a) Skewed left
(b) 3 low outliers
(c) About 575 or 580; Answers

may vary
2.157 (a) Symmetric

(b) No outliers
(c) About 135

2.159 (a) No outliers
(b) Short answer not appropriate

2.161 (a) Outliers: 42, 95, 96, 99
(b) Short answer not appropriate

2.163 (a) Left-skewed
(b) 73% and 98%
(c) (15, 73, 92, 98, 100)
(d) Lower

2.165 (a) Categorical; Quantitative
(b) Control Group; Football with

Concussion
(c) Yes; Football with Concussion
(d) About 7000 𝜇L
(e) Yes
(f) No; Not an experiment

2.167 (a) C
(b) A

2.169 (a) Skewed right
(b) 10,000
(c) About 250
(d) Greater than

2.171 (a) Action; Horror
(b) Action; Horror
(c) Yes

2.173 (a) South; West
(b) High outlier: Midwest, Northeast; Low outlier:

West
(c) Yes

2.175 Vitamin use has little effect on retinol levels
2.177 (a) Five number summaries: Individual (12, 31,

39.5, 45.5, 59) Split (22, 40, 46.5, 61, 81). Mean
and standard deviation: Individual (37.29, 12.54)
Split (50.92, 14.33)

(b) Side-by-side plot shows costs tend to be higher
when split.

2.179 Short answer not appropriate
2.181 Short answer not appropriate
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2.183 Answers will vary
2.185 Answers will vary

Section 2.5 Partial Answers

2.187 (c)
2.189 (a)
2.191 (a)
2.193 (b)
2.195 Negative
2.197 Positive
2.199 Positive
2.201 Short answer not appropriate
2.203 r = −0.932
2.205 (a) Amount of iron in soil (exp);

Amount of potassium in spinach
(b) Negative
(c) Less than 840 mg
(d) Greater than 840 mg

2.207 (a) Positive
(b) Positive
(c) Short answer not appropriate
(d) No; Yes

2.209 (a) Positive. High self-reported score associated
with high clinical score.

(b) i. Low self-reported score and high clinical
score

ii. High scores on both self-reported and
clinical

iii. Low scores on both self-reported and
clinical

iv. High self-reported score and low clinical
score

(c) About 54; About 27
2.211 (a) Positive: BMI, cortisol, depression, heart rate;

Negative: weekday sleep hours, activity levels
(b) No

2.213 (a) One other; 43 years old
(b) 75 years old; 19 years old
(c) 2 older than 65; 3 younger than 20

2.215 (a) Negative association
(b) 430 miles
(c) r = −0.231

2.217 Type of drink is categorical
2.219 (a) Strong negative linear association

(b) r = −0.83
(c) America; America
(d) Closer

2.221 (a) Wife and husband high
(b) Wife and husband low
(c) Wife high, husband low
(d) Wife low, husband high

2.223 (a) 0.348
(b) Pumpkin Ale; 2011

(c) Master of Pumpkins, Trick or Treat: Chocolate
Pumpkin Porter; 2019

2.225 (a) Three quantitative variables
(b) Negative; Yes
(c) Positive; No; Yes

2.227 (a) Positive: spend time on both or neither;
Negative: spend time on one or the other but
not both

(b) Lots of exercise and little TV;
Lots of time on both;
Very little time doing either;
Lots of TV and little exercise

(c) Lots of TV and little exercise;
Lots of exercise and little TV

(d) Almost no linear relationship
2.229 (a) Age 20

(b) Early 20s
(c) 0

2.231 (a) Positive
(b) Relatively strong
(c) r ≈ 0.9
(d) No
(e) 11 mm
(f) Two clumps; one type has smaller petals

2.233 (a) Short answer not appropriate
(b) Positive; Quite strong
(c) Andre Drummond, Steven Adams
(d) 0.751

2.235 Answers will vary

Section 2.6 Partial Answers

2.237 (a) 0.0413, 0.0387
(b) BAC increases about 0.018 per drink
(c) Consuming no drinks, BAC is −0.0127

2.239 (a) 79; 2
(b) Grade goes up 3.8 for one more hour of

studying
(c) Expected grade is 41 if there is no studying

2.241 ̂Y = 47.267 + 1.843X
2.243 ̂Y = 641.62 − 8.42X
2.245 (a) QtrMile ≈ 15; Acc030 ≈ 2.2

(b) QtrMile ≈ 12.5; Acc030 ≈ 2.0
2.247 (a) Year; CO2

(b) Very strong linear relationship
(c) r = 0.993; Yes
(d) ̂CO2 = −2701.2 + 1.5366(Year)
(e) CO2 going up 1.5366 ppm per year
(f) −2701.2; No; Can’t be negative
(g) 376.6 ppm; 410.4 ppm
(h) 2.5

2.249 (a) Positive linear relationship
(b) Larger in 2007; Negative in 2014
(c) r = 0.843
(d) ̂HotDogs = −2743.6 + 1.3953 ⋅ Year
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(e) About 1.4 more hot dogs eaten each year
(f) 74.9 hot dogs
(g) Extrapolating too far away

2.251 (a) Negative
(b) Slope
(c) Explanatory: elevation;

Response: cancer incidence
2.253 (a) 18; 2700; 2400; −300

(b) 12; 3000; 3900; 900
(c) 13; 2900; 2200; −700

Answers may vary slightly
2.255 Increase 4.67 hours
2.257 Short answer not appropriate
2.259 (a) Exp: pre-season wins;

Resp: regular season wins
(b) 7.97 wins
(c) 0.35
(d) 7.27
(e) 42.27 wins, extrapolation

2.261 190 lbs, 40% body fat;
Predicted body fat = 20%; Residual 20

2.263 (a) 13.35%; 22.1%
(b) Short answer not appropriate
(c) -8.525%

2.265 (a) ̂CompRate = 17.25 + 0.00469 ⋅ FacSalary
(b) ̂CompRate = 40.72
(c) Yes

2.267 (a) Short answer not appropriate
(b) Frozen
(c) r = 0.907
(d) ̂WorldGross = 15.4 + 7.5 ⋅OpeningWeekend
(e) 390.4 million dollars

2.269 Answers will vary

Section 2.7 Partial Answers

2.271 (a) Happiness: Quantitative;
Footprint: Quantitative;
Region: Categorical

(b) 1 (Latin America) and 2 (Western nations);
2 (Western nations)

(c) 4 (Sub-Saharan Africa);
low ecological footprint

(d) Yes
(e) No
(f) Top left
(g) 4: Increase happiness;

2: Decrease footprint
2.273 (a) Hippocampus size: Quantitative;

Years of football: Quantitative;
Group: Categorical

(b) Control group all 0 football years
(c) Negative association
(d) Football with concussion
(e) Football with no concussion

2.275 (a) Faster
(b) DC
(c) No

2.277 (a) 7
(b) 2

2.279 (a) Asia
(b) Africa
(c) Short answer not appropriate

2.281 (a) 6
(b) 10-14%; 20-24%; ≥ 30%

2.283 (a) Every state
(b) 2018
(c) Mississippi, 15.0%;

Colorado, 23.0%
2.285 (a) Texas

(b) Midwest
2.287 (a) East

(b) Answers will vary
2.289 (a) Two distinct clusters

(b) Setosa; Virginica
2.291 Sepal length; Green
2.293 (a) Whites

(b) Hispanics
(c) Blacks

2.295 (a) Distance higher for carbon
(b) Not a short answer
(c) Distance
(d) Ride carbon; minimize distance

2.297 (a) New England
(b) South Central
(c) Mountain; Midwest
(d) Spaghetti plot, dynamic heat map

2.299 (a) Yes
(b) No

2.301 Answers will vary.
2.303 Short answer not appropriate
2.305 (a) Early morning (6 am)

(b) Summer
2.307 (a) Endangered status of gazelles

(b) Answers will vary
2.309 Answers will vary
2.311 Answers will vary.
2.313 Answers will vary.
2.315 (a) Moscow is more variable

(b) Seasonal patterns are flipped
2.317 Answers will vary

UNIT A: Essential Synthesis Partial Answers

A.1 (a) Yes
(b) No

A.3 (a) No
(b) Yes

A.5 (a) No
(b) No
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A.7 (a) One categorical variable
(b) Bar chart or pie chart
(c) Frequency or relative frequency table,

proportion
A.9 (a) One categorical variable and one quantitative

variable
(b) Side-by-side boxplots, dotplots, or histograms
(c) Statistics by group or difference in means

A.11 (a) Two categorical variables
(b) Segmented or side-by-side bar charts
(c) Two-way table or difference in proportions

A.13 (a) One quantitative variable
(b) Histogram, dotplot, or boxplot
(c) Mean, median, standard deviation, range, IQR

A.15 (a) Two quantitative variables
(b) Scatterplot
(c) Correlation or slope from regression

A.17 (a) Experiment
(b) Subjects can see which treatment
(c) Sample is 46 subjects; Population answers may

vary
(d) One quantitative, one categorical
(e) Side-by-side boxplots

A.19 (a) The students/computers; 45; Not random
(b) Observational study
(c) Four variables, all quantitative
(d) Histogram, dotplot, or boxplot; Boxplot
(e) Scatterplot; Correlation; Negative
(f) No, not an experiment
(g) Explanatory: time on distracting websites;

Response: exam score
(h) Randomized experiment

A.21 (a) Sample: 86 patients;
Population: all people with bladder cancer

(b) Two categorical variables
(c) Experiment
(d) Two-way table
(e) Yes, the drug appears to be more effective

A.23 (a) Cases are the bills; n = 157
(b) Seven variables;

Bill, Tip, PctTip are quantitative;
Credit, Server,Day are categorical;
Guests could be either

(c) x = 16.62; s = 4.39; (6.7, 14.3, 16.2, 18.2, 42.2);
Values below 8.45 and above 24.05 are outliers

(d) Short answer not appropriate
(e) p̂th = 0.333; p̂f = 0.154;

Appears to be an association
(f) Side-by-side graphs; Server A
(g) Bill; PctTip; Slightly positive relationship
(h) r = 0.135

UNIT A: Review Exercise Partial Answers

A.25 Sample; Answers will vary

A.27 (a) Sample: 48 men; Population: all men
(b) Which group; Protein conversion; Age
(c) Categorical; Quantitative; Quantitative

A.29 (a) 8 cases; 2 variables: Number of days
(quantitative); Gender (categorical)

(b) Short answer not appropriate
A.31 (a) The 41 participants

(b) One categorical variable (meditation or not);
at least 9 quantitative variables

(c) Meditation or not
(d) 41 rows and at least 10 columns

A.33 No, volunteer sample is biased;
Sample: 38,485 people who voted

A.35 (a) Experiment
(b) Explanatory: color (categorical);

Response: rating (quantitative)
(c) Short answer not appropriate
(d) Yes

A.37 Short answer not appropriate
A.39 Snow is associated with colder days;

Shoveling snow leads to back pain
A.41 (a) Students; type of dorm (categorical);

number of hook-ups (quantitative)
(b) Explanatory: type of dorm;

Response: number of hook-ups
(c) Yes
(d) Yes
(e) Observational studies
(f) Students self-select the type of dorm
(g) No!
(h) Assuming causation when he shouldn’t be

A.43 (a) Students; 70
(b) Treatment group; Three ratings
(c) Experiment
(d) Short answer not appropriate
(e) Side-by-side boxplots; Scatterplot

A.45 (a) Experiment
(b) Cases: 24 fruit flies;

Explanatory: Which of the two groups;
Response: Percent of time alcohol is selected

(c) xR − xM = 0.26
(d) Yes, randomized experiment

A.47 Answers will vary
A.49 (a) Experiment

(b) Short answer not appropriate
(c) xS − xN = 1.9
(d) Yes

A.51 Cardiac arrest: 9.5%; Other: 1.1%
A.53 (a) Observational study; No

(b) Women attempting to become pregnant
(c) p̂ = 0.36; p̂s = 0.28; p̂ns = 0.38
(d) p̂ns − p̂s = 0.10
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A.55 (a) Sample: 48 participants;
Population: All people;
Variable: Whether a person’s lie is detected

(b) p̂ = 0.35
(c) No

A.57 Yes; x ≈ 7; s ≈ 2
A.59 (a) There are likely low outliers

(b) Short answer not appropriate
(c) Skewed to the left

A.61 (a) Skewed to right with outliers on right
(b) Median ≈ 140; estimates may vary
(c) Mean ≈ 190, estimates may vary

A.63 m = 1; x = 3.2
A.65 (a) x = 0.272; s = 0.237

(b) 2.44
(c) (0.073, 0.118, 0.158, 0.358, 0.851)
(d) Range = 0.778; IQR = 0.24

A.67 (a) x = 45 for both
(b) Different standard deviation

A.69 (a) 47; 48
(b) 72.6%
(c) 19.2%
(d) 56.25%
(e) Rosiglitazone: 89.4%;

Placebo: 56.3%
(f) Drug appears effective at reducing blockage

A.71 (a) Experiment
(b) Variables: cancer or not and which drug
(c) Short answer not appropriate
(d) 48.2%
(e) 58.7%
(f) 18.4% and 24.4%; Yes

A.73 (a) 0.306
(b) 0.417
(c) 0.324
(d) 0.286

A.75 (a) Yes
(b) Short answer not appropriate
(c) Yes; No
(d) Short answer not appropriate

A.77 Teens: (100, 104, 130, 140, 156);
Range = 56; IQR = 31; s = 19.57
80s: (80, 110, 135, 141, 190);
Range = 110; IQR = 36; s = 31.23
Variability is less for the teens

A.79 (a) Four outliers, at 402, 447, 511, 536
(b) Short answer not appropriate

A.81 (a) Males; Males; Females
(b) Yes; Males much higher calorie consumption

A.83 Blood pressures slightly higher for survivors;
Descriptions will vary

A.85 (a) Yes, distribution is bell-shaped
(b) 66.38 and 198.18
(c) 186∕200 = 93%
(d) Yes

A.87 (a) Exp: fixed or flexible (categorical);
Resp: delay time (quantitative)

(b) Fixed: xT = 105 sec, sT = 14.1 sec;
Flexible: xF = 44 sec, sF = 3.4 sec

(c) Difference: xD = 61 sec, sD = 15.2 sec
(d) Three large outliers

A.89 (a) Short answer not appropriate
(b) r = −0.071
(c) No

A.91 (a) Short answer not appropriate
(b) r = −0.189
(c) Short answer not appropriate
(d) r = 0.836
(e) Very substantial effect

A.93 (a) Positive
(b) A: short and light

B: tall and heavy
C: short and heavy
D: tall and thin

A.95 (a) Positive: tall people tend to weigh more;
Negative: tall people tend to weigh less;
Expect a positive relationship

(b) Positive; Moderately strong;
Approximately linear

(c) Very tall thin person!
A.97 (a) Short answer not appropriate

(b) −0.096
(c) 0.562
(d) Yes

A.99 (a) Land area; Percent rural
(b) 0.50
(c) ̂Rural = 30.52 + 0.051(LandArea)
(d) No
(e) Uzbekistan (UZB)
(f) 497%; Not reasonable; Extrapolate too far

A.101 (a) No aggressive male: x = 0.044, s = 0.062;
Aggressive male: x = 0.390, s = 0.288

(b) Short answer not appropriate
(c) ̂MatingActi𝑣ity = 0.48 − 0.323 ⋅ FemalesHiding
(d) No hyper-aggressive male: 0.466;

Hyper-aggressive male: 0.354
(e) Don’t hang out with hyper-aggressive males!

A.103 (a) Yes; Positive; No
(b) Income
(c) 75 thousand; 51%; 40%
(d) 76 thousand; 26%; 41%

A.105 Short answer not appropriate
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UNIT B: Understanding Inference
CHAPTER 3
Section 3.1 Partial Answers

3.1 Parameter; 𝜇
3.3 Statistic; p̂
3.5 Statistic; x
3.7 𝜇 = 401.3
3.9 r = 0.037
3.11 𝜌 = 0.139
3.13 𝜇 = 85; SE ≈ 20
3.15 p = 0.80; SE ≈ 0.03
3.17 (a) (i)

(b) (i)
(c) (ii)

3.19 (a) (ii)
(b) (ii)
(c) (iii)

3.21 (a) 𝜇 = number apps downloaded for all US
smartphone users

(b) x = 19.7
(c) Ask all smartphone users in the US!

3.23 (a) 𝜌; r; −0.575
(b) Would need to test all 7700 lakes

3.25 (a) p̂ = 0.076; Unlikely
(b) p̂ = 0.128; Likely
(c) p̂ = 0.152; Likely
(d) p̂ = 0.210; Unlikely

3.27 (a) Biased: B and C
(b) n = 100: A, n = 500: D

3.29 𝜇m − 𝜇o; xm − xo; best estimate = 39
3.31 (a) Single sample: Boxplot B

Sampling distribution: Boxplot A
(b) Each value is the budget for one Hollywood

movie;
30 values from about 1 to 150 million;
x ≈ 60 million dollars

(c) Each value is a sample mean;
1000 values from about 20 to 95 million;
𝜇 ≈ 52 million dollars

3.33 (a) x; Values will vary
(b) x; Values will vary
(c) 𝜇 = 4050
(d) Centered at 4050

3.35 (a) Somewhat right skewed; centered at
approximately 4050; std. error around 1900

(b) More symmetric; still centered around 4050; std
error around 760

3.37 (a) 𝜇 = 51.38, 𝜎 = 57.93
(b) Bell-shaped; centered near 51.4; SE ≈ 13

3.39 (a) p = 0.158
(b) Bell-shaped; centered at 0.158

3.41 (a) SE ≈ 0.115;
Farthest p̂ will vary.

(b) SE ≈ 0.080;
Farthest p̂ will vary.

(c) SE ≈ 0.052;
Farthest p̂ will vary.

(d) Increasing n increases accuracy

Section 3.2 Partial Answers

3.43 (a) p
(b) p̂

3.45 (a) 𝜇1 − 𝜇2

(b) x1 − x2
3.47 22 to 28
3.49 0.57 to 0.67
3.51 (a) Yes

(b) Yes
(c) No

3.53 0.24 to 0.40; p
3.55 0.30 to 0.38; 𝜌
3.57 1.8 to 4.2; 𝜇1 − 𝜇2

3.59 (a) Sample
(b) Statistic; p̂ = 0.356
(c) p = proportion of all first-year full-time US

college students choosing to change their major
by the end of the first year

(d) 0.342 to 0.370
3.61 (a) 𝜇A − 𝜇T

(b) xA − xT = 0.166
(c) −0.016 to 0.348
(d) Observational study

3.63 (a) pm − pf
(b) p̂m − p̂f = 0.417
(c) 0.109 to 0.725
(d) No

3.65 (a) Statistic; p̂ = 0.30
(b) Proportion, p, of all US young people arrested

by 23; p̂ = 0.30
(c) 0.29 to 0.31
(d) Very unlikely

3.67 (a) 𝜇1 − 𝜇2

(b) x1 − x2
(c) No, since 0 is not in the interval.

Anger ratings are higher with the verb form.
(d) Yes, since the results come from a randomized

experiment.
(e) It does matter. Use the noun form.

3.69 Short answer not appropriate
3.71 Point estimate: p̂ = 0.28; Margin of error: ±0.018;

95% CI: 0.262 to 0.298
3.73 (a) Short answer not appropriate

(b) Not the same; Game players are faster
(c) Short answer not appropriate
(d) Yes; Similar accuracy is plausible

3.75 (a) No
(b) Yes
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(c) Yes
(d) No

3.77 −2.53 to 7.33: Girls
−8.38 to −0.60: Boys

3.79 Short answers not appropriate

Section 3.3 Partial Answers

3.81 (a) Yes
(b) Yes
(c) No
(d) No
(e) Yes
(f) Yes

3.83 Point estimate ≈ 25; SE ≈ 3;
Interval: 19 to 31; Parameter: 𝜇

3.85 Point estimate ≈ 6; SE ≈ 4;
Interval: −2 to 14; Parameter: 𝜇1 − 𝜇2

3.87 SE ≈ 0.028;
Interval: 0.664 to 0.776

3.89 SE ≈ 0.015;
Interval: 0.352 to 0.412

3.91 (a) 0.49
(b) About 0.025
(c) Approximately 0.44 to 0.54;

We are 95% sure that the proportion distracted
is between 0.44 and 0.54.

3.93 0.67 to 0.73
3.95 (a) x = 34.0 and s = 14.63

(b) Short answer not appropriate
(c) Bell-shaped and centered at 34.
(d) 𝜇; x = 34
(e) 24.3 to 43.7

3.97 (a) p̂ = 0.767
(b) Short answer not appropriate
(c) Bell-shaped and centered at 0.767; SE ≈ 0.077
(d) 0.613 to 0.921

3.99 (a) SE = 0.015
(b) 0.12 to 0.18

3.101 (a) x = 2356, s = 858
(b) Bell shaped, mean ≈ 2356, SE ≈ 187
(c) About (1982, 2730)

3.103 (a) p̂ = 24
273

= 0.088
(b) (0.054, 0.122)
(c) p̂ = 42

477
= 0.088

(d) (0.064, 0.114)
(e) Migraine CI is narrower; n is larger

3.105 (a) 𝜇S − 𝜇N

(b) xS − xN = 0.465
(c) SE ≈ 0.228
(d) 0.009 to 0.921

3.107 (a) 𝜇H − 𝜇L

(b) xH − xL = 12.717
(c) SE ≈ 9.0
(d) −5.283 to 30.717

3.109 (a) pF − pM
(b) p̂F − p̂M = −0.224
(c) SE ≈ 0.059
(d) −0.342 to −0.106

3.111 16.2 to 33.6 minutes

Section 3.4 Partial Answers

3.113 (a) 25
(b) 50
(c) 10
(d) 5

3.115 C
3.117 A
3.119 B
3.121 Approximately 0.66 to 0.78;

Answers may vary
3.123 Approximately 0.34 to 0.42;

Answers may vary
3.125 14.3 to 36.7
3.127 0.58 to 0.81

We are 90% sure that the proportion bothered by
student phone use is between 0.58 and 0.81.

3.129 Approximately 0.467 to 0.493; Yes
3.131 (a) (15.8, 32.4)

(b) Not a short answer
3.133 (a) 0.36

(b) (0.28, 0.45)
(c) Not a short answer

3.135 (a) pT − pN
(b) p̂T − p̂N = 0.366
(c) Approximately 0.100 to 0.614
(d) Yes; No

3.137 (a) p = proportion of all US teens who have used
e-cigarettes

(b) 0.25 to 0.30
(c) Yes

3.139 (a) 90%: A; 99%: B
(b) 90%: $71 to $83 in a day;

99%: $67 to $87 in a day
3.141 (a) All FA Premier League matches;

Proportion of home team victories
(b) 0.583
(c) 0.508 to 0.650
(d) 0.467 to 0.692
(e) Yes; No

3.143 Around −21.2 to −6.1
3.145 (a) Around (14,058, 16,758)

(b) 𝜇 = $16, 790, no
3.147 (a) 𝜌; r = 0.21

(b) Select ordered pairs, with replacement
(c) Sample correlation, r
(d) SE = standard deviation of the correlations
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(e) −0.07 to 0.49
(f) Zero correlation is plausible
(g) Narrower

3.149 Not appropriate

CHAPTER 4
Section 4.1 Partial Answers

4.1 (a) Sample A
(b) Sample C

4.3 (a) Sample A
(b) Samples B and C

4.5 H0 ∶ 𝜇A = 𝜇B vs Ha ∶ 𝜇A ≠ 𝜇B

4.7 H0 ∶ 𝜇 = 50 vs Ha ∶ 𝜇 < 50
4.9 H0 ∶ pm = pf vs Ha ∶ pm > pf
4.11 H0 ∶ p = 0.20 vs Ha ∶ p < 0.20
4.13 H0 ∶ 𝜇f = 𝜇u vsHa ∶ 𝜇f ≠ 𝜇u

4.15 (a) Valid
(b) Invalid
(c) Invalid
(d) Invalid

4.17 (a) H0 ∶ 𝜇1 = 𝜇2, Ha ∶ 𝜇1 > 𝜇2

(b) Learning is higher for students with active
learning

(c) H0 ∶ 𝜇1 = 𝜇2, Ha ∶ 𝜇1 < 𝜇2

(d) Ratings of feelings of learning are lower with
active learning

(e) Students learn more with active learning.
Students think (incorrectly) that they learn
more in a passive lecture.

4.19 (a) H0 ∶ 𝜇b = 𝜇
𝑤
vs Ha ∶ 𝜇b > 𝜇

𝑤

(b) 17.36 and 18.72; Yes, Yes
(c) 23.60 and 19.17; Yes, Probably not
(d) Drinking beer attracts mosquitoes!
(e) Yes, since it was an experiment

4.21 (a) H0 ∶ 𝜇e = 𝜇s vsHa ∶ 𝜇e < 𝜇s

(b) H0 ∶ 𝜇e = 𝜇s vsHa ∶ 𝜇e > 𝜇s

(c) H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 < 0
4.23 H0 ∶ 𝜇m = 𝜇f vsHa ∶ 𝜇m > 𝜇f

4.25 H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 > 0
4.27 H0 ∶ 𝜇 = 50 vs Ha ∶ 𝜇 > 50
4.29 (a) H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 ≠ 0

(b) r = 0.75
(c) Same (just opposite directions)

4.31 (a) H0: Muriel’s guesses are no better than
random;
Ha Muriel’s guesses are better than
random.

(b) H0 ∶ p = 0.5 vs Ha ∶ p > 0.5
4.33 Not a test
4.35 Not a test
4.37 Not a test
4.39 Not a test
4.41 (a) H0 ∶ pc = pf vsHa ∶ pc > pf

(b) Answers will vary

(c) Answers will vary
(d) Answers will vary

Section 4.2 Partial Answers

4.43 x
4.45 x1 − x2
4.47 0.5; Left-tail
4.49 0; Two-tail
4.51 0; Right-tail
4.53 (a) (iii)

(b) (i)
(c) (ii)

4.55 (a) 0.30
(b) 0.04
(c) 0.70

4.57 (a) Short answer not appropriate
(b) D = 2.8

4.59 (a) Short answer not appropriate
(b) x1 = 19.0, x2 = 15.4

4.61 P-value ≈ 0.10
4.63 P-value ≈ 0.01
4.65 P-value ≈ 0.12
4.67 0.08
4.69 0.007
4.71 (a) B

(b) A
(c) A
(d) Unsafe and toxic levels of lead

4.73 (a) H0 ∶ 𝜇 = 0;Ha ∶ 𝜇 > 0
(b) At the null hypothesis value of 0
(c) x = 2.829; Way out beyond the

right tail
(d) No!
(e) Yes
(f) Yes

4.75 (a) H0 ∶ 𝜇c = 𝜇n vsHa ∶ 𝜇c > 𝜇n

(b) 0.11
(c) 0.03
(d) xc − xn = 2.4

4.77 (a) Short answer not appropriate
(b) p̂c − p̂f = 0.2, p-value=0.392

p̂c − p̂f = −0.4, p-value=0.066
(c) p̂c − p̂f = −0.4

4.79 (a) H0 ∶ p = 0.01 vs Ha ∶ p < 0.01
(b) p̂ = 0.0046
(c) p-value = 0.004

4.81 (a) H0 ∶ 𝜇C = 𝜇F vs Ha ∶ 𝜇C > 𝜇F

(b) xC − xF = 7602.6 − 6459.2 = 1143.4
(c) p-value ≈ 0.000
(d) Very unlikely to be just random chance

4.83 (a) H0 ∶ p = 0.5;Ha ∶ p > 0.5
(b) p̂ = 0.717
(c) p-value = 0.000

4.85 (a) H0 ∶ p1 = p2;Ha ∶ p1 > p2
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(b) p̂1 − p̂2 = 0.265
(c) p-value = 0.015

4.87 (a) H0 ∶ pM = pW vs Ha ∶ pM ≠ pW
(b) p̂M − p̂W = 0.433 − 0.466 = −0.033; Women
(c) p-value ≈ 0.33

4.89 (a) p̂ = 1
(b) p-value ≈ 0.004

4.91 (a) Yes; 1.85 lbs
(b) Yes; random assignment
(c) Yes
(d) Yes

4.93 (a) Unprocessed; 3.25
(b) Yes; random assignment
(c) No
(d) No

4.95 (a) H0 ∶ p = 1∕6 vs Ha ∶ p > 1∕6
(b) p = 1∕6, the proportion forH0

(c) p̂ = 0.1; Answers will vary
(d) Left
(e) Right
(f) p-value > 0.50

Section 4.3 Partial Answers

4.97 Reject H0

4.99 Do not reject H0

4.101 Yes; Yes; No
4.103 Yes; Yes; Yes
4.105 (a) I. 0.0875

(b) IV. 0.00003
(c) II. 0.5457
(d) III. 0.0217

4.107 Test A
4.109 p-value 0.001: test of self-reported pain;

p-value 0.47: test of spine mobility
4.111 (a) Illustrated and Animated

(b) Audio and Illustrated
(c) Audio and Animated

4.113 UV: 0.002; Vitamin D: 0.472
4.115 (a) H0 ∶ 𝜇M = 𝜇F vs Ha ∶ 𝜇M ≠ 𝜇F

(b) Do not reject H0; No evidence of a difference
4.117 (a) Exp: Antibiotics or not;

Resp: Overweight or not
(b) Observational study
(c) H0 ∶ pA = pN vs Ha ∶ pA > pN
(d) p̂A − p̂N = 0.142
(e) Reject H0; Strong evidence
(f) No

4.119 (a) Evidence that price affects effectiveness
(b) Short answer not appropriate

4.121 (a) H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5
(b) Do not reject H0; No
(c) Reject H0; Yes

4.123 (a) Randomized experiment
(b) H0 ∶ 𝜇FA = 𝜇PM vsHa ∶ 𝜇FA ≠ 𝜇PM

(c) Yes, very strong evidence to reject H0

(d) Essentially zero
(e) Diabetes is influenced by pollution

4.125 (a) Strong evidence that exercise improves
performance

(b) Strong evidence that exercise reduces BMP
(c) Very strong evidence that exercise increases

noggin
(d) Noggin level
(e) Exercise has a significant positive effect on

brain function in mice
4.127 H0 ∶ 𝜇1 = 𝜇2,Ha ∶ 𝜇1 > 𝜇2

x1 − x2 = 7.1
p-value = 0.001
Mean depression levels are reduced from three
weeks of eating healthy

4.129 H0 ∶ p1 = p2,Ha ∶ p1 > p2
p̂1 − p̂2 = 0.051
p-value = 0.007
Teens with high social media use are
more likely to develop ADHD.

4.131 H0 ∶ 𝜇1 = 𝜇2,Ha ∶ 𝜇1 ≠ 𝜇2

x1 − x2 = 0.6
p-value = 0.96
Mean speed is not significantly different between
males and females

4.133 H0 ∶ 𝜇1 = 𝜇2,Ha ∶ 𝜇1 < 𝜇2

x1 − x2 = −0.78
p-value = 0.0035
We have strong evidence that air-conditioning
improves time

4.135 H0 ∶ 𝜇 = 0,Ha ∶ 𝜇 ≠ 0
x = 21.64
p-value = 0.02
There is evidence that tears affect sexual arousal
ratings

4.137 If p is the proportion after a full moon:
H0 ∶ p = 0.5 vs Ha ∶ p > 0.5;
p-value ≈ 0;
Very strong evidence that attacks are more likely
after a full moon

4.139 (a) Experiment, not double-blind
(b) xD = 1.30
(c) H0 ∶ 𝜇D = 0 vs Ha ∶ 𝜇D > 0
(d) p-value ≈ 0.024
(e) Yes; No; Massage reduces inflammation

4.141 (a) H0 ∶ pD = pN andHa ∶ pD ≠ pN
(b) p-value ≈ 0.12
(c) Short answer not appropriate

4.143 (a) H0 ∶ 𝜇i = 𝜇u,Ha ∶ 𝜇i < 𝜇u

(b) p-value ≈ 0
(c) Mean flee time is shorter for invaded habitats.
(d) No, not an experiment

4.145 p-value≈ 0.001, Reject H0
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Section 4.4 Partial Answers

4.147 (a) p-value ≈ 0.18; Not significant
(b) p-value ≈ 0.014; Significant
(c) p-value ≈ 0.001; Significant
Strongest evidence when n = 1000

4.149 (a) p-value ≈ 0.32; Not significant
(b) p-value ≈ 0.007; Significant
Strongest evidence when n1 = 300 and n2 = 200

4.151 5
4.153 4
4.155 (a) No

(b) No
(c) Yes
(d) No
(e) No

4.157 (a) p = proportion of wins for team A
(b) H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5
(c) p̂ = proportion of games team A has won so far
(d) No
(e) 1%

4.159 (a) 10%
(b) 1%

4.161 Large, 𝛼 = 0.10
4.163 Small, 𝛼 = 0.01
4.165 Company: large, 𝛼 = 0.10;

Consumer: small, 𝛼 = 0.01
4.167 Short answer not appropriate
4.169 Short answer not appropriate
4.171 (a) Reject H0, phone calls more effective

(b) Type I
(c) Do not reject H0, insufficient evidence
(d) Type II

4.173 (a) H0 ∶ 𝜇 = 8 vs Ha ∶ 𝜇 < 8
(b) Reject H0; Results are statistically significant
(c) Results are not practically significant

4.175 Short answer not appropriate
4.177 (a) 3.6; 0.72

(b) (i) 2.4; 0.48; No
(ii) 1.2; 0.12; Yes

4.179 Short answer not appropriate
4.181 (a) More credibility

(b) p-value ≈ 0; 0.02; 0.005
(c) Yes; decrease
(d) Sample size

4.183 (a) 2.5
(b) 8
(c) No
(d) Yes
(e) Not a short answer
(f) Not a short answer

Section 4.5 Partial Answers

4.185 (a) Confidence interval
(b) Confidence interval

(c) Inference is not relevant
(d) Confidence interval

4.187 (a) Reject H0, 𝛼 = 0.05
(b) Do not reject H0, 𝛼 = 0.05
(c) Do not reject H0, 𝛼 = 0.01

4.189 (a) Reject H0, 𝛼 = 0.05, 𝜇1 > 𝜇2

(b) Do not reject H0, 𝛼 = 0.01
(c) Reject H0, 𝛼 = 0.10, 𝜇2 > 𝜇1

4.191 (a) Reject H0, 𝛼 = 0.01
(b) Do not reject H0, 𝛼 = 0.01
(c) Reject H0, 𝛼 = 0.01

4.193 (a) Do not reject H0

(b) Reject H0

4.195 (a) Short answer not appropriate
(b) Can generalize to population;

Strength of evidence
(c) Can generalize to population;

Can estimate size of difference
(d) No, need the second quote

4.197 (a) H0 ∶ pF = pM vs Ha ∶ pF ≠ pM
(b) Reject H0; 5%
(c) Female

4.199 (a) Observational study; random sample; No
(b) Short answer not appropriate
(c) Short answer not appropriate
(d) x = 0.124, s = 0.99;

5-num: (−3.27,−0.03, 0.11, 0.32, 4.86)
(e) −$0.14 to $0.40
(f) H0 ∶ 𝜇 = 0 vs Ha ∶ 𝜇 ≠ 0; Do not reject H0

(g) H0 ∶ 𝜇 = 0 vs Ha ∶ 𝜇 > 0;
P-value = 0.19; Do not reject H0

(h) Only a Type II error is possible; Check mean for
all 500 stocks to find 𝜇 exactly

4.201 (a) H0 ∶ 𝜇 = 200 vs Ha ∶ 𝜇 ≠ 200;
p-value ≈ 0.8; Do not reject H0

(b) Included
4.203 (a) x = 91

(b) 57, 64, 70, 82, 94, 123;
Sample size and standard deviation are the
same

(c) Answers will vary
(d) Answers will vary

4.205 (a) H0 ∶ 𝜇s = 𝜇c vsHa ∶ 𝜇s ≠ 𝜇c

(b) Recall is the same with sleep or caffeine
(c) xs − xc = 3.0
(d) 0
(e) Short answer not appropriate
(f) P-value ≈ 0.05
(g) Do not reject H0; Not enough evidence of a

difference
4.207 p-value ≈ 0.001; Yes
4.209 (a) H0 ∶ pd = pc vsHa ∶ pd < pc

(b) 0
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(c) Use 48 cards, 30 of which have “R” for relapse;
Deal into two piles of 24

4.211 (a) Short answer not appropriate
(b) Short answer not appropriate

4.213 H0 ∶ 𝜇Q = 𝜇L vs Ha ∶ 𝜇Q > 𝜇L;
Sample statistic is xD = 2.7;
p-value ≈ 0.20; Do not reject H0;
No strong evidence that quiz pulse rates are higher

4.215 (a) Appropriate
(b) Appropriate
(c) Appropriate

UNIT B: Essential Synthesis Partial Answers

B.1 (a) Reject H0

(b) Short answer not appropriate
(c) Randomize, placebo, double-blind
(d) Vitamin C reduces mean time to recover

B.3 (a) H0 ∶ 𝜇dc = 𝜇
𝑤
vsHa ∶ 𝜇dc > 𝜇

𝑤
;

p-value ≈ 0.005; Reject H0

(b) 95% confidence interval for 𝜇dc − 𝜇
𝑤
is (2.88,

10.75)
B.5 (a) Roommates are assigned at random

(b) H0 ∶ 𝜇
𝑣
= 𝜇n vs Ha ∶ 𝜇

𝑣
< 𝜇n

(c) Reject H0

(d) Negative differences indicate 𝜇
𝑣
< 𝜇n

(e) Do not reject H0

(f) Reject H0

(g) Larger effect on those who bring a videogame
themselves

(h) Short answer not appropriate
(i) More videogames associated with lower mean

GPA
(j) Answers will vary

B.7 (a) Positive
(b) r = 0.914
(c) 0.88 to 0.94
(d) No

UNIT B: Review Exercise Partial Answers

B.9 p; p̂; 0.55
B.11 Short answer not appropriate
B.13 Equally likely not plausible
B.15 (a) p = 0.298

(b) Bell-shaped; centered at 0.298
B.17 (a) 0.05

(b) About 0 to 0.12; About 0.25 to 0.7
(c) SE ≈ 0.02; SE ≈ 0.005
(d) Yes; No

B.19 (a) Answers will vary
(b) Answers will vary
(c) 𝜇 = 24.9 points
(d) Roughly symmetric and centered at 24.9

B.21 Minimum ≈ 5 to maximum ≈ 50; st.dev. about 7.6.
Answers will vary

B.23 0.0004: effect of ringing phone on learning;
0.93: effect of proximity to phone;
Strong evidence that ringing phone affects learning

B.25 H0 ∶ pF = pN vsHa ∶ pF < pN ;
p-value ≈ 0.09; No; Yes

B.27 (a) Answers vary, pick 10 values well above 100
(b) Answers vary, pick 10 numbers with x < 100
(c) Answers vary, pick 10 numbers with x just a bit

over 100.
B.29 (a) x = 67.59; s = 50.02

(b) Short answer not appropriate
(c) Bell-shaped, centered at 67.59
(d) $45.79 to $89.39

B.31 (a) (13.6,31.6)
(b) s = 24.92; No

B.33 (a) 0.05
(b) (−0.004,0.135)
(c) Answers will vary

B.35 (a) One-tailed
(b) H0 ∶ ps = pns vs Ha ∶ ps < pns
(c) 135 for smoking, 543 for non-smoking
(d) 0.04

B.37 (a) Sample A
(b) Sample B
(c) Sample A

B.39 (a) p = 0.131
(b) Bell-shaped; centered near 0.131; SE ≈ 0.033

B.41 (a) Same
(b) Different
(c) Same
(d) Different
(e) Different

B.43 (a) H0 ∶ p = 0.5 vsHa ∶ p > 0.5
(b) Answers will vary
(c) The proportion of heads is p = 0.5

B.45 (a) H0 ∶ pf = pnf , Ha ∶ pf > pnf
(b) 0.329
(c) 0.073

B.47 (a) American adults; the 7293 contacted
(b) Short answer not appropriate
(c) 0.585 with margin of error 0.012

B.49 (a) H0 ∶ 𝜇 = 160 vsHa ∶ 𝜇 < 160
(b) Short answer not appropriate

B.51 (a) Plausible
(b) Plausible
(c) Plausible

B.53 (a) H0 ∶ 𝜌 = 0 vsHa ∶ 𝜌 > 0
(b) Yes
(c) No
(d) Placebo could give as extreme a correlation

B.55 (a) p-value = 0.023
(b) No change in distribution; p-value = 0.046
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B.57 (a) p̂ = 0.57
(b) 0.43 to 0.71
(c) No

B.59 (a) Reject H0

(b) Reject H0

(c) Reject H0

(d) Do not reject H0

(e) Body mass gain; Locomotor activity
(f) Answers to (a) and (c) change
(g) Strong; Very strong; Strong; None
(h) Yes, if the 6 lemurs are a random sample

B.61 0.185 to 0.424
B.63 (17.2,19.2)
B.65 (a) Short answer not appropriate

(b) (0.706,0.876)
(c) 95%: (0.729,0.867); 90%: (0.742,0.859)
(d) Interval gets narrower

B.67 (a) Once
(b) Yes, p-value is very small
(c) No

B.69 (a) H0 ∶ 𝜌 = 0 vs Ha ∶ 𝜌 < 0
(b) r ≈ −0.15
(c) r ≈ −0.50

B.71 (a) H0 ∶ p1 = p2 vsHa ∶ p1 > p2
(b) p̂1 = 0.519; p̂2 = 0.250; Yes
(c) Small 𝛼, such as 0.01
(d) Pain response same either way; 0
(e) p̂1 − p̂2 = 0.27
(f) Fairly strong evidence to reject H0

(g) At 1% level, do not reject H0

B.73 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Harmful side effects
(d) Do not reject H0

(e) Not necessarily, results are inconclusive
B.75 p-value ≈ 0; Reject H0

B.77 p-value ≈ 0.24; Do not reject H0

B.79 Short answer not appropriate
B.81 Short answer not appropriate

UNIT C: Inference with Normal
and t-Distributions
CHAPTER 5
Section 5.1 Partial Answers

5.1 0.014
5.3 0.894
5.5 0.040
5.7 z = 3.0
5.9 z = −1.29
5.11 z = −1.0
5.13 (a) p-value= 0.20

(b) p-value= 0.0087
(c) p-value= 0.024

5.15 (a) 0.309
(b) 0.115

5.17 (a) 0.788
(b) 0.945

5.19 z = 0.645; p-value = 0.259
Not a significant difference

5.21 z = 15.161; p-value ≈ 0.000
Very significant difference

5.23 H0 ∶ pQ = pR vs Ha ∶ pQ > pR;
z = 3.86; p-value = 0.000056; Reject H0

5.25 H0 ∶ pR = pU vs Ha ∶ pR ≠ pU ;
z = 2.507; p-value = 0.012; Reject H0

5.27 z = 2.01; p-value = 0.022; Reject H0

5.29 H0 ∶ 𝜇 = 35 vs Ha ∶ 𝜇 > 35;
z = 0.833; p-value = 0.202; Do not rejectH0

5.31 (a) H0 ∶ pG = pI vs Ha ∶ pG ≠ pI ;
p̂G − p̂I = 0.016

(b) p-value=0.286
(c) N(0, 0.015), p-value=0.286
(d) z = 1.067; p-value = 0.286
(e) Do not reject H0

5.33 (a) z = 1.49
(b) p-value = 0.068
(c) The randomization distribution is not

symmetric

Section 5.2 Partial Answers

5.35 (a) z∗ = 1.476
(b) z∗ = 1.881
(c) z∗ = 2.054

5.37 68.668 to 75.332
5.39 0.703 to 0.857
5.41 0.868 to 27.132
5.43 0.18 to 0.21
5.45 54.8 and 60.3
5.47 0.09 to 0.45 higher using quizzes
5.49 0.210 to 0.336
5.51 (a) 0.191; 0.110; 0.081

(b) 0.032 to 0.130
(c) No

5.53 (a) Around (11.9, 20.4)
(b) Around (11.7, 20.3)

5.55 (a) SE = 0.0355
(b) (0.749, 0.865)

5.57 (a) −0.158 to 0.898
(b) Bootstrap distribution is slightly

skewed

CHAPTER 6
Section 6.1-D Partial Answers

6.1 SE = 0.061
6.3 SE = 0.039
6.5 SE = 0.016
6.7 0.089; 0.035; 0.015;

SE goes down; Accuracy is better
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6.9 (a) Yes
(b) Yes
(c) No
(d) No

6.11 (a) Normal; mean=0.66, SE=0.050
(b) 0.036

Section 6.1-CI Partial Answers

6.13 p̂ = 0.38;ME = 0.043;
95% CI is 0.337 to 0.423

6.15 p̂ = 0.689;ME = 0.126;
99% CI is 0.563 to 0.815

6.17 n ≥ 385
6.19 n ≥ 632
6.21 (a) p̂ = 0.182

(b) SE = 0.012
(c) z∗ = 1.645
(d) 0.162 to 0.202

6.23 (a) 0.271 to 0.429
(b) No; Yes

6.25 0.167 to 0.233;ME = 0.033
6.27 (a) 0.675 to 0.705

(b) 0.025 to 0.035
(c) Part (a)

6.29 About 0.045 both ways; Matches
very closely

6.31 About 0.014 both ways; Matches very closely
6.33 0.40 to 0.56; Both give similar results
6.35 n = 1844; n = 1068; n = 752;

For a higher level of confidence, need larger n
6.37 (a) Between 0.291 and 0.349

(b) ME = ±2.9%
(c) n ≥ 8,360

6.39 n ≥ 846
6.41 n = 2500
6.43 n = 400
6.45 0.745 to 0.855

Section 6.1-HT Partial Answers

6.47 z = −2.78; p-value = 0.003; Reject H0

6.49 z = 1.41; p-value = 0.079; Do not rejectH0

6.51 z = 4.74; p-value ≈ 0; Reject H0

6.53 (a) H0 ∶ pl = 0.10 vs. Ha ∶ pl ≠ 0.10
(b) z = 1.79; p = 0.074
(c) Reject H0 at 10%, but not at 5%

6.55 H0 ∶ p = 0.75; Ha ∶ p > 0.75
z = 7.0; p-value = 0.000;
Reject H0; More than 75% are satisfied

6.57 Test statistic = 4.83; p-value ≈ 0;
Strong evidence that p > 0.50

6.59 z = 0.95; p-value = 0.171; Do not rejectH0

6.61 H0 ∶ p = 0.5 vs Ha ∶ p ≠ 0.5;
z = 1.26; p-value = 0.208; Do not rejectH0

6.63 z = −2.82; p-value = 0.0048; Reject H0

Section 6.2-D Partial Answers

6.65 SE = 0.158
6.67 SE = 12.65
6.69 ±1.83
6.71 ±2.06
6.73 0.0349
6.75 0.165
6.77 4.56; 1.77; 0.79;

SE goes down; Accuracy is better
6.79 Appropriate; df = 11; SE = 0.46
6.81 Not appropriate
6.83 Appropriate
6.85 Short answer not appropriate
6.87 (a) 0.486

(b) 0.00027
(c) (a) is not appropriate, but (b) is

Section 6.2-CI Partial Answers

6.89 x = 12.7;ME = 2.1; 10.6 to 14.8
6.91 x = 3.1;ME = 0.066; 3.034 to 3.166
6.93 x = 46.1;ME = 12.85; 33.25 to 58.95
6.95 n ≥ 50
6.97 n ≥ 6766
6.99 8.236 to 17.464

6.101 1.856 to 2.944
6.103 (a) ME = 0.08

(b) 2.12 to 2.28
6.105 539.7 to 588.3 million
6.107 6.2 to 7.0
6.109 Probably not; Skewed and outliers;

Try a bootstrap distribution
6.111 About 4.9 both ways; Matches closely
6.113 About 2.2 both ways; Matches closely
6.115 16.95 to 19.37; Methods give similar results
6.117 (a) 73.27 and 80.79 grams

(b) ME = ±3.76 grams
(c) n ≥ 4397

6.119 (a) 269 to 311 particles per liter
(b) ±21.0 particles
(c) n ≥ 2037

6.121 n = 35; n = 139; n = 3458;
Smaller margin of error requires larger
sample size

6.123 n = 4269; n = 1068; n = 43;
High variability requires larger sample size

6.125 12.20 grams to 13.38 grams

Section 6.2-HT Partial Answers

6.127 t = −3.64; p-value = 0.0005; Reject H0

6.129 t = 1.27; p-value = 0.115; Do not rejectH0

6.131 t = −4.99; p-value ≈ 0; Reject H0

6.133 t = 4.18; p-value = 0.003; Reject H0

6.135 Yes, t = −3.67, p-value= 0.0018



P A R T I A L A N S W E R S 825

6.137 (a) Yes; t = 1.50; p-value= 0.072
(b) Yes; t = 1.75; p-value= 0.045
(c) No; t = −0.50; p-value= 0.688
(d) New Jersey

6.139 (a) n = 30; x = 0.25217; s = 0.01084
(b) t = −3.96; p-value = 0.00044; Reject H0

(c) The same up to round-off
6.141 (a) t = −10.09; p-value ≈ 0; Reject H0

(b) t = 0.58; p-value = 0.718; Do not reject
H0

Section 6.3-D Partial Answers

6.143 (a) SE = 0.086
(b) Normal curve applies

6.145 (a) SE = 0.076
(b) Normal curve applies

6.147 (a) SE = 0.106
(b) Normal curve is not appropriate

6.149 (a) One group; No
(b) Two groups; Yes
(c) One group; No
(d) Two groups; Yes

Section 6.3-CI Partial Answers

6.151 p̂1 − p̂2 = 0.04;ME = 0.066;
95% CI for p1 − p2 is −0.026 to 0.106

6.153 p̂1 − p̂2 = −0.14;ME = 0.11;
99% CI for p1 − p2 is −0.25 to −0.03

6.155 0.151 to 0.229 higher for internet users
6.157 0.301 to 0.335 lower with electronic; No
6.159 0.050 to 0.118
6.161 0.23 to 0.01 lower for metal
6.163 About 0.049 both ways; Matches very

closely
6.165 0.155 to 0.265; Similar results
6.167 −0.132 to 0.098

Section 6.3-HT Partial Answers

6.169 (a) p̂A = 0.768, p̂B = 0.463, p̂ = 0.631
(b) z = 3.84; p-value ≈ 0; Reject H0

6.171 (a) p̂m = 0.24, p̂f = 0.32, p̂ = 0.28
(b) z = −0.89; p-value = 0.187; Do not reject H0

6.173 (a) p̂T = 0.48, p̂C = 0.28, p̂ = 0.38
(b) z = 2.52; p-value = 0.006; Reject H0

6.175 z = 2.410; p-value = 0.008;
Reject H0; Rats prefer opaque boxes when hiding

6.177 z = −4.99; p-value ≈ 0; Reject H0

Experiment =⇒ can infer causation
6.179 z = 1.675; p-value = 0.047

Significantly higher
6.181 z = 7.818; p-value ≈ 0.000

Very significant difference
6.183 Sample size is too small
6.185 (a) -2.30

(b) 0.011

(c) 3.43
(d) 0.0003
(e) Yes

6.187 HRT increases risk; z = 2.07; p-value = 0.038
6.189 HRT decreases risk; z = −4.77, p-value ≈ 0
6.191 z = 1.07; p-value = 0.285; Do not rejectH0

6.193 Yes
6.195 (a) −0.021

(b) 0.001
(c) No
(d) ≈ 0.0004
(e) Yes
(f) Yes

6.197 Not a short answer

Section 6.4-D Partial Answers

6.199 SE = 1.41
6.201 SE = 1.431
6.203 ±1.89; df = 7
6.205 0.0298; df = 11

Section 6.4-CI Partial Answers

6.207 x1 − x2 = −2.3;ME = 1.46;
95% CI is −3.76 to −0.84

6.209 x1 − x2 = 0.3;ME = 3.09;
95% CI is −2.79 to 3.39

6.211 1.61 to 4.59
6.213 (a) Short answer not appropriate

(b) 0.32 to 4.20
(c) No

6.215 (−21.67,−5.59)
6.217 −0.008 to 0.578
6.219 −0.130 to 0.486
6.221 SE≈ 1.12 both ways; Matches closely
6.223 (a) 168; 193

(b) Males; 1.766 hours per week more
(c) −2.93 to −0.60
(d) Same to two decimal places
(e) Short answer not appropriate

6.225 −2.356 to 0.912 grams; Yes

Section 6.4-HT Partial Answers

6.227 t = 2.70; p-value = 0.006; Reject H0

6.229 t = 0.96; p-value = 0.37; Do not reject H0

6.231 t = 3.234; p-value = 0.0013;
Reject H0; Take notes longhand!

6.233 t = 2.32; p-value = 0.013;
Reject H0; Eating healthy for three weeks helps
depression

6.235 H0 ∶ 𝜇1 = 𝜇2,Ha ∶ 𝜇1 > 𝜇2

t = 4.74; p-value = 0.000
Students learn the material better in an active
learning class.

6.237 H0 ∶ 𝜇1 = 𝜇2,Ha ∶ 𝜇1 > 𝜇2

t = 5.356; p-value = 0.000
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Mean grades are higher when students are not
distracted by devices.

6.239 t = 3.013; p-value = 0.004;
Reject H0; Mean age is not the same

6.241 (a) H0 ∶ 𝜇U = 𝜇E,Ha ∶ 𝜇U > 𝜇E

(b) 2.4
(c) 1.74
(d) 0.049
(e) Reject H0

(f) Not a short answer
6.243 t = −6.80; p-value = 0.00025; Reject H0

6.245 (a) Experiment
(b) H0 ∶ 𝜇T = 𝜇C vs Ha ∶ 𝜇T > 𝜇C

(c) t = 2.07; p-value = 0.0342; Reject H0

(d) Possibly not normal
(e) p-value ≈ 0.029
(f) Drinking tea enhances immune response

6.247 t = 4.44; p-value ≈ 0; Reject H0

6.249 t = 0.16, p-value= 0.874; Do not rejectH0

6.251 t = 1.87, p-value = 0.066; Do not reject H0

6.253 H0 ∶ 𝜇f = 𝜇m vs Ha ∶ 𝜇f ≠ 𝜇m;
t = −2.98; p-value = 0.003; Reject H0

6.255 t = −2.45; p-value = 0.014; RejectH0

Section 6.5 Partial Answers

6.257 xd = 556.9;ME = 23.8;
90% CI is 533.1 to 580.7

6.259 xd = −3.13;ME = 6.46;
95% CI is −9.59 to 3.33

6.261 t = −2.69; p-value = 0.016; Reject H0

6.263 t = 1.36; p-value = 0.103; Do not reject
H0

6.265 Paired data
6.267 Paired data
6.269 Paired data
6.271 t = 2.71; p-value = 0.027; Reject H0

6.273 1.86 to 3.80
6.275 4.1 to 39.3 pg/ml reduction in testosterone
6.277 t = 0.86, p-value = 0.206; Do not reject H0

6.279 (a) Short answer not appropriate
(b) 0.271 to 0.713 higher with a spoiler

6.281 t = 1.30; p-value = 0.200;
Do not reject H0

6.283 (a) t = −1.09; p-value = 0.152; Do not reject H0

(b) t = −2.71; p-value = 0.012; Reject H0

(c) Short answer not appropriate
6.285 (17.0, 18.6)

UNIT C: Essential Synthesis Partial Answers

C.1 CI for a mean
C.3 Test for difference in proportions
C.5 CI for difference in means
C.7 Test for a proportion
C.9 (a) Small

(b) Reject H0

C.11 (a) Large
(b) Do not reject H0

C.13 (a) Small
(b) Reject H0

C.15 z = 2.14; p-value = 0.0162; Reject H0

C.17 z = 2.39; p-value = 0.0168; Reject H0

C.19 t = 4.45; p-value ≈ 0; Reject H0

C.21 (a) t = 0.36; p-value = 0.73; Do not reject H0

(b) t = 2.16; p-value = 0.0338; Reject H0

(c) t = −2.28; p-value = 0.0283; Reject H0

(d) t = −3.83; p-value = 0.0064; Reject H0

(e) Short answer not appropriate
C.23 Test mean; t = −6.03; p-value≈ 0; Reject H0

C.25 Test difference in proportions; z = 0.1;
p-value = 0.421; Do not reject H0

C.27 (a) x = 98.92; p-value ≈ 0; Reject H0

(b) p̂ = 0.2; 0.147 to 0.262
(c) Females; p-value = 0.001; Reject H0

(d) p-value = 0.184; Do not reject H0

(e) p-value = 0.772; Do not Reject H0

UNIT C: Review Exercise Partial Answers

C.29 (a) 0.018
(b) 0.106

C.31 (a) z = 0.253
(b) z = −2.054

C.33 ±1.711
C.35 0.011
C.37 (a) 12.20 to 13.38

(b) H0 ∶ 𝜇 = 12 vs Ha ∶ 𝜇 > 12;
z = 2.63; p-value = 0.004; RejectH0

C.39 0.807 to 0.853; 0.023; No; Yes
C.41 (a) n = 157; x = 3.849; s = 2.421

(b) SE = 0.193; Same as in computer output
(c) $3.466 to $4.232
(d) Same up to round off
(e) Short answer not appropriate

C.43 (a) To avoid sampling bias
(b) t = 14.4; p-value≈ 0
(c) No, test is about themean

C.45 (a) Update status: 0.128 to 0.172;
Comment on another’s content: 0.194 to 0.246;
Comment on another’s photo: 0.175 to 0.225;
“Like” another’s content: 0.232 to 0.288;
Send a private message: 0.081 to 0.119

(b) No; intervals do not overlap
C.47 (a) Internet users

(b) z = 7.49; p-value ≈ 0; Reject H0

(c) No, not an experiment
(d) Yes

C.49 0.0081; 0.0078; Yes
C.51 40.9 to 299.3
C.53 −95.7 to 169.3
C.55 t = 0.82; p-value = 0.416; Do not rejectH0
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C.57 z = −1.55; p-value = 0.0606;
Do not reject H0 at 5% level

C.59 t = 2.61; p-value = 0.006; Reject H0

C.61 (a) p̂ = 0.17; ME= 0.03
(b) n ≥ 9364

C.63 (a) 224 Quebecers; 90 Texans
(b) p̂ = 0.24
(c) z = 4.10; p-value ≈ 0.000; Reject H0

C.65 0.0003 to 0.0081
C.67 −0.0046 to 0.0096
C.69 (a) No, sample size is too small

(b) Randomization p-value ≈ 0.022; Reject H0

C.71 t = −1.69; p-value = 0.102; No
C.73 0.02 and 6.98 g more gained in light
C.75 0.72 to 3.68 in favor of home teams
C.77 0.047 to 0.219 higher for males
C.79 (a) H0 ∶ 𝜇1 = 𝜇2 vsHa ∶ 𝜇1 > 𝜇2,

where 𝜇1 is “in class” and 𝜇2 is “missed”
(b) t = 3.02; p-value = 0.008; Reject H0

(c) No, not an experiment
(d) Yes

C.81 Mean = 0.651; SE = 0.067
C.83 (a) Mean = 36.78 yrs; SE = 7.14 yrs

(b) Mean = 36.78 yrs; SE = 2.258 yrs
(c) Mean = 36.78 yrs; SE = 0.714 yrs

C.85 Mean = 0.008; SE = 0.039
C.87 N(0.037, 0.041)
C.89 t = 6.39; p-value ≈ 0; Reject H0

C.91 t = 3.316; p-value = 0.0008; Reject H0

C.93 (a) z = 2.52; p-value = 0.006; Reject H0

(b) z = −2.23; p-value = 0.0258;
Reject H0

C.95 0.532 to 0.760
C.97 z = 0.83; p-value = 0.406; Do not

reject H0

C.99 0.588 to 0.652
C.101 (a) −0.186 to −0.014; Yes

(b) z = −2.17; p-value = 0.030; Reject H0

(c) No; Observational study
C.103 (a) 2006 people; All US adults

(b) Observational study; No
(c) t = 9.91; p-value ≈ 0; Reject H0

(d) Answers will vary
C.105 −4.11 to 3.29
C.107 t = 9.97; p-value ≈ 0; Reject H0

C.109 z = −6.95; p-value ≈ 0; Reject H0

C.111 t = 21.6; p-value ≈ 0; Reject H0

C.113 (a) p̂ = 0.167; SE = 0.039
(b) Yes
(c) 0.091 to 0.243

C.115 (a) p̂M − p̂C = −0.067
(b) −0.056 to 0.167
(c) No

C.117 (a) x = 111.7;ME = 63.5; 48.2 to 175.2

(b) Yes; Yes
(c) No; Yes

C.119 t = 3.52; p-value = 0.005;
Mice in light gain more

C.121 (a) Yes; t = 1.98; p-value = 0.040
(b) No; t = 0.46; p-value = 0.0.328
(c) Yes; t = 2.43; p-value = 0.019

C.123 Short answer not appropriate
C.125 (a) t = 5.80; p-value ≈ 0; Reject H0

(b) z = 4.39; p-value ≈ 0; Reject H0

(c) CI for 𝜇D is 1.87 to 3.80 years
CI for p is 0.618 to 0.798

C.127 95% CI for difference is 54.59 to 67.41 minutes;
t = 19.68; p-value = 0.000; Reject H0

Flexible system is better
C.129 (a) Randomization distribution not

for CI
(b) Use a bootstrap distribution
(c) Approximately 0.13 to 0.91
(d) Bootstrap distribution is left skewed

UNIT D: Inference for Multiple Paramaters
CHAPTER 7
Section 7.1 Partial Answers

7.1 125; 125; 125; 125
7.3 100; 50; 50
7.5 𝜒

2 = 6.45; p-value = 0.0398
7.7 𝜒

2 = 8.38; p-value = 0.039
7.9 (a) 40

(b) 0.4
(c) df = 3

7.11 (a) 700
(b) 1.46
(c) df = 5

7.13 𝜒
2 = 1.850; p-value = 0.604;

Proportions are approximately equally
likely

7.15 (a) H0 ∶ pg = po = pp = pr = py = 0.2
Ha ∶ Some pi ≠ 0.2

(b) 13.2
(c) 4
(d) 3.70
(e) p-value = 0.449; Do not reject H0

7.17 𝜒
2 = 0.684; p-value = 0.710;

Do not reject H0

Do not have evidence against equally likely
7.19 (a) 32,968

(b) 8044.2; 8505.7; 8472.8; 7945.3
(c) 𝜒

2 = 382.4
(d) df = 3; p-value ≈ 0
(e) Short answer not appropriate

7.21 𝜒
2 = 82.6; p-value ≈ 0; Reject H0
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7.23 (a) 𝜒
2 goodness-of-fit test

(b) Large
(c) Small
(d) Monthly deaths due to medication

errors
(e) July
(f) Observed

7.25 (a) Yes, 𝜒2 = 172.0; p-value ≈ 0
(b) Yes, 𝜒2 = 120.2; p-value ≈ 0
(c) No, not a random sample

7.27 (a) 𝜒
2 = 6.20; p-value = 0.0128; Reject H0

(b) z = 2.490; p-value = 0.0128; Reject H0

(c) Same
7.29 𝜒

2 = 73.0; p-value = 0.000;
Seasons are not equally popular

7.31 (a) 𝜒
2 = 22.9121; p-value = 0.000;

Assumed proportions are not accurate
(b) None; Fewer than expected

7.33 𝜒
2 = 26.66; p-value = 0.0008; Reject H0

7.35 (a) 𝜒
2 = 17.87; p-value = 0.037; Reject H0

(b) 𝜒
2 = 61.68; p-value ≈ 0; Reject H0

Section 7.2 Partial Answers

7.37 Expected = 65; Contribution = 0.754
7.39 Expected = 10; Contribution = 2.5
7.41 df = 2
7.43 df = 4
7.45 𝜒

2 = 57.3; p-value ≈ 0; Reject H0;
College plans highly associated with household
income

7.47 𝜒
2 = 8.20; p-value = 0.017; RejectH0

7.49 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Short answer not appropriate
(d) 𝜒

2 = 3.17
(e) p-value = 0.075; Do not reject H0

7.51 𝜒
2 = 6.08; p-value = 0.0478; Reject H0;

Miscarriages higher than expected with NSAIDs;
Cannot assume causation

7.53 (a) 𝜒
2 = 80.53; p-value ≈ 0; yes

(b) 𝜒
2 = 21.6; p-value = 0.00002; yes

7.55 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Yes
(d) df = 4
(e) 𝜒

2 = 9.07
(f) p-value = 0.059, Do not (quite) reject H0

7.57 (a) 34.75; 3.645
(b) df = 4
(c) 𝜒

2 = 24.805; p-value = 0.000; Reject H0

(d) (Sprint, XX); Observed less than expected
(e) Sprinters: RR; Endurance: XX

7.59 p-value = 0.592; No evidence of an association

7.61 (a) 𝜒
2 = 36.040; p-value = 0.000;

Preference is strongly associated with gender
(b) Healthy; Females more likely and males less

likely;
Rich; Females less likely and males more likely

7.63 (a) 𝜒
2 = 11.013; p-value = 0.012;

Favorite season is associated with gender
(b) Fall; Females more likely and males less likely

7.65 (a) Short answer not appropriate
(b) 5

7.67 𝜒
2 = 7.137; p-value = 0.028; Some evidence of an

association

CHAPTER 8
Section 8.1 Partial Answers

8.1 Dataset B; less variability within groups
8.3 Dataset A; means farther apart
8.5 Dataset B; less variability within groups
8.7 F = 2.55
8.9 F = 0.8
8.11 (a) 4 groups

(b) H0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 vs Ha ∶ Some 𝜇i ≠ 𝜇j

(c) p-value=0.229
(d) Do not reject H0

8.13 (a) 3 groups
(b) H0 ∶ 𝜇1 = 𝜇2 = 𝜇3 vs Ha ∶ Some 𝜇i ≠ 𝜇j

(c) p-value=0.0013
(d) Reject H0

8.15 (a) Treatment group (categorical);
Change in cortisol level (quantitative)

(b) Experiment
(c) H0 ∶ 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4 vs Ha ∶ Some 𝜇i ≠ 𝜇j

(d) 67; 3; 64
(e) p-value less than 0.05

8.17 (a) School pressure (categorical);
Time hanging out with friends (quantitative)

(b) Very little; A lot
(c) 447
(d) F-statistic = 4.75; p-value = 0.003
(e) Reject H0

(f) Mean hours hanging out differs by how much
pressure felt from schoolwork

8.19 (a) H0 ∶ 𝜇r = 𝜇g = 𝜇b vs Ha ∶ Some 𝜇i ≠ 𝜇j

(b) F = 16.5
(c) p-value ≈ 0
(d) Reject H0

8.21 (a) Yes; EE
(b) F = 22.76; p-value ≈ 0; Reject H0

8.23 (a) SD lower for all three groups;
EE highest for both HC and SD

(b) F = 11.3; p-value ≈ 0; Reject H0

8.25 F = 3.29; p-value = 0.042; Reject H0

8.27 (a) Draw an image; Write the word
(b) F = 6.40
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(c) p-value = 0.0036
(d) Reject H0; Strong evidence of a difference
(e) It matters; Draw an image!

8.29 (a) Draw an image; Write the word
(b) F = 3.83
(c) p-value = 0.032
(d) Reject H0; Evidence of a difference
(e) It matters; Draw an image!

8.31 (a) Short answer not appropriate
(b) F = 8.38; p-value = 0.002; Reject H0

(c) Short answer not appropriate
(d) Yes, results from a randomized experiment

8.33 (a) No, standard deviations too different
(b) Do not reject H0

8.35 (a) LD: 36.0% day, 64.0% night;
DM: 55.5% day, 44.5% night

(b) p-value = 0.000; Reject H0; Yes
8.37 (a) A lot; None

(b) F-statistic = 21.52; p-value = 0.000
(c) Reject H0;

There is a difference in mean hours on
homework

8.39 (a) No football; Football with concussion
(b) F-statistic = 31.47 ; p-value = 0.000
(c) Reject H0; Strong evidence of a

difference
8.41 Conditions are reasonable.

F=27.86; p-value≈ 0.000; Reject H0.
8.43 (a) Drug resistance: associated;

Health: not associated
(b) ResistanceDensity: ≈ 0;

DaysInfectious: 0.0002;
Weight: 0.906; RBC: 0.911

(c) Short answer not appropriate
(d) Short answer not appropriate

Section 8.2 Partial Answers

8.45 Yes, p-value = 0.002
8.47 7.77 to 12.63
8.49 H0 ∶ 𝜇A = 𝜇C vs Ha ∶ 𝜇A ≠ 𝜇C;

t = −0.38; p-value = 0.71; Do not reject H0

8.51
√
MSE = 6.95; df = 20

8.53 2.28 to 19.06
8.55 t = 2.66; p-value = 0.015; Reject H0

8.57 t = −2.59; p-value = 0.017; RejectH0.
8.59 DM vs LD: t = 1.60; p-value = 0.122

DM vs LL: t = −2.69; p-value = 0.0126
LD vs LL: t = −4.19; p-value = 0.0003

8.61 (a) Yes, ANOVA p-value ≈ 0;
IE:HC vs SE:SD; IE:HC vs SE:HC

(b) Short answer not appropriate
(c) t = −1.57; p-value = 0.124; Do not reject H0

8.63 Phone & Text > In person & App

8.65 t = 2.36; p-value=0.019; RejectH0

8.67 LSD = 50.1;
IE:HC,SE:HC,EE:HC,EE:SD < IE:SD,SE:SD

CHAPTER 9
Section 9.1 Partial Answers

9.1 𝛽0 ≈ b0 = 29.3; 𝛽1 ≈ b1 = 4.30;
̂Y = 29.3 + 4.30 ⋅X

9.3 𝛽0 ≈ b0 = 77.44; 𝛽1 ≈ b1 = −15.904;
̂Y = 77.44 − 15.904 ⋅ Score

9.5 b1 = −8.20; H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0;
p-value = 0.000; Reject H0

9.7 b1 = −0.3560; H0 ∶ 𝛽1 = 0 vs Ha ∶ 𝛽1 ≠ 0;
p-value = 0.087; Do not Reject H0

9.9 −10.18 to −6.22
9.11 t = 1.98; p-value = 0.029; Reject H0

9.13 t = 2.89; p-value = 0.0048; Reject H0

9.15 (a) Height,Weight; r = 0.619; p-value ≈ 0;
Taller people tend to weigh more

(b) GPA,Weight; r = −0.217; p-value ≈ 0;
Heavier people tend to have lower GPA

(c) Exercise, TV; r = 0.010; p-value = 0.852
9.17 (a) Lifestyle score; Disease-free years

(b) Slope of regression line
(c) No, we cannot conclude causation
(d) 7.44 additional disease-free years

9.19 (a) No concerns
(b) ̂GPA = 3.26
(c) b1 = 0.00189
(d) t = 6.99; p-value ≈ 0, Reject H0

(e) R2 = 12.5%
9.21 (a) One person; Below the mean;

140 FB friends
(b) No concerns
(c) r = 0.436; p-value = 0.005; Reject H0

(d) ̂FBfriends = 367 + 82.4 ⋅GMdensity;
367; 449.4; 284.6

(e) p-value = 0.005; Same
(f) R2 = 19.0%

9.23 (a) 0.618
(b) b1 = −0.152
(c) t = −5.02; p-value ≈ 0; Reject H0

(d) −0.213 to −0.091
(e) R2 = 33.1%

9.25 (a) R2

(b) Response = Pre𝑣alence;
Explanatory = Precipitation

(c) r = 0.889
9.27 (a) t-statistic = −1.80; p-value = 0.09; No

(b) 16.8%
9.29 (a) Countries

(b) Reasonable, perhaps negative residuals are
too large

(c) b1 = 0.811
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(d) 0.425 to 1.197
(e) p-value ≈ 0.000; Predictor is effective.
(f) 𝛽1 = 0.760 is in the CI
(g) R2 = 27.15%

9.31 (a) slope=1.0; Effective
(b) slope=0.00715; Effective
(c) Par has larger slope
(d) Distance has larger R2

9.33 (a) Yes
(b) Yes, 𝜌 = −0.879
(c) Data on entire population
(d) 𝛽1 = −0.679
(e) No, not an experiment

Section 9.2 Partial Answers

9.35 F = 21.85; p-value = 0.000;
The model is effective

9.37 F = 2.18; p-value = 0.141;
The model is not effective

9.39 n = 176; R2 = 11.2%
9.41 n = 344; R2 = 0.6%
9.43 F = 6.06; p-value = 0.0185
9.45 F = 259.76; p-value ≈ 0
9.47 F = 7.44; p-value = 0.011;

The model is effective
9.49 (a) ̂GPA = 3.07

(b) n = 345
(c) R2 = 12.5%
(d) F = 48.84; p-value = 0.000;

The model is effective
9.51 (a) One possible extreme point

(b) ̂MatingActi𝑣iy = 0.319
(c) t = −2.56; p-value = 0.033; Reject H0

(d) F = 6.58; p-value = 0.033; Reject H0

(e) They are the same
(f) R2 = 45.1%

9.53 (a) Foot (b1 = 3.4835) > Height (b1 = 0.91491)
(b) Height (s

𝜖
= 9.414)< Foot (s

𝜖
= 9.937)

(c) Height (R2 = 51.5%) > Foot (R2 = 46.0%)
(d) Height

9.55 (a) s
𝜖
= 18.94

(b) SE = 0.152
9.57 (a) s

𝜖
= 31.5

(b) SE = 3.11
9.59 (a) t = 2.04; p-value = 0.047; RejectH0

(b) F = 4.15; p-value = 0.047; Reject H0

(c) t = 2.04; p-value = 0.047; RejectH0

(d) p-values and conclusions are the same
9.61 (a) ̂Beds = 2.36 + 0.339Baths; 3.4

(b) t = 1, 978; p-value = 0.0578
(c) F = 3.914; p-value = 0.0578
(d) R2 = 12.3%

9.63 Answers will vary

Section 9.3 Partial Answers

9.65 (a) A; B
(b) 100

9.67 (a) B; A
(b) 20

9.69 (a) −0.013 to 4.783
(b) −2.797 to 7.568

9.71 (a) 143.4 to 172.4
(b) 101.5 to 214.3

9.73 (a) 62.22
(b) 95% CI for mean: II; 95% PI: I

9.75 (a) 52.88 to 80.34
(b) 58.84 to 85.74
(c) 84.32 to 125.18
(d) (a) 27.46, (b) 26.90, (c) 40.86

9.77 (39.49, 41.36)
9.79 (a) ̂Score = 5.96

(b) (3.55 to 8.38)
(c) Not surprising

9.81 (a) 1.4 to 9.0
(b) −8.0 to 18.4
(c) 0.8 to 14.4

CHAPTER 10
Section 10.1 Partial Answers

10.1 X1, X2, X3, and X4; Y
10.3 62.85; −2.85
10.5 −6.820; 0.001
10.7 X1
10.9 X2

10.11 R2 = 99.8%
10.13 13.85; 6.15
10.15 4.715; 0.053
10.17 X3 and X4
10.19 X4
10.21 Yes; p-value = 0.000
10.23 (a) 6.816 hectares

(b) 3.914
10.25 (a) Temp

(b) Rain
(c) 0; 1

10.27 R2 = 1.17;
Percent of variability in area explained by
model

10.29 (a) Short answer not appropriate
(b) Short answer not appropriate

10.31 (a) 35.32; 0.000
(b) Reject H0; The model is effective
(c) Yes

10.33 (a) ̂HangHours = 9.06; Residual = 2.94
(b) ̂HangHours = 6.25; Residual = −4.25

10.35 (a) SportsHours and TVHours
(b) VideoGameHours
(c) 4; 3
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10.37 R2 = 13.43;
Percent of variability in hang hours explained by
model

10.39 (a) 1191.08 calories
(b) Age; Fat
(c) Fat and Cholesterol
(d) Short answer not appropriate
(e) Short answer not appropriate
(f) Effective; p-value = 0.000
(g) R2 = 76.4%

10.41 (a) 167.72 lbs; 142.22 lbs
(b) Both height and gender
(c) Short answer not appropriate
(d) Short answer not appropriate
(e) R2 = 48.2%

10.43 3
10.45 43.3%
10.47 (a) R2

(b) Very small
10.49 (a) ̂Score = 3.802 − 0.645 ⋅ Par + 0.01108 ⋅Distance

(b) 5.85
10.51 (a) HangHours

(b) Occupants
(c) F-statistic = 1.36; p-value = 0.255

The model is not effective at predicting texts
sent

10.53 (a) 178.55
(b) Both effective
(c) 61.75%

10.55 (a) 0.116
(b) 0.904
(c) DayPct
(d) Corticosterone
(e) Effective, p-value = 0.000
(f) R2 = 59.4%

10.57 (a) p-value = 0.000, Age is effective
(b) p-value = 0.769, Age is not needed
(c) Age andMiles are strongly related

10.59 Short answer not appropriate

Section 10.2 Partial Answers

10.61 (b)
10.63 (d)
10.65 Conditions are not all met
10.67 (a) Short answer not appropriate

(b) 181.86 lbs; −61.86
(c) Short answer not appropriate
(d) Conditions appear to be met

10.69 Conditions not well met

10.71 Residuals not normal
10.73 (a) ̂Time = 6.41 + 1.0999 ⋅Distance

(b) ̂Time = 28.39 minutes
(c) Short answer not appropriate
(d) Short answer not appropriate
(e) Short answer not appropriate

10.75 Linearity, normality, equal variance
10.77 Concerns skewness, linearity, and equal variance
10.79 Conditions are reasonably met

Section 10.3 Partial Answers

10.81 (a) X2
(b) R2 = 15%; Decrease; Small decrease; Large

decrease
(c) 0.322; Decrease; Decrease; Increase
(d) F=1.23; Increase; Increase

10.83 Predictors:RottenTomatoes, AudienceScore,
TheatersOpenWeekend, Budget

10.85 (a) Strongest correlations with BetaPlasma are
Fiber and BetaDiet

(b) Answers may vary
10.87 (a) p-value less than 0.05

(b) No, this is an observational study
(c) Include them as additional explanatory

variables in the model
(d) No, there are still other possible confounding

variables
10.89 (a) Yes; p-value ≈ 0

(b) GDP associated with Cell and
LifeExpectancy

(c) Yes; p-value ≈ 0
10.91 (a) 107.79

(b) 108.34
(c) No; p-value = 0.711

10.93 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Steel: 108.021; Carbon: 104.45

10.95 (a) Par (p-value=0.612),Distance (p-value=0.185),
both not useful

(b) ANOVA (p-value=0.032), model is effective
(c) Par andDistance are strongly related

(r = 0.951)

UNIT D: Essential Synthesis Partial Answers

D.1 𝜒
2 = 12.09; p-value = 0.002; Reject H0

D.3 𝜒
2 = 5.818; p-value = 0.055; Do not Reject H0

D.5 Conditions are met;
F = 2.19; p-value = 0.115; Do not Reject H0

D.7 (a) Positive association; One outlier
(b) t = 7.265; p-value ≈ 0; Reject H0

(c) Confounding variable is size of bill
D.9 (a) R2 = 83.7%

(b) F = 797.87; p-value ≈ 0; Reject H0
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UNIT D: Review Exercise Partial Answers

D.11 p-value = 0.0970; Not significant
D.13 p-value = 0.382; Not significant
D.15 p-value = 0.035; Significant
D.17 p-value = 0.0808; Not significant
D.19 ANOVA for difference in means
D.21 Test correlation, slope, or regression ANOVA
D.23 Chi-square goodness-of-fit test
D.25 ANOVA for regression
D.27 Chi-square test for association
D.29 𝜒

2 = 8.52; p-value = 0.0035; Reject H0

D.31 (a) Yes (just barely)
(b) 𝜒

2 = 14.6; p-value = 0.002; Reject H0

(c) Rainy season in winter
D.33 (a) H0 ∶ 𝜇CA = 𝜇NY = 𝜇NJ = 𝜇PA

Ha ∶ Some 𝜇i ≠ 𝜇j

(b) Groups df=3
(c) Error df=116
(d) Sum of squares for error

D.35 F = 0.69; p-value = 0.512; Do not rejectH0

D.37 (a) 3.98 to 4.82
(b) 0.75 to 1.85
(c) t = −5.38; p-value ≈ 0; Reject H0

D.39 t = 4.39; p-value ≈ 0; Reject H0

D.41 (a) b1 = 0.0831
(b) t = 2.47; p-value = 0.014; RejectH0

(c) R2 = 2.4%
(d) F = 6.09; p-value = 0.014; Reject H0

D.43 Conditions not met;
Outlier positive residuals

D.45 (a) 715.0 to 786.8
(b) 311.1 to 1190.7

D.47 (a) Short answer not appropriate
(b) p-value = 0.000; Model is effective
(c) R2 = 18.4%
(d) CognitionZscore; Gender
(e) ClassYear, CognitionZscore,DASScore,

Drinks
D.49 (a) t = −2.98; p-value = 0.003; Reject H0

(b) t = −2.54; p-value = 0.011; Reject H0

D.51 Answers will vary

Final Essential Synthesis Partial Answers

E.1 Short answer not appropriate
E.3 (a) Around 0.077 to 0.098

(b) 0.077 to 0.098
(c) Short answer not appropriate
(d) p̂ = 0.0875; ME = 0.01036
(e) Larger sample size
(f) 0.086 to 0.088

E.5 (a) Short answer not appropriate
(b) x = $44, 520;M = $30, 200; s = $55, 061
(c) Short answer not appropriate
(d) xM = $51, 529; xF = $36, 765; xM − xF =

$14, 764
(e) Yes; p-value ≈ 0

E.7 (a) Short answer not appropriate
(b) Short answer not appropriate
(c) Yes; 𝜒2 = 27.09; p-value = 0.000006

E.9 (a) Short answer not appropriate
(b) Yes; t = 12.9; p-value ≈ 0
(c) ̂Income = −9.9889 + 1.4395 ⋅HoursWk
(d) $47,591
(e) R2 = 11.45%
(f) No; variability not constant

E.11 Test for difference in means
E.13 Interval for a proportion
E.15 Test for a proportion
E.17 Test for correlation
E.19 Test for diff. in proportions or chi-square test for

association
E.21 Interval for a proportion
E.23 Simple linear regression
E.25 Interval for difference in means
E.27 Test for difference in proportions

CHAPTER P
Section P.1 Partial Answers

P.1 0.6
P.3 0.6
P.5 0.25
P.7 No
P.9 0.6
P.11 0.625
P.13 No
P.15 0.7
P.17 0.42
P.19 0.3
P.21 0.2
P.23 0.333
P.25 No
P.27 Disjoint
P.29 Independent
P.31 Short answer not appropriate
P.33 (a) P(MP) = 0.699

(b) P(not F) = 0.842
(c) P(F ifMP) = 0.187
(d) P(notMP if not F) = 0.325
(e) P(MP and not F) = 0.568
(f) P(notMP or F) = 0.432

P.35 (a) P(Red) = 0.1375
(b) P(not Blue) = 0.75
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(c) P(Red or Orange) = 0.2875
(d) P(Blue1 and Blue2) = 0.0625
(e) P(Red1 andGreen2) = 0.191

P.37 (a) 0.824
(b) 0.008
(c) 0.167

P.39 (a) 0.305
(b) 0.695
(c) 0.029

P.41 (a) 0.5595
(b) 0.3130; 0.5595
(c) 0.3099; 0.5539
(d) Answers will vary

Section P.2 Partial Answers

P.43 P(I) = 0.26; P(A if II) = 0.76;
P(II and B) = 0.1032; P(III and A) = 0.248

P.45 P(I and A) = 0.115; P(I) = 0.5; P(II) = 0.5;
P(A if I) = 0.23; P(B if I) = 0.45;
P(C if I) = 0.32; P(A if II) = 0.9;
P(B if II) = 0.05; P(C if II) = 0.05

P.47 P(B and R) = 0.08
P.49 P(R if A) = 0.9
P.51 P(R) = 0.62
P.53 P(A if S) = 0.158
P.55 (a) 0.091

(b) 0.405
(c) 0.474

P.57 P(Cancer if Positive) = 0.2375
P.59 (a) P(Free if Spam) = 0.266

(b) P(Spam if Free) = 0.752
P.61 P(Spam if Free and Text) = 0.978

Section P.3 Partial Answers

P.63 Discrete
P.65 Discrete
P.67 Continuous
P.69 0.3
P.71 0.7
P.73 0.4
P.75 0.4
P.77 Not a probability function
P.79 (a) 𝜇 = 14

(b) 𝜎 = 6.63
P.81 (a) 𝜇 = 13

(b) 𝜎 = 2.236
P.83 (a) Short answer not appropriate

(b) 0.623
(c) 0.110
(d) 0.638

P.85 (a) 𝜇 = 2.42
(b) 𝜎 = 1.525

P.87 (a) P(X = 4) = 0.04
(b) P(X < 2) = 0.59
(c) 𝜇 = 1.37 cars
(d) 𝜎 = 1.180 cars

P.89 0.0244
P.91 (a) Short answer not appropriate

(b) 𝜇 = 4.9296c − $3845
(c) c = $779.98

P.93 (a) p(1) = 0.301; p(9) = 0.046
(b) P(X > 2) = 0.523

Section P.4 Partial Answers

P.95 Binomial
P.97 Not binomial
P.99 Binomial

P.101 5040
P.103 720
P.105 10
P.107 6
P.109 0.383
P.111 0.194
P.113 𝜇 = 8; 𝜎 = 1.265
P.115 𝜇 = 200; 𝜎 = 12.25
P.117 p(0) = 0.316; p(1) = 0.422;

p(2) = 0.211; p(3) = 0.047;
p(4) = 0.004

P.119 0.099; 0.026
P.121 𝜇 = 1.47; 𝜎 = 0.866
P.123 𝜇 = 3.3; 𝜎 = 1.55
P.125 𝜇 = 13.0; 𝜎 = 2.13
P.127 (a) 𝜇 = 28.8 people

(b) 0.844

Section P.5 Partial Answers

P.129 62%
P.131 95%
P.133 (a) 0.8508

(b) 0.9332
(c) 0.1359

P.135 (a) 0.982
(b) 0.309
(c) 0.625

P.137 (a) −1.282
(b) −0.8416
(c) ±1.960

P.139 (a) −1.28
(b) 0.385

P.141 (a) 0.691
(b) 0.202
(c) 0.643

P.143 (a) 0.023
(b) 0.006
(c) 0.700
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P.145 (a) 59.3
(b) 2.03
(c) 60.8 and 139.2

P.147 (a) 110
(b) 9.88

P.149 z = −1.6
P.151 x = 13.3; z = 1.64
P.153 z = −1.28; x = 397.6
P.155 x = 115 and x = 130
P.157 Short answer not appropriate
P.159 (a) 35th percentile

(b) 678
P.161 (a) 0.495

(b) 66.2 inches
P.163 Q1 = 2.89;Q3 = 3.43
P.165 (a) 0.0565

(b) 0.0012
(c) 0.5578

P.167 (a) 0.0509 or 5.09%
(b) 0.138 or 13.8%
(c) Grades below 53.9
(d) Grades above 86.1

P.169 (a) 0.954
(b) 0.683
(c) 0.997
(d) Yes
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additive rule in probability, 740
alternative hypothesis, 282
analysis of variance, 587
finding the differences, 604
for multiple regression, 660
for regression, 635
inference for means after, 606

analysis of variance for means
summary, 695

ANOVA, 587
Fisher’s LSD, 613
for multiple regression, 660
for regression, 635
inference for means after, 606

association, 32
causal, 32
linear, 119
negative, 119
positive, 119

augmented scatterplot, 152

bar chart, 56
segmented, 61
side-by-side, 61

Bayes’ rule, 751
bell-shaped distribution, 75
Benford’s law, 561
bias, 24
sampling, 20
wording, 24

binomial
coefficient, 765
probability function, 765

binomial random variable, 763
computing probabilities, 765
conditions, 763
mean, 768
standard deviation, 768

blinding in an experiment, 43
bootstrap distribution, 251
center, 251
if plot is not well behaved, 270

bootstrap sample, 249
bootstrap statistic, 250
boxplot, 103
side-by-side, 107

bubble chart, 152

cases, 5
categorical variable, 5
causally associated, 32
central limit theorem, 405

sample means, 448
sample proportions, 432

chi-square statistic, 549
chi-square test
for association, 566
goodness-of-fit, 552
summary, 694

coefficient of determination, 622,
637

collecting data
summary, 177

comparative plots, 61, 107
comparative summary statistics, 109
complement rule in probability, 739
conditional probability, 741
confidence interval, 234
based on normal distribution,
422

connection to hypothesis test, 349,
361

effect of confidence level on
width, 264

for a difference in means, 489
for a difference in proportions,
472

for a mean, 455
for a proportion, 436
interpreting, 238
misinterpretations, 241
paired difference in means, 504
slope for regression, 619
summary, 371
summary of formulas, 514, 789
using bootstrap percentiles, 264
using bootstrap standard error,
254

using margin of error, 233
using standard error, 234

confidence level, 234
confounding variables, 35, 685
correlation, 121
inference, 621
notation, 121
population, 121
properties, 121
t-test for, 621

data visualization, 152
degrees of freedom
difference in means, 486
single mean, 449

density curve, 771

describing data
summary, 177

determining sample size
mean, 459
proportion, 439

df, 449
difference in means, 109

confidence interval, 489
distribution, 486
hypothesis test, 494
standard error, 485

difference in proportions, 60
confidence interval, 472
distribution, 470
hypothesis test, 479
standard error, 470

disjoint events, 740
distribution, 72

bell-shaped, 75
bootstrap, 251
F, 586
normal, 402, 772
randomization, 296
sampling, 219
skewed, 75
symmetric, 74
t, 449

dotplot, 72
double-blind experiment, 43

empirical rule, 782
equally likely outcomes, 736
estimate

interval, 233
experiment, 36

importance of blinding, 43
matched pairs, 42
randomized, 38
randomized comparative, 42

explanatory variable, 11, 138
extrapolating, 144

F-distribution, 586
factorial, 765
first quartile, 93
Fisher’s LSD, 613
five number summary, 93
frequency table, 55

goodness-of-fit test, 552
graphs

comparative, 61, 107
side-by-side, 107
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hazard ratio, 245
heatmap, 155
histogram, 73
hypothesis test, 280, 281
alternative hypothesis, 282
analogy to law, 335
based on normal distribution, 409
based on randomization

distribution, 320
connection to confidence interval,

349, 361
for a difference in means, 494
for a difference in proportions, 479
for a mean, 464
for a proportion, 443
for correlation, 621
formal decision, 317
informal decision, 322
null hypothesis, 282
one-tailed vs two-tailed test, 301
p-value, 299, 300
paired difference in means, 504
significance level, 317
slope for regression, 619
statistical significance, 316
summary of formulas, 514, 789
test statistic, 409
Type I and Type II errors, 333

independent events, 742
inference
statistical, 18

interquartile range, 94
interval estimate, 233
interval notation, 233
IQR, 94

least squares line, 142, 616
line of best fit, 142
linear association, 119

margin of error, 233
matched pairs experiment, 42
matched pairs inference, 504
mean, 76
central limit theorem, 448
degrees of freedom, 449
formula for standard error, 448
notation, 76

median, 77
mountain chart, 166
multiple regression
ANOVA, 660
categorical variables, 682
choosing a model, 679
confounding variables, 685
model, 654
testing individual terms, 656

multiple tests, 336, 609
multiplicative rule in probability, 741

negative association, 119
normal distribution, 402, 772
common confidence levels, 425
compute p-value, 407
finding percentiles, 417, 775
finding probabilities, 774
graph, 773
normal density curve, 403, 772
standard normal, 404, 776

null hypothesis, 282

observational study, 36
one-tail test, 301
outlier, 73
detection, 106
scatterplot, 119

p-value, 299, 300, 306
from a normal distribution, 407
from a randomization distribution,
300

from a t-distribution, 464
one-tailed vs two-tailed test, 304

paired difference in means, 504
confidence interval, 504
hypothesis test, 504

parameter, 214
percentile, 92
pie chart, 56
placebo, 43
placebo effect, 43
pooled proportion, 477
population, 18
positive association, 119
practical vs statistical significance,
339

prediction equation, 139
probability, 736
Bayes’ rule, 751
complement rule, 739
conditional, 741
disjoint events, 740
event, 736
independent events, 742
multiplicative rule, 741
total probability rule, 749
tree diagrams, 749

probability function, 756
probability rules
summary, 744

problem of multiple tests, 336, 609
proportion, 55
central limit theorem, 432
difference in, 60
formula for standard error, 432
notation, 57

quantitative variable, 5
quartiles, 93

R-squared, 622, 637
random variable, 755
binomial, 763
discrete vs continuous, 755
expected value, 757
mean, 757
standard deviation, 758

randomization distribution, 296
center, 296
p-value, 300

randomization sample, 353
randomization test
estimating p-value, 304
generating randomization
samples, 353

randomized comparative
experiment, 42

randomized experiment, 38
range, 94
regression, 137
ANOVA, 635
checking conditions, 670
checking normality of residuals,
672

coefficient of determination,
636

confidence interval for mean
response, 645

prediction interval, 645
R-squared, 636
residuals vs fits plot, 671
standard deviation of the error,
637

standard error of slope, 639
regression line, 137, 142, 616
extrapolating too far, 144
interpreting slope, 142
making predictions, 139
notation for population, 144

regression slope
inference, 619

regression tests
summary, 696

relative frequency, 56
relative frequency table, 56
residual, 139
resistant statistic, 79
response variable, 11, 138

sample, 18
bias, 24
simple random, 21

sample size
effect on sampling distribution,
223

effect on standard error, 223
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sampling bias, 20
sampling distribution, 219
center, 220
effect of sample size, 223
importance of random sampling,
223

shape, 220
scatterplot, 118
augmented, 152

segmented bar chart, 61
side-by-side boxplots, 107
significance
practical vs statistical, 339
statistical, 316, 317

significance level, 317
simple linear model, 616
conditions, 623

simple random sample, 21
Simpson’s paradox, 161
skewed distribution, 75
soup analogy, 22
spaghetti plot, 157

standard deviation, 88
empirical rule, 782
the 95% rule, 89

standard error, 221
difference in means, 485
difference in proportions, 470
effect of sample size, 223
from a bootstrap distribution, 253
sample mean, 448
sample proportion, 432
summary of formulas, 514, 789

standard normal distribution, 777
statistic, 214
statistical inference, 18, 214
statistical significance, 316, 317
statistical test, 281
summary statistics, 54
comparative, 109

symmetric distribution, 74, 75

t-distribution, 449
t-test, 464

test statistic, 409
for a difference in means, 494
for a difference in proportions, 479
for a mean, 464
for a proportion, 443

the 95% rule, 89
third quartile, 93
time series plot, 156, 157
tree diagrams, 749
two-tail test, 301
two-way table, 57
Type I and Type II errors, 333

units, 5

variable, 5
categorical, 5
explanatory, 11
quantitative, 5
response, 11

variance, 88

z-score, 91
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